Chapter 6
Basic IDL-to-C++ Mapping

6.1

Chapter Overview

This chapter explains how IDL types are mapped to their corresponding C++
types by an IDL compiler. Sections 6.3 to 6.8 cover identifiers, modules, and
simple IDL types. Section 6.9 covers memory management issues related to vari-
able-length types, and Section 6.10 presents detailed examples of memory
management for strings. Sections 6.11 and 6.12 discuss the mapping for wide
strings and fixed-point types. The mapping for user-defined complex types is
covered in Sections 6.13 to 6.18. Section 6.19 shows how smart pointers can elim-
inate the need to take care of memory management.

This chapter does not cover all of the mapping. Chapter 7 presents the client-
side mapping for operations and exceptions, Chapter 9 details the server-side
mapping, and Chapters 15 to 17 cover the dynamic aspects of IDL. (The complete
C++ mapping specification can be found in [17a].)

This chapter is long, and you probably won't be able (or inclined) to absorb all
of it by reading it from beginning to end. Instead, you may prefer to browse the
sections that interest you and refer to the details later. The chapter is arranged so
that it is suitable as a reference. All the material for a particular topic is presented
together, so you should be able to find the answers to specific questions as they
arise.

139

140 Basic IDL-to-C++ Mapping

6.2 Introduction

The mapping from IDL to C++ must address a large number of requirements:
* The mapping should be intuitive and easy to use.

* |t should preserve commonly used C++ idioms and “feel” like normal C++ as
much as possible.

It should be type-safe.

It should be efficient in its use of memory and CPU cycles.

It must work on architectures with segmented or hard (non-virtual) memory.
It must be reentrant so that it can be used in threaded environments.

The mapping must preserve location transparency; that is, the source code for
client and server must look identical whether or not client and server are collo-
cated (are in the same address space).

Some of these requirements conflict with others. For example, typically we cannot
achieve ease of use and optimum efficiency at the same time, so we must make
trade-offs. The C++ mapping adopted by the OMG deals with these compromises
by choosing efficiency over convenience. The reason for this approach is twofold.

* |tis possible to layer a slower but more convenient mapping on top of a faster
but less convenient one, but we cannot layer a fast mapping on top of a slow
one. Favoring a mapping that is fast but less convenient lets the OMG and
ORB vendors add other options, such as code generation wizards, later.

* Increasingly, designers use IDL to describe in-process interfaces, which have
the advantage of location transparency. Such interfaces let you build systems
that implement different functional units in a single process and then let you
later split that single process into multiple processes without breaking existing
source code. The run-time efficiency of the mapping may be irrelevant for
interprocess communication, but it matters for in-process communication.

These design choices mean that the C++ mapping is large and complex, but things
are not as bad as they may seem. First, the mapping is consistent. For example,
once you have understood the memory management of strings, you also know
most of the rules for other variable-length types. Second, the mapping is type-
safe; no casts are required, and many mistakes are caught at compile time. Third,
the mapping is easy to memorize. Although some classes have a large number of
member functions, you need call only a small number of them for typical use;
some member functions exist to provide default conversions for parameter
passing, and you need not ever call them explicitly.

6.3 Mapping for Identifiers 141

6.3

Keep in mind that you should not try to read and understand the header files
generated by the IDL compiler. The header files typically are full of incomprehen-
sible macros, mapping implementation details, and cryptic workarounds for
various compiler bugs. In other words, the header files are not meant for human
consumption. It is far easier to look at the IDL instead. IDL and a knowledge of
the C++ mapping rules are all you need to write high-quality code.

Mapping for Identifiers

IDL identifiers are preserved without change in the generated C++ code. For
example, the IDL enumeration

enum Color { red, green, blue };

maps to the C++ enumeration
enum Color { red, green, blue };

The C++ mapping also preserves the scoping of IDL. If a scoped name such as
Outer::Inner is valid in IDL, the generated C++ code defines the same name as
Outer::Inner

A problem arises if C++ keywords are used in an IDL definition. For example,
the following IDL definition is legal:

enum class { if, this, while, else };

Clearly, this definition cannot be translated without mapping away from the C++
keywords. The C++ mapping specifies that IDL identifiers that are C++ keywords
get a_cxx_ prefix, so the preceding is translated as

enum _cxx_class { _cxx_if, _cxx_this, _cxx_while, _cxx_else }

The resulting code is harder to read, so you should avoid using IDL identifiers that
are C++ keywords.

It is also a good idea to avoid IDL identifiers containing a double underscore,
such as

typedef long my__long;

The identifiemy__long is legal and maps to C+my__long . However, standard
C++ reserves identifiers containing double underscores for the implementation,
so, strictly speakingny__long invades the compiler's namespace. In practice,
IDL identifiers containing double underscores are not likely to cause problems,

142 Basic IDL-to-C++ Mapping
but you should be aware that the C++ mapping does not address this potential
name clash.
6.4 Mapping for Modules

IDL modules are mapped to C++ namespaces. The contents of an IDL module
appear inside the corresponding C++ namespace, so the scoping of an IDL defini-
tion is preserved at the C++ level. Here is an example:

module Outer {
// More definitions here...
module Inner {
// ...
};
1

This maps to correspondingly nested namespaces in C++:

namespace Outer {
/I More definitions here...
namespace Inner {
..

}
}

A useful feature of namespaces is that they permit you to drop the name of the
namespace by usinguaing directive. This technique eliminates the need to
qualify all identifiers with the module name:

using namespace Outer::Inner;

/I No need to qualify everything
/I with Outer::Inner from here on...

IDL modules can be reopened. A reopened module is mapped by reopening the
corresponding C++ namespace:

module M1 {
// Some M1 definitions here...

1

module M2 {
// M2 definitions here...
1

6.4 Mapping for Modules 143

module M1 { // Reopen M1
// More M1 definitions here...
1

This maps to C++ as

namespace M1 {
/I Some M1 definitions here...

}

namespace M2 {
/I M2 definitions here...

}

namespace M1 { // Reopen M1l
/I More M1 definitions here...

}

Because not all C++ compilers have caught up with the ISO/IEC C++
Standard [9], namespaces are not universally available. For compilers not
supporting namespaces, CORBA specifies an alternative that maps IDL
modules to C++ classes instead of namespaces:

class Outer {
public:
/I More definitions here...
class Inner {
public:
...
h
3
This alternative mapping is workable but has drawbacks.

* Nousing directive is available, so you must fully qualify names that are not
in the current scope (or in one of its enclosing scopes).

* There is no sensible mapping of reopened modules onto classes. This means
that IDL compilers will not permit you to reopen an IDL module if code
generation is for a C++ compiler that does not support namespaces.

For the remainder of this book, we use the mapping to namespaces.

144

Basic IDL-to-C++ Mapping

6.5

The CORBA Module

6.6

CORBA defines a number of standard IDL types and interfaces. To avoid
polluting the global namespace, these definitions are provided insider#ie
module. ThecORBA module is mapped in the same way as any other module, so
the ORB header files provideCDRBAamespace containing the corresponding
C++ definitions.

We discuss the contents of tB®RBAamespace incrementally throughout
this book.

Mapping for Basic Types

6.6.1

IDL basic types are mapped as shown in Table 6.1. Exceptifong, each IDL

type is mapped to a type definition in ti®RBAiamespace. The type definitions
allow the mapping to maintain the size guarantees provided by IDL. To ensure
that your code remains portable, always use the names defineCiDR®A
namespace for IDL types (for example, @@RBA::Long instead ofong to
declare a variable). This will also help the transition of your code to 64-bit archi-
tectures (which may defit@ORBA::Long asint).

Note that IDLstring is mapped directly tohar * instead of a type defini-
tion. The reason is that when the OMG first produced the C++ mapping, it was felt
that binary layout of data in memory had to be the same for both the C and the
C++ mappings. This precludes mapping strings to something more convenient,
such as a string class.

64-bit Integer and Tong double Types

The specification assumes that the underlying C++ implementation provides
native support forynsigned) Tong long andlong double. If such supportis not
available, the mapping for these types is not specified. For that reason, you should
avoid 64-bit integers antbng double unless you are sure that they are supported
as native C++ types on the platforms relevant to you.

1. In hindsight, imposing this restriction was probably a mistake because it forces the C++ mapping
to be less type-safe and convenient than it could have been otherwise.

6.6 Mapping for Basic Types

145

Table 6.1. Mapping for basic types.

IDL C++
short CORBA::Short
Tong CORBA::Long
Tong Tong CORBA::LongLong
unsigned short CORBA::UShort
unsigned Tong CORBA::ULong
unsigned long Tong ||CORBA::ULonglLong
float CORBA::Float
double CORBA::Double
Tong double CORBA::LongDouble
char CORBA::Char
wchar CORBA:WChar
string char *
wstring CORBA::WChar *
boolean CORBA::Boolean
octet CORBA::Octet
any CORBA::Any

6.6.2 Overloading on Basic Types

All the basic types are mapped so that they are distinguishable for the purposes of

C++ overloading; the exceptions attear, boolean, octet, andwchar. This is
because all three of the typasr, boolean, andoctet may map to the same
C++ character type, angthar may map to one of the C++ integer types or

wchar_t . For example:

void foo(CORBA::Short param) { I*.% }
void foo(CORBA::Long param) { F.*};
void foo(CORBA::Char param) { *.* };

void foo(CORBA::Boolean param) { /*..*/ };
void foo(CORBA::Octet param) { *.*1}
void foo(CORBA::WChar param) { F.*1}

/I May not compile
/I May not compile
/I May not compile

146

Basic IDL-to-C++ Mapping

6.6.3

6.6.4

6.6.5

6.6.6

The first three definitions dbo are guaranteed to work, but the final three
definitions may not compile in some implementations. For example, an ORB
could map IDLchar, boolean, andoctet to C++char and map IDlwchar to
C++short . (In that case, the preceding definitions are ambiguous and will be
rejected by the compiler.) To keep your code portable, do not overload functions
solely onChar, Boolean , andOctet , and do not overload dWChar and an
integer type even if it happens to work for your particular ORB.

Types Mappable to char

IDL char, boolean, andoctet may map to signed, unsigned, or pleirar . To
keep your code portable, do not make assumptions in your code about whether
these types are signed or unsigned.

Mapping for wchar

IDL wchar may map to a C++ integer type, suchrds, or may map to
C++wchar_t . The mapping to integer types accommodates non-standard
compilers, in whictwchar_t is not a distinct type.

Boolean Mapping

On standard C++ compilers, IDloolean may be mapped to CHool ; the
specification permits this but does not require it. If it is not mapped to C++
bool —for example, on classic C++ compilersSORBA::Boolean maps to
plainchar , signed char , orunsigned char

The C++ mapping does not require Boolean consER$EandFALSE (or
true andfalse) to be provided (althougiue andfalse will work in a
standard C++ environment). To keep your code portable, simply use the integer
constantd and0O as Boolean values; this works in both standard and classic
environments.

String and Wide String Mapping

Strings are mapped thar * , and wide strings are mapped to

CORBA:WChar *. Thisis true whether you use bounded or unbounded strings.

If bounded strings are used, the mapping places the burden of enforcing the bound
on the programmer. It is unspecified what should happen if the length of a

6.6 Mapping for Basic Types 147

bounded string is exceeded at run time, so you must assume that the behavior is
undefined.

The use ohew anddelete for dynamic allocation of strings is not portable.
Instead, you must use helper functions in@Gi@RBAamespace:

namespace CORBA {
..
static char * string_alloc(ULong len);
static char * string_dup(const char *);
static void string_free(char *);

static WChar * wstring_alloc(ULong len);
static WChar * wstring_dup(const WChar *);
static void wstring_free(WChar *);

I ..

}

These functions handle dynamic memory for strings and wide strings. The C++
mapping requires that you use these helper functions to avoid replacing global
operator new[] andoperator delete[] and because non-uniform
memory architectures may have special requirements. Under Windows, for
example, memory allocated by a dynamic library must be deallocated by that
same library. The string allocation functions ensure that the correct memory
management activities can take place. For uniform memory models, such as in

UNIX, string_alloc andstring_free are usually implemented in terms
of new[] anddelete[]
Thestring_alloc function allocates one more byte than requested by the

len parameter, so the following code is correct:

char * p = CORBA:string_alloc(5); // Allocates 6 bytes
strepy(p, "Hello"); /I OK, "Hello" fits

The preceding code is more easily written usitiong_dup , which combines
the allocation and copy:

char * p = CORBA::string_dup("Hello");

Bothstring_alloc andstring_dup return a null pointer if allocation fails.
They do not throw Bad_alloc exception or a CORBA exception.
Thestring_free function must be used to free memory allocated with
string_alloc orstring_dup . Callingstring_free for a null pointer is
safe and does nothing.
Do not usalelete ordelete][] to deallocate memory allocated with
string_alloc orstring_dup . Similarly, do not usstring_free to

148

Basic IDL-to-C++ Mapping

6.7

deallocate memory allocated witlew or new[] . Doing so results in undefined
behavior.

Thewstring* helper functions have the same semantics astiimg*
helper functions, but they operate on wide strings. As stithg_alloc ,
wstring_alloc allocates an additional character to hold the zero terminating
value.

Mapping for Constants

Global IDL constants map to file-scope C++ constants, and IDL constants nested
inside an interface map to static class-scope C++ constants. For example:

const long MAX_ENTRIES = 10;

interface NamelList {
const long MAX_NAMES = 20;
1

This maps to
const CORBA::Long MAX_ENTRIES = 10;

class NamelList {

public:
static const CORBA::Long MAX_NAMES; // Classic or standard C++
/I OR:
static const CORBA::Long MAX_NAMES = 20; // Standard C++

I3
This mapping preserves the nesting of scopes used in the IDL, but it means that
IDL constants that are nested inside interfaces are not C++ compile-time
constants. In classic (non-standard) C++, initialization of static class members is
illegal, so instead of generating the initial value into the header file, the IDL
compiler generates an initialization statement into the stub file. Standard C++, on
the other hand, permits initialization of constant class members in the class header
for integral and enumeration types. Therefore, in a standard environment, you
may find that constants defined inside an interface end up being initialized in the
class header.

Normally, the point of initialization is irrelevant unless you use an IDL
constant to dimension an array:

6.7 Mapping for Constants 149

char * entry_array[MAX_ENTRIES]; /I OK
char * names_array[NameList::MAX_NAMES]; /I May not compile

You can easily get around this restriction by using dynamic allocation, which
works no matter how your IDL compiler maps constants:

char * entry_array[MAX_ENTRIES]; /I OK
char ** names_array = new char *[NameList::MAX_NAMES]; // OK

String constants are mapped as a constant pointer to constant data:

const string MSG1 = "Hello";
const wstring MSG2 = L"World";

This maps to the following:

Il

/I If IDL MSG1 and MSG2 are at global scope:
1l

const char * const MSG1 = "Hello";
const CORBA::WChar * const MSG2 = L"World";

I
/Il If IDL MSG1 and MSG2 are in an IDL interface "Messages":
I
class Messages {
public:
static const char * const MSG1; /I "Hello"
static const CORBA::WChar * const MSG2; /I L"World"

2
Note that if IDL constants are declared inside a module (instead of an interface),
their mapping depends on whether you are using a classic or a standard C++
compiler:
module MyConstants {

const string GREETING = "Hello";

const double PI = 3.14;
1

In classic C++, this maps to

class MyConstants {

public:
static const char * const GREETING; // "Hello"
static const CORBA::Double PI; /I 3.14

150

Basic IDL-to-C++ Mapping

6.8

With a standard C++ compiler, the module maps to a namespace and the
constants are in the generated header file:

namespace MyConstants {
const char * const GREETING = "Hello";
const CORBA::Double Pl = 3.14;

Mapping for Enumerated Types

IDL enumerated types map to C++ enumerations. The C++ definition appears at
the same scope as the IDL definition. The enumeration is mapped to C++
unchanged except that a trailing dummy enumerator is added to force enumerators
to be a 32-bit type:

enum Color { red, green, blue, black, mauve, orange };

This appears in C++ as

enum Color {
red, green, blue, black, mauve, orange,
_Color_dummy=0x80000000 // Force 32-bit size

2
The mapping specification does not state what name is used for the dummy
enumerator. The IDL compiler simply generates an identifier that will not clash
with anything else in the same scope.

Note that this mapping guarantees tieat will have the ordinal valu®,
green will have the ordinal valu&, and so on. However, this guarantee applies
only to the C++ mapping and not to all language mappings in general. This means
that you cannot portably exchange tirdinal valuesof enumerators between
clients and servers. However, you can portably exchange the enumerators them-
selves. To send the enumerator vakek to a server, simply semdd (and not
zero). Ifred is represented by a different ordinal value in the target address
space, the marshaling code translates it appropriately. (The mapping for enumera-
tions is type-safe in C++, so you cannot make this mistake unless you use a cast.
However, for other implementation languages, this may not be the case.)

6.9 Variable-Length Types and _var Types 151

6.9

Variable-Length Types and _var Types

6.9.1

IDL supports a number of variable-length types, such as strings and sequences.
Variable-length types have special mapping requirements. Because the sizes of
variable-length values are not known at compile time, they must be dynamically
allocated at run time. This raises the issue of how dynamic memory is allocated
and deallocated as well as your responsibilities as the programmer with respect to
memory management.

The C++ mapping operates at two different levels. At the lower, or “raw,”
level, you are responsible for all memory management activities. You can choose
to code to this level, but the price is that you must remember exactly under what
circumstances you need to allocate and deallocate dynamic memory. The lower
level of the mapping also exposes you to differences in memory management
rules for fixed- and variable-length structured types.

At the higher level, the C++ mapping makes life easier and safer by providing
a set of smart pointer classes known gar types. var types relieve you of the
burden of having to explicitly deallocate variable-length values and so make
memory leaks less likely. These types also hide differences between fixed- and
variable-length structured types, so you need not worry constantly about the
different memory management rules that apply to them.

Motivation for _var Types

Programmers new to CORBA and the C++ mapping usually have difficulties
coming to grips with var types and understanding when and when not to use
them. To clarify the motivation forvar types, let us consider a simple program-
ming problem. The problem is not specific to CORBA; it applies to C and C++ in
general. Here is the problem statement:

Write a C function that reads a string from an 1/O device and returns that
string to the caller. The length of the string is unlimited and cannot be deter-
mined in advance.

The problem statement captures a frequent programming problem, namely, how to
read a variable-length value without advance knowledge of the total length of the
value. There are several approaches to addressing the problem, and each has its
own trade-offs.

Approach 1: Static Memory
Here is one approach to implementing the helper function:

152

Basic IDL-to-C++ Mapping

const char *
get_string()

{
static char buf[10000]; /* Big enough */
/* Read string into buf... */
return buf;

}

This approach has the advantage of simplicity, but it suffers from a number of
serious drawbacks.

* The string to be returned may be longer than you expect. No matter what
value you pick to dimension theuf array, it may be too small. If the actual
string is too long, either you overrun the array and the code fails catastrophi-
cally, or you must arbitrarily truncate the string.

* For short strings, the function wastes memory because mosthmiftharray
is not used.

* Each call taget_string overwrites the result of the previous call. If the
caller wants to keep a previous string, it must make a copy of the previous
result before calling the function a second time.

* The function is not reentrant. If multiple threads gell_string concur-
rently, the threads overwrite one another’s results.

Approach 2: Static Pointer to Dynamic Memory
Here is a second try at writirgget_string

const char *
get_string()
{
static char * result = 0;
static size_t rsize = 0;
static const size t size of block = 512;
size_t rlen;

rlen = 0O;
while (data_remains_to_be_read()) {
/* read a block of data... */
if (rsize - rlen < size_of block) {
rsize += size_of block;
result = realloc(result, rsize);

}

/* append block of data to result... */

6.9 Variable-Length Types and _var Types 153

rlen += size_of_block;

}

return result;

}

This approach uses a static pointer to dynamic memory, growing the buffer used
to hold the data as necessary. Using dynamic memory gets rid of the arbitrary
length limitation on the string but otherwise suffers the problems of the previous
approach: each call still overwrites the result of the previous call, and the function
is not reentrant. This version can also waste significant amounts of memory,
because it permanently consumes memory proportional to the worst case (the
longest string ever read).

Approach 3: Caller-Allocated Memory

In this approach, we make the caller responsible for providing the memory to hold
the string:

size_t

get_string(char * result, size_t rsize)

{

/* read at most rsize bytes into result... */
return number_of_bytes_read;

}

This is the approach taken by the UNiad system call. It solves most of the
problems in that it is reentrant, does not overrun memory or arbitrarily truncate
data, and is frugal with memory. (The amount of potentially wasted memory is
under control of the caller.)

The disadvantage is that if the string is longer than the supplied buffer, the
caller must keep calling until all the data has been read. (Repeated calls by
multiple threads are reentrant if we assume that the data source is implicit in the
calling thread.)

Approach 4: Return Pointer to Dynamic Memory

In this approachget_string dynamically allocates a sufficiently large buffer
to hold the result and returns a pointer to the buffer:

char *
get_string()
{
char * result = 0;
size t rsize = 0;
static const size_t size_of block = 512;

154 Basic IDL-to-C++ Mapping
while (data_remains_to_be_read) {
/* read a block of data... */
rsize += size_of block;
result = realloc(result, rsize);
/* append block of data to result... */
}
return result;
}
This is almost identical to approach 2 (the difference isgéatstring does
not use static data). It neatly solves all the problems: the function is reentrant,
does not impose arbitrary size limitations on the result, does not waste memory,
and does not require multiple remote calls for long results (but dynamic allocation
adds a little to the cost of collocated calls).
The main drawback of this approach is that it makes the caller responsible for
deallocating the result:
o
{
char * result;
result = get_string();
/* Use result... */
free(result);
*o
result = get_string();
o
} /¥ Bad news, forgot to deallocate last result! */
Here, the caller returns from a block without deallocating the result returned by
get_string . The memory occupied by the result can never be reclaimed.
Repeated mistakes of this kind doom the caller to an inevitable death. Eventually,
the caller runs out of memory and is aborted by the operating system, or, in an
embedded system, the caller may lock up the machine.
6.9.2 Memory Management for Variable-Length Types

From the preceding discussion, it should be clear that approaches 1 and 2 are not
suitable for the C++ mapping because they are not reentrant. Approach 3 is hot an

option, because the cost of repeated calls becomes prohibitive if caller and callee
are on different machines.

6.9 Variable-Length Types and _var Types 155

This leaves approach 4, which is the approach taken by the C++ mapping for
variable-length types. The C++ mapping makes the caller responsible for deallo-
cating a variable-length result when it is no longer needed.

By definition, the following IDL types are considered variable-length:

¢ Strings and wide strings (whether bounded or unbounded)

* Object references

* Typeany

* Sequences (whether bounded or unbounded)

¢ Structures and unions if they (recursively) contain variable-length members

* Arrays if they (recursively) contain variable-length elements
For example, an array d@buble is a fixed-length type, whereas an array of
string is a variable-length type.

For each structured IDL type in a definition, the IDL compiler generates a pair
of C++ types. For example, for an IDL uniéeo, the compiler generates two
C++ classes: clageo and clas$oo_var . Classfoo provides all the function-
ality required to use the union and corresponds to the lower mapping level.
Classfoo_var provides the higher mapping level by acting as a memory
management wrapper around class . In particular, if claséoo happens to
represent an IDL variable-length type, cléss var takes care of deallocating
foo instances at the appropriate time.

The correspondence between IDL types and the lower and higher mapping
levels is shown in Table 6.2.

Table 6.2. Correspondence of IDL types to C++ types.

IDL Type C++ Type Wrapper C++ Type

string char * CORBA::String_var

any CORBA::Any CORBA::Any_var
interface foo foo_ptr class foo_var

struct foo struct foo class foo_var

union foo class foo class foo_var

typedef sequence<X> foo; |[|class foo class foo_var

typedef X foo[10]; typedef X foo[10]; class foo_var

156 Basic IDL-to-C++ Mapping

Note that structures, unions, and arrays can be fixed-length or variable-length.
The IDL compiler generates aar class even if the corresponding IDL type is
fixed-length. For a fixed-length type, the correspondwvey class effectively
does nothing. As you will see in Section 6.19, this class is useful for hiding the
memory management differences between fixed-length and variable-length types.

_var classes have similar semantics as the standara@e+ptr
template. However, the C++ mapping does notauge ptr (and other stan-
dard C++ types) because at the time the mapping was developed, many of the
standard C++ types were not yet conceived.

We explore var classes and their uses incrementally throughout the next
few chapters. For now, we exami@®RBA::String_var as an example of
how_var classes help with dynamic memory management.

6.10 The String_var Wrapper Class

The classCORBA::String_var provides a memory management wrapper for
char * |, shown in Figure 6.1. The class stores a string pointer in a private vari-
able and takes responsibility for managing the string’s memory. To make this
more concrete, following is the class definition$dring_var . We examine

the purpose of each member function in turn. Once you understand how
String_var works, you will need to learn little new for the remainingr
classes. Thevar classes for structures, unions, and so on are very similar to
String_var

class String_var {

public:
String_var();
String_var(char *);
String_var(const char *);

~String_var();
Il etc...
private:
char * s; »[Fe[1D |

h

Figure 6.1. String_var wrapper class.

6.10 The String_var Wrapper Class 157

class String_var {

public:
String_var();
String_var(char * p);
String_var(const char * p);
String_var(const String_var & s);
~String_var();
String_var & operator=(char * p);
String_var & operator=(const char * p);
String_var & operator=(const String_var & s);
operator char *();
operator const char *() const;
operator char * &();
char & operator[J(ULong index);
char operator[J(ULong index) const;
const char * in() const;
char * & inout();
char * & out();
char * _retn();
h

String_var()

The default constructor initializesSiring_var to contain a null pointer. If
you use a default-construct&tring_var value without initializing it first, you
will likely suffer a fatal crash because the code ends up dereferencing a null
pointer:

CORBA::String_var s;
cout << "s = \" << s << "\" << endl; // Core dump imminent!

String_var(char *)

This constructor initializes th&tring_var from the passed string. The
String_var takes responsibility for the string: it assumes that the string was
allocated withCORBA::string_alloc or CORBA:string_dup andcalls
CORBA::string_free when its destructor runs. The point is that you can
initialize theString_var with a dynamically allocated string and forget about
having to explicitly deallocate the string. TB&ing_var takes care of deallo-
cation when it goes out of scope. For example:

158

Basic IDL-to-C++ Mapping

CORBA::String_var s(CORBA::string_dup("Hello"));
...
} // No memory leak here, ~String_var() calls string_free().

String_var(const char *)

If you construct &tring_var using theconst char * constructor, the
String_var makes a deep copy of the string. WhenSheng_var goes

out of scope, it deallocates its copy of the string but leaves the original copy unaf-
fected. For example:

const char * message = "Hello";
..

{
CORBA::String_var s(message); /I Makes a deep copy

..
} /Il ~String_var() deallocates its own copy only.

cout << message << endl; /I OK

String_var(const String_var &)

The copy constructor also makes a deep copy. If you initializeStrieg_var
from anotheiString_var , modifications to one copy do not affect the other

copy.

~String_var

The destructor callEORBA::string_free to deallocate the string held by the
String_var

String_var & operator=(char *)
String_var & operator=(const char *)
String_var & operator=(const String_var &)

The assignment operators follow the conventions of the constructors. The
char * assignment operator assumes that the string was allocated with
string_alloc orstring_dup and takes ownership of the string.

Theconst char * assignment operator and theing_var assign-
ment operator each make a deep copy.

Before accepting the new string, the assignment operators first deallocate the
current string held by the target. For example:

6.10 The String_var Wrapper Class 159

CORBA::String_var target;
target = CORBA::string_dup("Hello"); /I target takes ownership

CORBA::String_var source;
source = CORBA::string_dup("World"); /I source takes ownership

target = source; /I Deallocates "Hello" and takes
/I ownership of deep copy of "World".

operator char *()
operator const char *() const

These conversion operators permit you to pa&isiag_var as achar * or
const char * . For example:
CORBA::String_var s;
s = get_string(); // get_string() allocates with string_alloc(),
/I s takes ownership
size_t len;
len = strlen(s); /I const char * expected, OK

The main reason for the conversion operators is to let you transparently pass a
String_var to IDL operations that expect an argument of tgfpar * or
const char * . We discuss the details of parameter passing in Chapter 7.

operator char * &()

This conversion operator allows you to pass a string for modification to a function
using a signature such as

void update_string(char * &);

Conversion to aeferenceo the pointer (instead of just to the pointer) is necessary
so that the called function can increase the length of the string. A reference to the
pointer is passed because lengthening the string requires reallocation, and this in
turn means that thgointer value and not just the bytes it points to, needs to
change.

char & operator[](ULong)
char operator[]J(ULong) const

The overloaded subscript operators permit you to use an index to get at the indi-
vidual characters of 8tring_var as if it were an array. For example:

CORBA:String_va r s = CORBA::string_dup("Hello");
cout << s[4] << endl; /