
737

Chapter 17
TypeDynAny

17.1 Chapter Overview

This chapter discusses theDynAny interface and its derived interfaces. TheDynAny

interface permits you to compose and decompose complex values at run time even
without compile-time knowledge of the IDL definitions involved. Section 17.3
presents the IDL and functionality forDynAny and its derived types. Section 17.4
explains how to useDynAny from C++, and Sections 17.5 and 17.6 present a few
applications ofDynAny.

17.2 Introduction

As you saw in Chapters 15 and 16, to insert a user-defined value into anAny you
must have compile-time knowledge of the corresponding IDL type because to
insert a value into anAny, you must use the corresponding overloaded
<<= operator generated by the IDL compiler.

This inability to constructAny values on-the-fly is a severe drawback for some
applications. For example, debuggers, generic user interfaces for objects, and
services such as the OMG Notification Service [26] all require the ability to inter-
pret values without knowing the values’ IDL types at compile time.

738 Type DynAny

TheDynAny interface was added to CORBA with the 2.2 revision to permit
applications to dynamically compose and decomposeany values. In a nutshell, the
DynAny interface does forany values what theTypeCode interface does for type
codes.DynAny permits applications to compose a value at run time whose type
was unknown when the application was compiled, and to transmit that value as
anany. Similarly,DynAny allows applications to receive a value of typeany from
an operation invocation and both to interpret the type of theany (using the
TypeCode interface) and to extract its value (using theDynAny interface) without
compile-time knowledge of the IDL types involved.

Unfortunately, theDynAny interfaces published with CORBA 2.2 contained a
number of defects. As a result, the interfaces were (incompatibly) revised with
CORBA 2.3, which is the version we describe here. If you need to find out which
version is supported by your ORB, look for the definition of theDynAny interface.
If the definition appears inside theDynamicAny module, you have the 2.3 version;
if the definition appears inside theCORBA module, you have the (now obsolete)
2.2 version.

TheDynAny interface is large, so we follow the same approach here as in
Chapter 16: we first present the IDL interface forDynAny and then illustrate its use
in C++ with a few examples.

17.3 The DynAny Interface

TheDynAny API is composed of nine interfaces. One of these, interface
DynAnyFactory, allows you to createDynAny objects. The other interfaces are
DynAny and seven interfaces derived fromDynAny, as shown in Figure 17.1.

All these interfaces are defined in theDynamicAny module. The derived inter-
faces, such asDynFixed andDynStruct, are used to createany values of the
corresponding type (DynStruct is used both for structures and for exceptions).
TheDynAny base interface deals withany values containing other IDL types, such
as strings, object references, and so on.1

1. Note thatDynValue represents anany containing an object-by-value. Because we do not cover
OBV in this book, we do not coverDynValue (see [18] for details).

17.3 The DynAny Interface 739

Figure 17.1. Interface inheritance hierarchy forDynAny.

17.3.1 Locality Constraints
DynAny andDynAnyFactory are locality-constrained interfaces. This means that
you cannot pass instances ofDynFactory or DynAny and its derived interfaces
over the wire, and you cannot stringify references to these interfaces with
ORB::object_to_string. Otherwise, locality-constrained objects are like ordi-
nary objects. In particular, they implicitly inherit fromObject and therefore
support operations such asis_a andis_equivalent.

DynAny allows you to compose and decompose values of typeany. To dynam-
ically compose anany value and send it across an interface, you first construct a
DynAny object and then extract the correspondingany value from it. Similarly, to
dynamically decompose anany value, you initialize aDynAny object from the
any value and use theDynAny object for decomposition.

17.3.2 IDL for DynAny

The IDL forDynAny is large, so we present it in stages here. The functionality
relating toDynAny falls into the following broad categories.

• Creation operations

• Life cycle operations (copying and destroyingDynAny objects)

• Type code operations (setting and retrieving the type code ofDynAny objects)

DynFixed

DynArray

DynAny

DynStruct

DynSequence

DynUnion

DynEnum

DynValue

DynAnyFactory

740 Type DynAny

• Insertion operations (inserting values of basic type intoDynAny objects to
compose complex types)

• Extraction operations (extracting values of basic type fromDynAny objects to
decompose them)

• Iteration operations (getting from one component of aDynAny to the next)

• Conversion operations betweenDynAny andany values

DynAny Creation

Before we look at theDynAny interface itself, we must consider how to create a
DynAny object. The creation operations forDynAny are provided by the
DynAnyFactory interface:

module DynamicAny {
interface DynAny; // Forward declaration

interface DynAnyFactory {
exception InconsistentTypeCode {};

DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);

DynAny create_dyn_any_from_type_code(in CORBA::TypeCode t)
raises(InconsistentTypeCode);

};
// ...

};

You obtain a reference to the factory by passing the string"DynAnyFactory" to
ORB::resolve_initial_references.

The fundamental creation operation iscreate_dyn_any, which constructs a
DynAny object from anany value. The newDynAny object contains the same type
code as theany value passed to the operation.

If the any value passed tocreate_dyn_any is not a structure, exception,
sequence, array, union, enumeration, fixed-point type, or object-by-value, the
returned object reference is of typeDynAny. Otherwise, the actual run-time type of
the reference isDynStruct, DynSequence, and so on, depending on the type of
value contained in thevalue parameter passed tocreate_dyn_any.

To determine the exact type of aDynAny, you can extract its type code and use
theTCKind value of the type code to narrow the reference to the appropriate
derived type.

17.3 The DynAny Interface 741

The other creation operation,create_dyn_any_from_type_code, creates a
default-initializedDynAny object for the type code passed as thet parameter.
Default initialization for simple types assigns a default value as follows.

• Boolean values are set to false.

• Numeric (integral and floating-point) values and values of typeoctet, char,
andwchar are set to zero.

• Values of typestring or wstring (whether bounded or unbounded) are set to
the empty string.

• Object references are set to nil.

• Values of typeTypeCode are set totk_null.2

• Values of typeany are set to contain atk_null type code and no value.

For complex types, default initialization assigns a default value as follows.

• Sequence values are set to the empty sequence.

• Fixed-point values are set to zero.

• Enumerated values are set to the first enumerator indicated by the type code.

• Structure and exception members are set (recursively) to their default values.

• Array elements are set (recursively) to their default values.

• For unions, the discriminator is set to indicate the first named member of the
union; that member is set (recursively) to its default value.

Whenever you create aDynAny object, the type code associated with theDynAny

object during creation remains with that object for its lifetime. You cannot change
the type code of aDynAny object later.

The creation operations raise anInconsistentTypeCode exception if you
attempt to create aDynAny object with an illegal or obsolete type code, such as the
deprecatedtk_Principal type code.

DynAny Life Cycle, Assignment, Comparison, and Conversion

Here is the first part of theDynAny interface:

2. You can create aDynAny for anany containing a type code as its value. In that case, theany
contains a type code indicatingtk_TypeCode and a type code value. For default initialization,
that type code value is set totk_null.

742 Type DynAny

module DynamicAny {
// ...
interface DynAny {

exception InvalidValue {};
exception TypeMismatch {};

// Assignment and life cycle operations
void assign(in DynAny dyn_any) raises(TypeMismatch);
DynAny copy();
void destroy();

// Comparison
boolean equal(in DynAny da);

// Conversion operations
void from_any(in any value)

raises(TypeMismatch, InvalidValue);
any to_any();

// Type code accessor
CORBA::TypeCode type();

// More operations here...
};

};

The life cycle operationscopy anddestroy have the usual semantics. Thecopy

operation returns a deep copy of aDynAny, and thedestroy operation destroys a
DynAny (including anyDynAny objects it may be composed of). Before you release
the last reference to aDynAny object that was created by one of the factory opera-
tions or by thecopy operation, you must explicitly calldestroy on the object;
otherwise, you may leak memory. Invoking an operation on a destroyedDynAny

raisesOBJECT_NOT_EXIST.3

Theassign operation makes a deep assignment of the contents of aDynAny

object to anotherDynAny object. You can assignDynAnys to each other only if both
source and target have the same type code (as determined by
TypeCode::equivalent); otherwise,assign raisesTypeMismatch. The type

3. To the best of our knowledge, all current ORBs do nothing on a call todestroy and instead
destroy aDynAny object when you release its last object reference. However, strictly speaking,
the call todestroy is required by the specification (even if it does nothing for a particular imple-
mentation).

17.3 The DynAny Interface 743

code of aDynAny is set when thatDynAny is created and cannot be changed for the
lifetime of theDynAny.

Theequal operation returns true if the type codes of the twoDynAnys are
equivalent and if (recursively) all componentDynAnys have identical values.

Thefrom_any andto_any operations provide conversion between typesany

andDynAny. For thefrom_any operation, you must pass anany with a type code
that is equivalent to that of the targetDynAny; otherwise, you get aTypeMismatch
exception. Similarly, the sourceany must contain a legal value; for example,
passing anany containing a null string raisesInvalidValue.

Thetype operation returns the type code of itsDynAny. This operation is
useful if you are passed aDynAny for a complex type and you want to narrow that
DynAny to a derived type, such asDynSequence.

DynAny Composition

TheDynAny interface contains one operation to insert each type of non-structured
value into aDynAny. To do this, you must have previously created aDynAny object.
The type code of theDynAny must be equivalent to that of the value being inserted;
otherwise, the operations raise anInvalidValue exception.

interface DynAny {
// ...

// Insertion operations
void insert_boolean(in boolean value)

raises(TypeMismatch, InvalidValue);
void insert_octet(in octet value)

raises(TypeMismatch, InvalidValue);
void insert_char(in char value)

raises(TypeMismatch, InvalidValue);
void insert_wchar(in wchar value)

raises(TypeMismatch, InvalidValue);
void insert_short(in short value)

raises(TypeMismatch, InvalidValue);
void insert_ushort(in unsigned short value)

raises(TypeMismatch, InvalidValue);
void insert_long(in long value)

raises(TypeMismatch, InvalidValue);
void insert_ulong(in unsigned long value)

raises(TypeMismatch, InvalidValue);
void insert_longlong(in long long value)

raises(TypeMismatch, InvalidValue);
void insert_ulonglong(in unsigned long long value)

raises(TypeMismatch, InvalidValue);

744 Type DynAny

void insert_float(in float value)
raises(TypeMismatch, InvalidValue);

void insert_double(in double value)
raises(TypeMismatch, InvalidValue);

void insert_longdouble(in long double value)
raises(TypeMismatch, InvalidValue);

void insert_string(in string value)
raises(TypeMismatch, InvalidValue);

void insert_wstring(in wstring value)
raises(TypeMismatch, InvalidValue);

void insert_reference(in Object value)
raises(TypeMismatch, InvalidValue);

void insert_typecode(in CORBA::TypeCode value)
raises(TypeMismatch, InvalidValue);

void insert_any(in any value)
raises(TypeMismatch, InvalidValue);

void insert_dyn_any(in DynAny value)
raises(TypeMismatch, InvalidValue);

void insert_val(in ValueBase value)
raises(TypeMismatch, InvalidValue);

// ...
};

As you can see, there is one operation for each simple type. Each operation
accepts a value and inserts it into aDynAny, raisingTypeMismatch if the value’s
type does not match that of the operation. TheInvalidValue exception is raised
if the value is unacceptable (such as inserting a string that exceeds the bound of a
bounded string).InvalidValue is also raised if you attempt to insert a value into
aDynAny that has components but has a current position of−1 (see page 746).

Theinsert_any operation inserts anany value into theany represented by the
DynAny. (The net effect is that oneany value is nested inside another.)

Theinsert_dyn_any operation does the same thing asinsert_any but
accepts aDynAny parameter. This is useful if you have just constructed anany

value as aDynAny and now want to insert it into anotherDynAny (because it saves
the need to convert theDynAny to anany before insertion).

DynAny Decomposition

To complement the insertion operations,DynAny also contains operations to
extract values from aDynAny. As with insertion, the operation must match the type
code of theDynAny; otherwise, it raises aTypeMismatch exception. Attempts to
extract a value from aDynAny that has components, but has a current position
of −1, raiseInvalidValue (see page 746).

17.3 The DynAny Interface 745

interface DynAny {
// ...

// Extraction operations
boolean get_boolean()

raises(TypeMismatch, InvalidValue);
octet get_octet()

raises(TypeMismatch, InvalidValue);
char get_char()

raises(TypeMismatch, InvalidValue);
wchar get_wchar()

raises(TypeMismatch, InvalidValue);
short get_short()

raises(TypeMismatch, InvalidValue);
unsigned short get_ushort()

raises(TypeMismatch, InvalidValue);
long get_long()

raises(TypeMismatch, InvalidValue);
unsigned long get_ulong()

raises(TypeMismatch, InvalidValue);
long long get_longlong()

raises(TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()

raises(TypeMismatch, InvalidValue);
float get_float()

raises(TypeMismatch, InvalidValue);
double get_double()

raises(TypeMismatch, InvalidValue);
long double get_longdouble()

raises(TypeMismatch, InvalidValue);
string get_string()

raises(TypeMismatch, InvalidValue);
wstring get_wstring()

raises(TypeMismatch, InvalidValue);
Object get_reference()

raises(TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()

raises(TypeMismatch, InvalidValue);
any get_any()

raises(TypeMismatch, InvalidValue);
DynAny get_dyn_any()

raises(TypeMismatch, InvalidValue);
ValueBase get_val()

raises(TypeMismatch, InvalidValue);
// ...

};

746 Type DynAny

DynAny Iteration

TheDynAny interface provides five operations to iterate over the components of a
DynAny. Iteration applies only to structures, exceptions, unions, sequences, arrays,
and value types. Here are the relevant IDL definitions:

interface DynAny {
// ...

// Iteration operations
unsigned long component_count();
DynAny current_component() raises(TypeMismatch);
boolean seek(in long index);
boolean next();
void rewind();

};

A DynAny value consists of a type code and an ordered collection of component
DynAny values. For example, aDynAny for a structure having four members
contains a collection of fourDynAny values, one for each member. The iterator
operations permit you to selectively examine the contents of the collection.

EachDynAny value maintains a current position in its collection of compo-
nents. The current position is indexed from0 to n−1, wheren is the number of
components. For example, for a four-member structure, the index ranges from
0 to 3. The current position of aDynAny can indicate the “no current component”
condition; in that case, the index value is−1.

When aDynAny is created, the initial index is zero if thatDynAny has compo-
nents. For example, creating aDynStruct for a four-member structure sets the
index to zero, so the current position initially indicates the first member of the
structure. On the other hand, creating aDynAny for a type that cannot have compo-
nents (such as along or an empty exception) sets the index to−1.

Thecomponent_count operation returns the number of components of a
DynAny. For simple types, such aslong, and for enumerated and fixed-point types,
component_count returns zero. For sequences, the operation returns the number
of elements in the sequence; for structures and exceptions, it returns the number of
members; for arrays, it returns the number of elements; for unions, it returns2 if a
member is active and1 otherwise.

Thecurrent_component operation returns theDynAny for the component at
the current position. The current position is not affected by this call, so successive
calls tocurrent_component return the same component. (You must explicitly call
next or seek to advance to the next component.) Callingcurrent_component on
aDynAny that cannot have components (such as along or an empty exception)

17.3 The DynAny Interface 747

raisesTypeMismatch. Callingcurrent_component on aDynAny that has compo-
nents, but whose current position is−1, returns a nil reference. You can call the
destroy operation on non-nilDynAnys returned bycurrent_component.
However, the call will have no effect. Instead, you must calldestroy onDynAnys
created withcreate_dyn_any, create_dyn_any_from_type_code, orcopy.

Thenext operation increments the current position and returns true if the new
current position denotes a component. Otherwise, if you callnext with the current
position already at the final component,next returns false and sets the current
position to−1. If you callnext on aDynAny that does not contain components
(such as theDynAny for a string),next returns false and leaves the current position
at −1.

Theseek operation allows you to explicitly set the current position (a value of
zero indicates the first component). Theseek operation returns true if the position
denoted byindex points at an existing component. Ifindex denotes a non-exis-
tent position,seek returns false and sets the current position to−1. If you call
seek on aDynAny that does not have components,seek returns false and leaves
the current position at−1.

Therewind operation is equivalent to callingseek(0).
Note that all theinsert_type andget_type operations onDynAny leave the

current position unchanged.
If all this seems a bit abstract right now, don’t despair—we show examples of

iterating over the components of aDynAny in Section 17.4.3.

17.3.3 IDL for DynEnum

TheDynEnum interface manipulates values of enumerated type:

interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string val)

raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long val)

raises(InvalidValue);
};

Theget_as_string andset_as_string operations provide access to an enumer-
ated value by its IDL identifier. For example, given the enumeration

enum Color { red, green, blue };

748 Type DynAny

you can set aDynEnum value tored by callingset_as_string("red"). Note that
enumerator names are optional in type codes (see Section 16.3.2). As a result,
get_as_string returns an empty string if you construct aDynEnum from anany
whose type code does not contain enumerator names. In that case,
set_as_string raisesInvalidValue, as it does if you pass it a string that is
outside the range of the enumerated type. (For example, for theColor enumera-
tion, callingset_as_string("black") raisesInvalidValue.)

Theget_as_ulong andset_as_ulong operations provide access to the
ordinal value of an enumerated value. For example, callingset_as_ulong(1)

does the same thing as callingset_as_string("green"). However,
set_as_ulong works even if the type code for the enumeration does not contain
the enumerator identifiers. Passing a value outside the range of the enumerated
type toset_as_ulong raisesInvalidValue.

17.3.4 IDL for DynStruct

TheDynStruct interface allows us to manipulate structures as well as exceptions.

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynStruct : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();

17.3 The DynAny Interface 749

void set_members_as_dyn_any(
in NameDynAnyPairSeq value

) raises(TypeMismatch, InvalidValue);
};

The main operations areget_members andset_members. They allow you to set
and get the value of the structure or exception members as a sequence of name–
value pairs. Each element in the sequence represents one structure member (so for
a four-member structure, the sequence would contain four name–value pairs).
Each name–value pair contains the name of the structure member (a string) and its
value (of typeany).

You must ensure that a sequence passed toset_members has the correct
number of elements (one for each structure member) and contains the structure
members in the same order as their IDL definition; otherwise,set_members raises
TypeMismatch. The values inserted must be consistent with the members’ type
codes; otherwise,set_members raisesInvalidValue.

Thecurrent_member_name operation returns the name of the member at the
current position as established by the iterator operations on theDynAny base inter-
face. Note that because member names are optional in type codes,
current_member_name may return an empty string. If theDynStruct represents
an empty exception,current_member_name raisesTypeMismatch. If the current
position is−1, current_member_name raisesInvalidValue.

Thecurrent_member_kind operation returns theTCKind value for the type
code of the current member. The exception semantics are the same as for
current_member_name.

get_members_as_dyn_any andset_members_as_dyn_any are analogous to
get_members andset_members, but they operate on sequences of name–DynAny

pairs. These operations are useful if you are working extensively withDynStructs
because they avoid the need to convert a constructedDynAny into anany before it
can be used to get or set structure members.

17.3.5 IDL for DynUnion

TheDynUnion interface allows us to manipulate unions.

interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d)

raises(TypeMismatch);
void set_to_default_member()

raises(TypeMismatch);

750 Type DynAny

void set_to_no_active_member()
raises(TypeMismatch);

boolean has_no_active_member()
raises(TypeMismatch);

CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidValue);
FieldName member_name();
CORBA::TCKind member_kind();

};

A DynUnion has two valid current positions:0, which denotes the discriminator,
and 1, which denotes the active member.component_count for aDynUnion is 1 if
the discriminator value indicates that no member is active; otherwise, it is2.

Theget_discriminator operation returns the discriminator value of the
union as aDynAny.

Theset_discriminator operation sets the discriminator value of the union.
Attempts to set a discriminator value that disagrees with the type code for the
union raiseTypeMismatch. Setting the discriminator can affect the active member
and the current position of the union.

• If the discriminator is set to a value that agrees with the currently active
member, that member remains active and the current position is set to1.

• If the discriminator is set to a value that belongs to a member of the union that
is not currently active, the currently active member (if any) is destroyed and
the member corresponding to the new discriminator value is initialized to its
default value. The current position is set to1.

• If the discriminator is set to a value that indicates that no member should be
active, the currently active member (if any) is destroyed and the current posi-
tion is set to0.

Theset_to_default_member operation sets the discriminator to a value that is
consistent with thedefault member of the union and sets the current position
to 0. If the union does not have an explicitdefault case, the operation raises
TypeMismatch.

Theset_to_no_active_member operation sets the discriminator to a value
that does not correspond to any of the union’scase labels. Calling this operation
sets the current position to0 (and causescomponent_count to return1). If the
union has an explicitdefault case, the operation raisesTypeMismatch.

Thehas_no_active_member operation returns true if the union’s discrimi-
nator has a value that does not correspond to an active member. In other words,
the operation returns true if the union consists solely of a discriminator because no

17.3 The DynAny Interface 751

member is active. The operation returns false for unions with an explicitdefault

label and for unions that exhaust the entire discriminator range for explicitcase

labels.
Themember operation returns the currently active member as aDynAny. You

can examine (and change) the value of the active member via thatDynAny. Note
that the returned reference remains valid only for as long as the active member
remains active. If you use the returned reference after activating a different
member, you receive anOBJECT_NOT_EXIST exception. Callingmember on a union
that does not currently have an active member raisesInvalidValue.

Thediscriminator_kind andmember_kind operations return theTCKind
value of the discriminator and member type, respectively. Themember_name oper-
ation allows you to read the name of the active member. Because member names
are optional within type codes, this operation may return the empty string.

17.3.6 IDL for DynSequence

TheDynSequence interface allows us to manipulate sequences.

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len)

raises(InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

Theget_length operation returns the number of elements of the sequence.
Theset_length operation sets the number of elements of the sequence. If

you increase the number of elements, new elements are added at the tail of the
sequence and are default-initialized. If the current position of the sequence is valid
(not −1), increasing the length of the sequence leaves the current position unaf-
fected. Otherwise, if the current position is−1, it is set to indicate the first of the
newly added elements. Increasing the length of a sequence beyond its bound
raisesInvalidValue.

752 Type DynAny

Decreasing the length of a sequence removes elements from the tail of the
sequence. The current position is set as follows.

• If the current position is−1, it remains at−1.

• If the length of the sequence is set to zero, the current position is set to−1.

• If the current position indicates an element that was not removed when the
sequence was shortened, the current position remains unaffected.

• If the current position indicates an element that was removed when the
sequence was shortened, the current position is set to−1.

Theget_elements operation returns the elements of the sequence as a sequence
of any values. Theset_elements operation sets the elements of the sequence
according to the parametervalue. set_elements completely replaces the
sequence’s elements and sets the length of the sequence to the number of elements
that are passed. The current position is set to−1 if set_elements is called with a
zero-length sequence; otherwise, the current position is set to0. If the type of the
sequence elements disagrees with the sequence’s type code (either some elements
are of the wrong type, or thevalue parameter has more elements than the
sequence bound allows), the operation raisesTypeMismatch.

Theget_elements_as_dyn_any andset_elements_as_dyn_any operations
behave likeget_elements andset_elements, but (to avoid unnecessary conver-
sions toany) they return and accept sequences ofDynAny elements.

17.3.7 IDL for DynArray

TheDynArray interface allows us to manipulate arrays.

interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

Theget_elements andset_elements operations work as with sequences.
However, because arrays have a fixed number of elements, the element sequences
always have as many elements as are specified as the array’s dimension.
set_elements sets the current position to 0.set_elements raises a
TypeMismatch exception if you pass a sequence that contains elements that

17.4 C++ Mapping for DynAny 753

disagree with the array’s type code. If you pass a sequence that is too long or too
short,set_elements raisesInvalidValue.

Theget_elements_as_dyn_any andset_elements_as_dyn_any operations
have the same semantics asget_elements andset_elements, but they return and
accept sequences ofDynAny (to avoid unnecessary conversions toany).

Note that you can access the dimension of the array via thecomponent_count

operation.

17.3.8 IDL for DynFixed

TheDynFixed interface allows us to manipulateanys containing fixed-point
values.

interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val)

raises(TypeMismatch, InvalidValue);
};

IDL does not offer a generic type that could represent fixed-point types with
different numbers of digits and scale. Therefore,DynFixed uses a string represen-
tation to get and set fixed-point values.

Theget_value operation returns the value of aDynFixed as a string. The
syntax is the same as for IDL fixed-point constants, with the trailingd or D being
optional. For example,get_value can return1.3, 1.3d, or1.3D.

Theset_value operation sets the value of aDynFixed using the same syntax.
(Again, a trailingd or D is optional). Ifset_value is passed a string whose scale
exceeds the range of theDynFixed, the operation raisesInvalidValue. If the
passed string has invalid syntax,set_value raisesTypeMismatch. set_value
returns true if the passed value can be represented without loss of precision;
otherwise, if the string contains too many fractional digits, extraneous fractional
digits are truncated andset_value returns false.

17.4 C++ Mapping for DynAny

The C++ mapping forDynAny and its derived interfaces follows the normal
mapping rules, so there are no additional memory management rules or parameter
changes to consider. Rather than repeat the full interfaces here in their C++

754 Type DynAny

versions, we show a number of examples of how to useDynAny to compose and
decompose values of different types.

17.4.1 Using DynAny with Simple Types
The easiest use ofDynAny is with simple types. We can useDynAny both to
compose and to decompose values. The following code fragment dynamically
creates anAny value containing along with value 20.4

// Make a DynAny containing a long with value 20.
//
DynamicAny::DynAny_var da

= daf->create_dyn_any_from_type_code(CORBA::_tc_long);
da->insert_long(20);

// Turn it into an Any
//
CORBA::Any_var an_any = da->to_any();

// Use an_any...

// Destroy the DynAny.
//
da->destroy(); // da and an_any deallocate

// when they go out of scope

This code first creates a newDynAny by calling
create_dyn_any_from_type_code with the type code forlong, and then
it initializes theDynAny by callinginsert_long . Now theDynAny is in a
defined state, and the code callsto_any to convert it into anAny that can, for
example, be passed across an IDL interface. To get rid of theDynAny, the code
callsdestroy . Note that the variableda callsCORBA::release when it goes
out of scope, so it deallocates the reference to theDynAny object.

The preceding code example is naive in the sense that it uses aDynAny vari-
able to create anAny for a simple value. Strictly speaking, there is no point in
doing this because we can always create anAny containing a simple value
directly without usingDynAny. However, if we want to compose user-defined
complex types, we must use dynamic creation; the insert operations for simple

4. Note that all code examples in this chapter assume that a reference to aDynAnyFactory was
obtained fromresolve_initial_references and is available in the variabledaf .

17.4 C++ Mapping for DynAny 755

types are provided for consistency and to avoid having to deal withDynAny for
complex types but withAny for simple types.

Instead of creating aDynAny object by supplying a type code, we can create
it from anAny value. Here is the same code again, but this time theDynAny is
created with a call tocreate_dyn_any .

// Make an Any containing the value 20 as a long.
//
CORBA::Any an_any;
an_any <<= (CORBA::Long)20;

// Create a DynAny from the Any.
//
DynamicAny::DynAny_var da = daf->create_dyn_any(an_any);

// Use da...

// Destroy the DynAny again.
//
da->destroy();

Again, looking at this, there seems little point in usingDynAny for a simple type
such aslong. However, when user-defined complex types are involved, creating a
DynAny from anAny becomes important: if anAny contains a value whose type
was unknown at compile time, we construct aDynAny from theAny and then use
theDynAny to decompose the value into its components.

The extraction operations onDynAny permit decomposition of simple values,
but there is little point in usingDynAny for this purpose. By definition, simple
values are simple and therefore do not need to be decomposed. Instead, we can
use the type code constants andAny values to extract simple values. The extrac-
tion functions are provided because they make it easier to extract simple values if
they appear as components of a complex value (see Section 17.4.3).

For completeness, here is an example that usesDynAny to extract along
value from anAny.

CORBA::Any an_any = ...; // Get any from somewhere...
DynamicAny::DynAny_var da = daf->create_dyn_any(an_any);
CORBA::TypeCode_var tc = da->type();

switch (tc->kind()) {
case CORBA::tk_long:

{
CORBA::Lon g l = da->get_long();
cout << "long value is " << l << endl;

756 Type DynAny

}
break;

// Other cases here...
}
da->destroy(); // Clean up

17.4.2 Using DynEnum

In discussing theshow_label function in Section 16.4 on page 713, we
encounter a problem. Without compile-time knowledge of the IDL, it is impos-
sible to show the label value for a union that has a discriminator of enumerated
type. TheDynAny functionality allows us to get around this problem.

Here again is the relevant part of theshow_label function, updated here to
useDynAny for decomposition of the label value:

void
show_label(const CORBA::Any * ap)
{

CORBA::TypeCode_var tc = ap->type();
if (tc->kind() == CORBA::tk_octet) {

cout << "default:" << endl;
} else {

cout << "case ";
switch (tc->kind()) {
// ...
case CORBA::tk_enum:

{
DynamicAny::DynAny_var da

= daf->create_dyn_any_from_type_code(tc);
DynamicAny::DynEnum_var de

= DynamicAny::DynEnum::_narrow(da);
de->from_any(*ap);
CORBA::String_va r s = de->get_as_string();
cout << s;
da->destroy();

}
break;

// ...
}
cout << ":" << endl;

}
}

The branch of theswitch statement for enumerated types creates aDynEnum
by callingcreate_dyn_any_from_type_code and narrowing the returned

17.4 C++ Mapping for DynAny 757

reference. We know that this must succeed because we have already established
that theAny being decoded has an enumerated value. The next step is to initialize
theDynEnumwith the actual value by callingfrom_any . Now theDynEnumis
in a well-defined state, and the code callsget_as_string to print the name of
the enumerator before it destroys the originalDynAny. You must destroy the
value—without the call todestroy , the code would leak theDynAny object.

Following is another version of the same code. Instead of explicitly creating a
DynAny object from the type code, it initializes aDynAny from theAny:

// ...
case CORBA::tk_enum:

{
DynamicAny::DynAny_var da = daf->create_dyn_any(*ap);
DynamicAny::DynEnum_var de

= DynamicAny::DynEnum::_narrow(da);
CORBA::String_va r s = de->get_as_string();
cout << s;
da->destroy();

}
break;

// ...

We know from the type code that theAny contains an enumerated value. This
means that there is no need to test for a nil return value from the call to_narrow
because that call cannot possibly fail except by throwing an exception (for
example, in case of memory exhaustion).

We can also useDynEnumto dynamically compose an enumerated value even
without knowledge of the IDL. To do this, we first construct a type code for the
enumerated type and then compose aDynEnumfor the value. The following code
example dynamically creates the type code for theSearchCriterion type in the
climate control system and then sets aDynEnum value to contain theLOCATION
enumerator:

// Make a type code for the SearchCriterion type
//
CORBA::EnumMemberSeq members;
members.length(3);
members[0] = CORBA::string_dup("ASSET");
members[1] = CORBA::string_dup("LOCATION");
members[2] = CORBA::string_dup("MODEL");

CORBA::TypeCode_var enum_tc
= orb->create_enum_tc(

"IDL:acme.com/CCS/Controller/SearchCriterion:1.0",

758 Type DynAny

"SearchCriterion", members
);

// Make an Any with the value LOCATION
//
DynamicAny::DynAny_var da

= daf->create_dyn_any_from_type_code(enum_tc); // Create
DynamicAny::DynEnum_var de

= DynamicAny::DynEnum::_narrow(da);
de->set_as_string("LOCATION"); // Set value

CORBA::Any_var an_any = de->to_any(); // Extract Any

// Use an_any...

da->destroy(); // Clean up

17.4.3 Using DynStruct

TheDynStruct class allows us to compose structures and exceptions. Either
you can supply member values as a sequence of name–value pairs and set member
values with a single call toset_members or set_members_as_dyn_any ,
or you can iterate over the members and set each member individually.

Following is a code fragment that composes aCCS::Thermostat::BtData

structure using theset_members_as_dyn_any function. The IDL for this
structure is as follows:

#pragma prefix "acme.com"

module CCS {
// ...
typedef short TempType;
// ...
interface Thermostat : Thermometer {

struct BtData {
TempType requested;
TempType min_permitted;
TempType max_permitted;
string error_msg;

};
// ...

};
// ...

};

17.4 C++ Mapping for DynAny 759

The code first constructs the type code for theBtData structure and then creates
each element for the member sequence. To correctly preserve aliasing
information, the code usesDynAny to construct the members of typeTempType.
(Recall from Section 15.4 that we cannot preserve aliases by inserting a simple
type directly into anAny.)

// Create an alias for short called "TempType".
//
CORBA::TypeCode_var TempType_tc

= orb->create_alias_tc(
"IDL:acme.com/CCS/TempType:1.0",
"TempType", CORBA::_tc_short

);

// Create a sequence containing the definitions for the
// four structure members.
//
CORBA::StructMemberSeq mseq;
mseq.length(4);
mseq[0].name = CORBA::string_dup("requested");
mseq[0].type = TempType_tc;
mseq[1].name = CORBA::string_dup("min_permitted");
mseq[1].type = TempType_tc;
mseq[2].name = CORBA::string_dup("max_permitted");
mseq[2].type = TempType_tc;
mseq[3].name = CORBA::string_dup("error_msg");
mseq[3].type = CORBA::TypeCode::_duplicate(CORBA::_tc_string);

// Create a type code for the BtData structure.
//
CORBA::TypeCode_var BtData_tc

= orb->create_struct_tc(
"IDL:acme.com/CCS/Thermostat/BtData:1.0",
"BtData", mseq

);

// Create DynAny objects for the structure members.
//
DynamicAny::DynAny_var requested

= daf->create_dyn_any_from_type_code(TempType_tc);
requested->insert_short(99);

DynamicAny::DynAny_var min_permitted
= daf->create_dyn_any_from_type_code(TempType_tc);

min_permitted->insert_short(50);

760 Type DynAny

DynamicAny::DynAny_var max_permitted
= daf->create_dyn_any_from_type_code(TempType_tc);

max_permitted->insert_short(90);

DynamicAny::DynAny_var error_msg
= daf->create_dyn_any_from_type_code(CORBA::_tc_string);

error_msg->insert_string("Too hot");

// Create the member sequence.
//
DynamicAny::NameDynAnyPairSeq members;
members.length(4);
members[0].id = CORBA::string_dup("requested");
members[0].value = requested;
members[1].id = CORBA::string_dup("min_permitted");
members[1].value = min_permitted;
members[2].id = CORBA::string_dup("max_permitted");
members[2].value = max_permitted;
members[3].id = CORBA::string_dup("error_msg");
members[3].value = error_msg;

// Now create the DynStruct and initialize it.
//
DynamicAny::DynAny_var da

= daf->create_dyn_any_from_type_code(BtData_tc);
DynamicAny::DynStruct_var ds

= DynamicAny::DynStruct::_narrow(da);
ds->set_members_as_dyn_any(members);

// Get the Any out of the DynStruct.
//
CORBA::Any_var btd = ds->to_any();

// Use btd...

// Clean up.
//
da->destroy();
requested->destroy();
max_permitted->destroy();
min_permitted->destroy();
error_msg->destroy();

Note that the code takes care to calldestroy for eachDynAny it has created.

17.4 C++ Mapping for DynAny 761

Instead of callingset_members_as_dyn_any to initialize the structure,
we can iterate over the members and set them individually. For theBtData struc-
ture, this approach is considerably easier than the preceding one because there is
no need to first construct aDynAny for each member:

// Create type code for BtData as before...
CORBA::TypeCode_var BtData_tc = ...;

// Create DynStruct and initialize members using iteration.
//
DynamicAny::DynAny_var da

= daf->create_dyn_any_from_type_code(BtData_tc);
DynamicAny::DynStruct_var ds

= DynamicAny::DynStruct::_narrow(da);
DynamicAny::DynAny_var member;
member = ds->current_component();
member->insert_short(99); // Set requested
ds->next();
member = ds->current_component();
member->insert_short(50); // Set min_permitted
ds->next();
member = ds->current_component();
member->insert_short(90); // Set max_permitted
ds->next();
member = ds->current_component();
member->insert_string("Too hot"); // Set error_msg

CORBA::Any_var btd = ds->to_any(); // Get the Any

// Use btd...

da->destroy(); // Clean up

After callingcurrent_component , the code callsnext to advance the
current position to the next member. Note that there is no need to explicitly
destroy theDynAny objects returned bycurrent_component ; it is sufficient
to destroy onlyda because destroying aDynAny also destroys its constituent
components.

The preceding code correctly preserves aliasing information for the members.
For example, the type code for therequested member indicatesCCS::TempType
instead ofshort because the type code forBtData contains the aliasing
information.

To decompose a structure, either we can callget_members to extract the
members and then decompose each element of the returned sequence, or we can

762 Type DynAny

iterate over the structure and decompose the members one by one. Following is a
code fragment that iterates over the components of aDynStruct and hands each
component to adisplay helper function:

DynamicAny::DynStruct_var ds = ...;
for (CORBA::ULon g i = 0; i < ds->component_count(); i++) {

DynamicAny::DynAny_var cc = ds->current_component();
CORBA::String_var name = ds->current_member_name();
cout << name < < " = ";
display(cc);
ds->next();

}

This code callscomponent_count to get the number of members and uses that
number to control the loop. On each iteration, a call tonext advances the current
position to the next member.

17.4.4 Using DynUnion

To compose a union, you must set the discriminator and active member. Following
is a code fragment that creates aKeyType union for the climate control system:

// Create DynUnion.
//
DynamicAny::DynAny_var da

= daf->create_dyn_any_from_type_code(
CCS::Controller::_tc_KeyType

);
DynamicAny::DynUnion_var du = DynamicAny::DynUnion::_narrow(da);

// Set discriminator to LOCATION.
//
DynamicAny::DynAny_var tmp = du->get_discriminator();
DynamicAny::DynEnum_var disc = DynamicAny::DynEnum::_narrow(tmp);
disc->set_as_ulong(1); // LOCATION

// Set member for LOCATION.
//
DynamicAny::DynAny_var member = du->member();
member->insert_string("Room 414");

// Use du...

da->destroy(); // Clean up

17.4 C++ Mapping for DynAny 763

For simplicity, the code creates theDynUnion using the generated
_tc_KeyType constant, but it could have used a synthesized type code instead.

The first step is to get theDynAny for the discriminator and to narrow that
DynAny to aDynEnum interface. This narrowing step must succeed because we
know that the union has an enumerated discriminator. The second step sets the
discriminator value to indicate that thelocation member is active. Now that the
correct union member is indicated by the discriminator, the code calls the
member function on theDynUnion to get theDynAny for the active member
and then sets the active member’s value using theDynAny returned bymember.
Finally, the code callsdestroy to avoid leaking theDynUnion created
initially.

To compose a union that does not have an active member, you use
set_to_no_active_member . To compose a union that activates thedefault

member, you can either callset_to_default_member (if you don’t care
about the precise value of the discriminator) or set the discriminator to a value that
activates thedefault member.

Decomposition of unions follows the general pattern of ensuring that a union
member is active, followed by decomposition of that member:

DynamicAny::DynUnion_var du = ...; // Get DynUnion...

DynamicAny::DynAny_var disc = du->get_discriminator();
// Decompose discriminator...

if (!du->has_no_active_member()) {
CORBA::String_var mname = du->member_name();
cout << "member name is " << mname << endl;
DynamicAny::DynAny_var member = du->member();
// Decompose member...

}

17.4.5 Using DynSequence

Composition of sequences presents you with two options. Either you can iterate
over the sequence using theDynAny base interface iterator operations, or you can
useset_elements or set_elements_as_dyn_any to supply the sequence
elements as a sequence ofany or DynAny values.

The following code fragment fills a sequence of values using iteration. We
assume that the IDL contains a definitionLongSeq for a sequence oflong values.

764 Type DynAny

DynamicAny::DynAny_var da
= daf->create_dyn_any_from_type_code(_tc_LongSeq);

DynamicAny::DynSequence_var ds
= DynamicAny::DynSequence::_narrow(da);

ds->set_length(20);
for (CORBA::ULon g i = 0; i < ds->component_count(); i++) {

DynamicAny::DynAny_var elmt = ds->current_component();
elmt->insert_long(i);
ds->next();

}

// Use ds...

da->destroy(); // Clean up

For decomposition of a sequence, you can either iterate over the individual
members or callget_elements or get_elements_as_dyn_any .
Following is a code fragment that extracts the elements from a sequence of long
values usingget_elements . Note thatget_elements returns a sequence of
Any (notDynAny), so the code extracts the long values from the members for
printing:

DynamicAny::DynSequence_var ds = ...;

DynamicAny::AnySeq_var as = ds->get_elements();
for (CORBA::ULon g i = 0; i < as->length(); i++) {

CORBA::ULong val;
as[i] >>= val;
cout << val << endl;

}

17.5 Using DynAny for Generic Display

One useful application ofDynAny is for generic display purposes. Using
DynAny, we can decompose an arbitraryAny value into its constituent parts at
run time and display them on screen. This capability is useful, for example, for
debuggers, which must be able to inspect a value even if the value’s type was not
known at compile time.

Following is an outline for such a generic display function. We have left it
incomplete to save space, so not all possible types are dealt with. However, there
is enough for you to see how you would complete the function to handle the

17.5 Using DynAny for Generic Display 765

remaining types. Note that our display function simply writes to standard output
and does not make any attempt to improve the layout of the data. Of course, there
is nothing to prevent you from using more-sophisticated means to present the
contents of a value, such as list widgets for a graphical user interface.

void
display(DynamicAny::DynAny_ptr da)
{

// Strip aliases
//
CORBA::TypeCode_var tc(da->type());
while (tc->kind() == CORBA::tk_alias)

tc = tc->content_type();

// Deal with each type of data.
//
switch (tc->kind()) {
case CORBA::tk_short:

cout << da->get_short();
break;

case CORBA::tk_long:
cout << da->get_long();
break;

case CORBA::tk_string:
{

CORBA::String_var s(da->get_string());
cout << "\"" << s << "\"";

}
break;

// Deal with remaining simple types here... (not shown)
//
case CORBA::tk_struct:
case CORBA::tk_except:

{
DynamicAny::DynStruct_var ds =

DynamicAny::DynStruct::_narrow(da);
for (int i = 0; i < ds->component_count(); i++) {

DynamicAny::DynAny_var cm(ds->current_component());
CORBA::String_var mem(ds->current_member_name());
cout << mem << " = " << endl;
display(cm);
ds->next();

}
}

766 Type DynAny

break;
case CORBA::tk_enum:

{
DynamicAny::DynEnum_var de

= DynamicAny::DynEnum::_narrow(da);
CORBA::String_var val(de->get_as_string());
cout << val << endl;

}
break;

case CORBA::tk_objref:
{

CORBA::TypeCode_var tc(da->type());
CORBA::String_var id(tc->id());
cout << "Object reference (" << id << ")" << endl;
CORBA::Object_var obj(da->get_reference());
CORBA::String_var str_ref(orb->object_to_string(obj));
cout << str_ref << endl;

}
break;

case CORBA::tk_array:
{

for (int i = 0; i < da->component_count(); i++) {
DynamicAny::DynAny_var cm(da->current_component());
cout << "[" << i << "] = " << endl;
display(cm);
da->next();

}
}
break;

// Deal with remaining complex types here... (not shown)
//
}

cout << endl;
}

17.6 Obtaining Type Information

When you look at the preceding sections, you will notice that the sample code we
have presented still contains type information. However, instead of this type
information being in the form of IDL-generated stubs, it is now in the form of
manifest constants in the source code, such as literal repository IDs. This means

17.6 Obtaining Type Information 767

that the source code still has compile-time knowledge of the IDL types, at least for
composition of types. The question really is this: How does an application
otherwise (without linking against the stubs and without using manifest constants)
obtain the necessary type information to compose values?

The answer depends on the application. For decomposition of values, no
compile-time knowledge of the IDL types is required at all. TheTypeCode and
DynAny interfaces provide all the necessary functionality to decompose a complex
value into its constituent values without any compile-time knowledge of the IDL
types. However, forcompositionof values, we clearly need to get type knowledge
from somewhere. The following sections present options for getting that type
knowledge at run time.

17.6.1 Type Information from the OMG Interface Repository
One option is to consult an interface repository at run time. We do not cover the
OMG Interface Repository in this book, so we do not present this option in detail.
Suffice it to say that the Interface Repository (IFR) allows you to discover the
complete IDL definition of a type at run time by using the type’s repository ID as
an index into the Interface Repository. The IFR returns object references to type
descriptions that fully describe a type. This is similar in nature (if not in detail) to
the way type codes describe the type of a value. The main difference between type
codes and the IFR is that the IFR can describe things other than value types, such
as interfaces, operations, attributes, and modules.

Using the IFR,DynAny, and the DII in combination, we can, for example, build
a universal CORBA client. Given an object reference to an object of arbitrary
type, such a universal client extracts the interface definition of the object from the
IFR and dynamically constructs a user interface that reflects the operations and
attributes of the object. We can then enter values into that interface; the universal
client usesDynAny to turn these values into parameters for operations that it
invokes via the DII.

17.6.2 Type Information from Translation Tables
Another option is to compose values dynamically by using rules for translating
one type system into another. For example, a CORBA-CMIP bridge can use the
mapping rules defined by the Joint Inter-Domain Management (JIDM)
specification [24] [30] to work out how to transform each CORBA request into a
Common Management Information Protocol (CMIP) request and vice versa. In

768 Type DynAny

effect, you configure such a bridge by compiling the relevant IDL or GDMO5

definitions with a tool that produces output in the form of translation tables or
shared libraries to drive the operation of the bridge. The bridge uses the fixed
translation rules together with the dynamic type information provided by the tool
to work out how to convert requests and data types between the two protocols.

17.6.3 Type Information from Expressions
The CORBA Notification Service [26] obtains knowledge of the relevant types
from its clients. Briefly, the OMG Notification Service extends the OMG Event
Service (see Chapter 20) using the notion offilters. A filter is a Boolean expres-
sion that determines whether a particular event (which is of typeany) will be
forwarded by a channel. A client installs a filter in a channel by supplying a filter
expression such as

$._repos_id == 'IDL:CCS/Thermostat/BtData:1.0' and
($.requested > 90 or $.requested < 20)

The relevant type information is supplied to the channel as part of the filter
expression so that the channel can matchany values against the filter. Typically,
the channel is implemented so that it first creates an abstract syntax tree for the
filter expression and then evaluates each node in the tree. Because the expression
itself contains things such as repository IDs and field names, the channel can eval-
uate the filter against anany value without requiring additional type information
from an interface repository.

17.7 Summary

DynAny provides composition and decomposition for values in a way that is analo-
gous to the wayTypeCode provides composition and decomposition for types.
Together,DynAny andTypeCode provide the features required by generic applica-
tions that do not have knowledge of the compile-time types of values.DynAny was
revised with CORBA 2.3 in a way that is not backward-compatible. Before devel-
oping code that usesDynAny, you should ensure that you have the 2.3 version.

5. GDMO stands for Guidelines for the Definition of Managed Objects. It is a type definition
language for Open Systems Interconnect (OSI) network management.

	17.1 Chapter Overview
	17.2 Introduction
	17.3 The DynAny Interface
	17.3.1 Locality Constraints
	17.3.2 IDL for DynAny
	17.3.3 IDL for DynEnum
	17.3.4 IDL for DynStruct
	17.3.5 IDL for DynUnion
	17.3.6 IDL for DynSequence
	17.3.7 IDL for DynArray
	17.3.8 IDL for DynFixed

	17.4 C++ Mapping for DynAny
	17.4.1 Using DynAny with Simple Types
	17.4.2 Using DynEnum
	17.4.3 Using DynStruct
	17.4.4 Using DynUnion
	17.4.5 Using DynSequence

	17.5 Using DynAny for Generic Display
	17.6 Obtaining Type Information
	17.6.1 Type Information from the OMG Interface Repository
	17.6.2 Type Information from Translation Tables
	17.6.3 Type Information from Expressions

	17.7 Summary

