
139

Chapter 6
Basic IDL-to-C++ Mapping

6.1 Chapter Overview

This chapter explains how IDL types are mapped to their corresponding C++
types by an IDL compiler. Sections 6.3 to 6.8 cover identifiers, modules, and
simple IDL types. Section 6.9 covers memory management issues related to vari-
able-length types, and Section 6.10 presents detailed examples of memory
management for strings. Sections 6.11 and 6.12 discuss the mapping for wide
strings and fixed-point types. The mapping for user-defined complex types is
covered in Sections 6.13 to 6.18. Section 6.19 shows how smart pointers can elim-
inate the need to take care of memory management.

This chapter does not cover all of the mapping. Chapter 7 presents the client-
side mapping for operations and exceptions, Chapter 9 details the server-side
mapping, and Chapters 15 to 17 cover the dynamic aspects of IDL. (The complete
C++ mapping specification can be found in [17a].)

This chapter is long, and you probably won’t be able (or inclined) to absorb all
of it by reading it from beginning to end. Instead, you may prefer to browse the
sections that interest you and refer to the details later. The chapter is arranged so
that it is suitable as a reference. All the material for a particular topic is presented
together, so you should be able to find the answers to specific questions as they
arise.

140 Basic IDL-to-C++ Mapping

6.2 Introduction

The mapping from IDL to C++ must address a large number of requirements:

• The mapping should be intuitive and easy to use.

• It should preserve commonly used C++ idioms and “feel” like normal C++ as
much as possible.

• It should be type-safe.

• It should be efficient in its use of memory and CPU cycles.

• It must work on architectures with segmented or hard (non-virtual) memory.

• It must be reentrant so that it can be used in threaded environments.

• The mapping must preserve location transparency; that is, the source code for
client and server must look identical whether or not client and server are collo-
cated (are in the same address space).

Some of these requirements conflict with others. For example, typically we cannot
achieve ease of use and optimum efficiency at the same time, so we must make
trade-offs. The C++ mapping adopted by the OMG deals with these compromises
by choosing efficiency over convenience. The reason for this approach is twofold.

• It is possible to layer a slower but more convenient mapping on top of a faster
but less convenient one, but we cannot layer a fast mapping on top of a slow
one. Favoring a mapping that is fast but less convenient lets the OMG and
ORB vendors add other options, such as code generation wizards, later.

• Increasingly, designers use IDL to describe in-process interfaces, which have
the advantage of location transparency. Such interfaces let you build systems
that implement different functional units in a single process and then let you
later split that single process into multiple processes without breaking existing
source code. The run-time efficiency of the mapping may be irrelevant for
interprocess communication, but it matters for in-process communication.

These design choices mean that the C++ mapping is large and complex, but things
are not as bad as they may seem. First, the mapping is consistent. For example,
once you have understood the memory management of strings, you also know
most of the rules for other variable-length types. Second, the mapping is type-
safe; no casts are required, and many mistakes are caught at compile time. Third,
the mapping is easy to memorize. Although some classes have a large number of
member functions, you need call only a small number of them for typical use;
some member functions exist to provide default conversions for parameter
passing, and you need not ever call them explicitly.

6.3 Mapping for Identifiers 141

Keep in mind that you should not try to read and understand the header files
generated by the IDL compiler. The header files typically are full of incomprehen-
sible macros, mapping implementation details, and cryptic workarounds for
various compiler bugs. In other words, the header files are not meant for human
consumption. It is far easier to look at the IDL instead. IDL and a knowledge of
the C++ mapping rules are all you need to write high-quality code.

6.3 Mapping for Identifiers

IDL identifiers are preserved without change in the generated C++ code. For
example, the IDL enumeration

enum Color { red, green, blue };

maps to the C++ enumeration

enum Color { red, green, blue };

The C++ mapping also preserves the scoping of IDL. If a scoped name such as
Outer::Inner is valid in IDL, the generated C++ code defines the same name as
Outer::Inner .

A problem arises if C++ keywords are used in an IDL definition. For example,
the following IDL definition is legal:

enum class { if, this, while, else };

Clearly, this definition cannot be translated without mapping away from the C++
keywords. The C++ mapping specifies that IDL identifiers that are C++ keywords
get a_cxx_ prefix, so the preceding is translated as

enum _cxx_class { _cxx_if, _cxx_this, _cxx_while, _cxx_else };

The resulting code is harder to read, so you should avoid using IDL identifiers that
are C++ keywords.

It is also a good idea to avoid IDL identifiers containing a double underscore,
such as

typedef long my__long;

The identifiermy__long is legal and maps to C++my__long . However, standard
C++ reserves identifiers containing double underscores for the implementation,
so, strictly speaking,my__long invades the compiler’s namespace. In practice,
IDL identifiers containing double underscores are not likely to cause problems,

142 Basic IDL-to-C++ Mapping

but you should be aware that the C++ mapping does not address this potential
name clash.

6.4 Mapping for Modules

IDL modules are mapped to C++ namespaces. The contents of an IDL module
appear inside the corresponding C++ namespace, so the scoping of an IDL defini-
tion is preserved at the C++ level. Here is an example:

module Outer {
// More definitions here...
module Inner {

// ...
};

};

This maps to correspondingly nested namespaces in C++:

namespace Outer {
// More definitions here...
namespace Inner {

// ...
}

}

A useful feature of namespaces is that they permit you to drop the name of the
namespace by using ausing directive. This technique eliminates the need to
qualify all identifiers with the module name:

using namespace Outer::Inner;
// No need to qualify everything
// with Outer::Inner from here on...

IDL modules can be reopened. A reopened module is mapped by reopening the
corresponding C++ namespace:

module M1 {
// Some M1 definitions here...

};

module M2 {
// M2 definitions here...

};

6.4 Mapping for Modules 143

module M1 { // Reopen M1
// More M1 definitions here...

};

This maps to C++ as

namespace M1 {
// Some M1 definitions here...

}

namespace M2 {
// M2 definitions here...

}

namespace M1 { // Reopen M1
// More M1 definitions here...

}

Because not all C++ compilers have caught up with the ISO/IEC C++
Standard [9], namespaces are not universally available. For compilers not
supporting namespaces, CORBA specifies an alternative that maps IDL
modules to C++ classes instead of namespaces:

class Outer {
public:

// More definitions here...
class Inner {
public:

// ...
};

};

This alternative mapping is workable but has drawbacks.

• No using directive is available, so you must fully qualify names that are not
in the current scope (or in one of its enclosing scopes).

• There is no sensible mapping of reopened modules onto classes. This means
that IDL compilers will not permit you to reopen an IDL module if code
generation is for a C++ compiler that does not support namespaces.

For the remainder of this book, we use the mapping to namespaces.

144 Basic IDL-to-C++ Mapping

6.5 The CORBA Module

CORBA defines a number of standard IDL types and interfaces. To avoid
polluting the global namespace, these definitions are provided inside theCORBA

module. TheCORBA module is mapped in the same way as any other module, so
the ORB header files provide aCORBA namespace containing the corresponding
C++ definitions.

We discuss the contents of theCORBA namespace incrementally throughout
this book.

6.6 Mapping for Basic Types

IDL basic types are mapped as shown in Table 6.1. Except forstring, each IDL
type is mapped to a type definition in theCORBAnamespace. The type definitions
allow the mapping to maintain the size guarantees provided by IDL. To ensure
that your code remains portable, always use the names defined in theCORBA
namespace for IDL types (for example, useCORBA::Long instead oflong to
declare a variable). This will also help the transition of your code to 64-bit archi-
tectures (which may defineCORBA::Long asint).

Note that IDLstring is mapped directly tochar * instead of a type defini-
tion. The reason is that when the OMG first produced the C++ mapping, it was felt
that binary layout of data in memory had to be the same for both the C and the
C++ mappings.1 This precludes mapping strings to something more convenient,
such as a string class.

6.6.1 64-bit Integer and long double Types
The specification assumes that the underlying C++ implementation provides
native support for (unsigned) long long andlong double. If such support is not
available, the mapping for these types is not specified. For that reason, you should
avoid 64-bit integers andlong double unless you are sure that they are supported
as native C++ types on the platforms relevant to you.

1. In hindsight, imposing this restriction was probably a mistake because it forces the C++ mapping
to be less type-safe and convenient than it could have been otherwise.

6.6 Mapping for Basic Types 145

6.6.2 Overloading on Basic Types
All the basic types are mapped so that they are distinguishable for the purposes of
C++ overloading; the exceptions arechar, boolean, octet, andwchar. This is
because all three of the typeschar, boolean, andoctet may map to the same
C++ character type, andwchar may map to one of the C++ integer types or
wchar_t . For example:

void foo(CORBA::Short param) { /*...*/ };
void foo(CORBA::Long param) { /*...*/ };
void foo(CORBA::Char param) { /*...*/ };
void foo(CORBA::Boolean param) { /*...*/ }; // May not compile
void foo(CORBA::Octet param) { /*...*/ }; // May not compile
void foo(CORBA::WChar param) { /*...*/ }; // May not compile

Table 6.1. Mapping for basic types.

IDL C++

short CORBA::Short

long CORBA::Long

long long CORBA::LongLong

unsigned short CORBA::UShort

unsigned long CORBA::ULong

unsigned long long CORBA::ULongLong

float CORBA::Float

double CORBA::Double

long double CORBA::LongDouble

char CORBA::Char

wchar CORBA::WChar

string char *

wstring CORBA::WChar *

boolean CORBA::Boolean

octet CORBA::Octet

any CORBA::Any

146 Basic IDL-to-C++ Mapping

The first three definitions offoo are guaranteed to work, but the final three
definitions may not compile in some implementations. For example, an ORB
could map IDLchar, boolean, andoctet to C++char and map IDLwchar to
C++ short . (In that case, the preceding definitions are ambiguous and will be
rejected by the compiler.) To keep your code portable, do not overload functions
solely onChar , Boolean , andOctet , and do not overload onWChar and an
integer type even if it happens to work for your particular ORB.

6.6.3 Types Mappable to char

IDL char, boolean, andoctet may map to signed, unsigned, or plainchar . To
keep your code portable, do not make assumptions in your code about whether
these types are signed or unsigned.

6.6.4 Mapping for wchar

IDL wchar may map to a C++ integer type, such asint , or may map to
C++ wchar_t . The mapping to integer types accommodates non-standard
compilers, in whichwchar_t is not a distinct type.

6.6.5 Boolean Mapping
On standard C++ compilers, IDLboolean may be mapped to C++bool ; the
specification permits this but does not require it. If it is not mapped to C++
bool —for example, on classic C++ compilers—CORBA::Boolean maps to
plainchar , signed char , orunsigned char .

The C++ mapping does not require Boolean constantsTRUE andFALSE (or
true andfalse) to be provided (althoughtrue andfalse will work in a
standard C++ environment). To keep your code portable, simply use the integer
constants1 and0 as Boolean values; this works in both standard and classic
environments.

6.6.6 String and Wide String Mapping
Strings are mapped tochar * , and wide strings are mapped to
CORBA::WChar * . This is true whether you use bounded or unbounded strings.
If bounded strings are used, the mapping places the burden of enforcing the bound
on the programmer. It is unspecified what should happen if the length of a

6.6 Mapping for Basic Types 147

bounded string is exceeded at run time, so you must assume that the behavior is
undefined.

The use ofnew anddelete for dynamic allocation of strings is not portable.
Instead, you must use helper functions in theCORBA namespace:

namespace CORBA {
// ...
static char * string_alloc(ULong len);
static char * string_dup(const char *);
static void string_free(char *);

static WChar * wstring_alloc(ULong len);
static WChar * wstring_dup(const WChar *);
static void wstring_free(WChar *);
// ...

}

These functions handle dynamic memory for strings and wide strings. The C++
mapping requires that you use these helper functions to avoid replacing global
operator new[] andoperator delete[] and because non-uniform
memory architectures may have special requirements. Under Windows, for
example, memory allocated by a dynamic library must be deallocated by that
same library. The string allocation functions ensure that the correct memory
management activities can take place. For uniform memory models, such as in
UNIX, string_alloc andstring_free are usually implemented in terms
of new[] anddelete[] .

Thestring_alloc function allocates one more byte than requested by the
len parameter, so the following code is correct:

char * p = CORBA::string_alloc(5); // Allocates 6 bytes
strcpy(p, "Hello"); // OK, "Hello" fits

The preceding code is more easily written usingstring_dup , which combines
the allocation and copy:

char * p = CORBA::string_dup("Hello");

Bothstring_alloc andstring_dup return a null pointer if allocation fails.
They do not throw abad_alloc exception or a CORBA exception.

Thestring_free function must be used to free memory allocated with
string_alloc or string_dup . Callingstring_free for a null pointer is
safe and does nothing.

Do not usedelete or delete[] to deallocate memory allocated with
string_alloc or string_dup . Similarly, do not usestring_free to

148 Basic IDL-to-C++ Mapping

deallocate memory allocated withnew or new[] . Doing so results in undefined
behavior.

Thewstring* helper functions have the same semantics as thestring*
helper functions, but they operate on wide strings. As withstring_alloc ,
wstring_alloc allocates an additional character to hold the zero terminating
value.

6.7 Mapping for Constants

Global IDL constants map to file-scope C++ constants, and IDL constants nested
inside an interface map to static class-scope C++ constants. For example:

const long MAX_ENTRIES = 10;

interface NameList {
const long MAX_NAMES = 20;

};

This maps to

const CORBA::Long MAX_ENTRIES = 10;

class NameList {
public:

static const CORBA::Long MAX_NAMES; // Classic or standard C++
// OR:
static const CORBA::Long MAX_NAMES = 20; // Standard C++

};

This mapping preserves the nesting of scopes used in the IDL, but it means that
IDL constants that are nested inside interfaces are not C++ compile-time
constants. In classic (non-standard) C++, initialization of static class members is
illegal, so instead of generating the initial value into the header file, the IDL
compiler generates an initialization statement into the stub file. Standard C++, on
the other hand, permits initialization of constant class members in the class header
for integral and enumeration types. Therefore, in a standard environment, you
may find that constants defined inside an interface end up being initialized in the
class header.

Normally, the point of initialization is irrelevant unless you use an IDL
constant to dimension an array:

6.7 Mapping for Constants 149

char * entry_array[MAX_ENTRIES]; // OK
char * names_array[NameList::MAX_NAMES]; // May not compile

You can easily get around this restriction by using dynamic allocation, which
works no matter how your IDL compiler maps constants:

char * entry_array[MAX_ENTRIES]; // OK
char ** names_array = new char *[NameList::MAX_NAMES]; // OK

String constants are mapped as a constant pointer to constant data:

const string MSG1 = "Hello";
const wstring MSG2 = L"World";

This maps to the following:

//
// If IDL MSG1 and MSG2 are at global scope:
//
const char * const MSG1 = "Hello";
const CORBA::WChar * const MSG2 = L"World";

//
// If IDL MSG1 and MSG2 are in an IDL interface "Messages":
//
class Messages {
public:

static const char * const MSG1; // "Hello"
static const CORBA::WChar * const MSG2; // L"World"

};

Note that if IDL constants are declared inside a module (instead of an interface),
their mapping depends on whether you are using a classic or a standard C++
compiler:

module MyConstants {
const string GREETING = "Hello";
const double PI = 3.14;

};

In classic C++, this maps to

class MyConstants {
public:

static const char * const GREETING; // "Hello"
static const CORBA::Double PI; // 3.14

};

150 Basic IDL-to-C++ Mapping

With a standard C++ compiler, the module maps to a namespace and the
constants are in the generated header file:

namespace MyConstants {
const char * const GREETING = "Hello";
const CORBA::Double PI = 3.14;

}

6.8 Mapping for Enumerated Types

IDL enumerated types map to C++ enumerations. The C++ definition appears at
the same scope as the IDL definition. The enumeration is mapped to C++
unchanged except that a trailing dummy enumerator is added to force enumerators
to be a 32-bit type:

enum Color { red, green, blue, black, mauve, orange };

This appears in C++ as

enum Color {
red, green, blue, black, mauve, orange,
_Color_dummy=0x80000000 // Force 32-bit size

};

The mapping specification does not state what name is used for the dummy
enumerator. The IDL compiler simply generates an identifier that will not clash
with anything else in the same scope.

Note that this mapping guarantees thatred will have the ordinal value0,
green will have the ordinal value1, and so on. However, this guarantee applies
only to the C++ mapping and not to all language mappings in general. This means
that you cannot portably exchange theordinal values of enumerators between
clients and servers. However, you can portably exchange the enumerators them-
selves. To send the enumerator valuered to a server, simply sendred (and not
zero). Ifred is represented by a different ordinal value in the target address
space, the marshaling code translates it appropriately. (The mapping for enumera-
tions is type-safe in C++, so you cannot make this mistake unless you use a cast.
However, for other implementation languages, this may not be the case.)

6.9 Variable-Length Types and _var Types 151

6.9 Variable-Length Types and _var Types

IDL supports a number of variable-length types, such as strings and sequences.
Variable-length types have special mapping requirements. Because the sizes of
variable-length values are not known at compile time, they must be dynamically
allocated at run time. This raises the issue of how dynamic memory is allocated
and deallocated as well as your responsibilities as the programmer with respect to
memory management.

The C++ mapping operates at two different levels. At the lower, or “raw,”
level, you are responsible for all memory management activities. You can choose
to code to this level, but the price is that you must remember exactly under what
circumstances you need to allocate and deallocate dynamic memory. The lower
level of the mapping also exposes you to differences in memory management
rules for fixed- and variable-length structured types.

At the higher level, the C++ mapping makes life easier and safer by providing
a set of smart pointer classes known as_var types._var types relieve you of the
burden of having to explicitly deallocate variable-length values and so make
memory leaks less likely. These types also hide differences between fixed- and
variable-length structured types, so you need not worry constantly about the
different memory management rules that apply to them.

6.9.1 Motivation for _var Types
Programmers new to CORBA and the C++ mapping usually have difficulties
coming to grips with_var types and understanding when and when not to use
them. To clarify the motivation for_var types, let us consider a simple program-
ming problem. The problem is not specific to CORBA; it applies to C and C++ in
general. Here is the problem statement:

Write a C function that reads a string from an I/O device and returns that
string to the caller. The length of the string is unlimited and cannot be deter-
mined in advance.

The problem statement captures a frequent programming problem, namely, how to
read a variable-length value without advance knowledge of the total length of the
value. There are several approaches to addressing the problem, and each has its
own trade-offs.

Approach 1: Static Memory

Here is one approach to implementing the helper function:

152 Basic IDL-to-C++ Mapping

const char *
get_string()
{

static char buf[10000]; /* Big enough */
/* Read string into buf... */
return buf;

}

This approach has the advantage of simplicity, but it suffers from a number of
serious drawbacks.

• The string to be returned may be longer than you expect. No matter what
value you pick to dimension thebuf array, it may be too small. If the actual
string is too long, either you overrun the array and the code fails catastrophi-
cally, or you must arbitrarily truncate the string.

• For short strings, the function wastes memory because most of thebuf array
is not used.

• Each call toget_string overwrites the result of the previous call. If the
caller wants to keep a previous string, it must make a copy of the previous
result before calling the function a second time.

• The function is not reentrant. If multiple threads callget_string concur-
rently, the threads overwrite one another’s results.

Approach 2: Static Pointer to Dynamic Memory

Here is a second try at writingget_string :

const char *
get_string()
{

static char * result = 0;
static size_t rsize = 0;
static const size_t size_of_block = 512;
size_t rlen;

rlen = 0;
while (data_remains_to_be_read()) {

/* read a block of data... */
if (rsize - rlen < size_of_block) {

rsize += size_of_block;
result = realloc(result, rsize);

}
/* append block of data to result... */

6.9 Variable-Length Types and _var Types 153

rlen += size_of_block;
}
return result;

}

This approach uses a static pointer to dynamic memory, growing the buffer used
to hold the data as necessary. Using dynamic memory gets rid of the arbitrary
length limitation on the string but otherwise suffers the problems of the previous
approach: each call still overwrites the result of the previous call, and the function
is not reentrant. This version can also waste significant amounts of memory,
because it permanently consumes memory proportional to the worst case (the
longest string ever read).

Approach 3: Caller-Allocated Memory

In this approach, we make the caller responsible for providing the memory to hold
the string:

size_t
get_string(char * result, size_t rsize)
{

/* read at most rsize bytes into result... */
return number_of_bytes_read;

}

This is the approach taken by the UNIXread system call. It solves most of the
problems in that it is reentrant, does not overrun memory or arbitrarily truncate
data, and is frugal with memory. (The amount of potentially wasted memory is
under control of the caller.)

The disadvantage is that if the string is longer than the supplied buffer, the
caller must keep calling until all the data has been read. (Repeated calls by
multiple threads are reentrant if we assume that the data source is implicit in the
calling thread.)

Approach 4: Return Pointer to Dynamic Memory

In this approach,get_string dynamically allocates a sufficiently large buffer
to hold the result and returns a pointer to the buffer:

char *
get_string()
{

char * result = 0;
size_t rsize = 0;
static const size_t size_of_block = 512;

154 Basic IDL-to-C++ Mapping

while (data_remains_to_be_read) {
/* read a block of data... */
rsize += size_of_block;
result = realloc(result, rsize);
/* append block of data to result... */

}
return result;

}

This is almost identical to approach 2 (the difference is thatget_string does
not use static data). It neatly solves all the problems: the function is reentrant,
does not impose arbitrary size limitations on the result, does not waste memory,
and does not require multiple remote calls for long results (but dynamic allocation
adds a little to the cost of collocated calls).

The main drawback of this approach is that it makes the caller responsible for
deallocating the result:

/* ... */
{

char * result;
result = get_string();
/* Use result... */
free(result);

/* ... */

result = get_string();
/* ... */

} /* Bad news, forgot to deallocate last result! */

Here, the caller returns from a block without deallocating the result returned by
get_string . The memory occupied by the result can never be reclaimed.
Repeated mistakes of this kind doom the caller to an inevitable death. Eventually,
the caller runs out of memory and is aborted by the operating system, or, in an
embedded system, the caller may lock up the machine.

6.9.2 Memory Management for Variable-Length Types
From the preceding discussion, it should be clear that approaches 1 and 2 are not
suitable for the C++ mapping because they are not reentrant. Approach 3 is not an
option, because the cost of repeated calls becomes prohibitive if caller and callee
are on different machines.

6.9 Variable-Length Types and _var Types 155

This leaves approach 4, which is the approach taken by the C++ mapping for
variable-length types. The C++ mapping makes the caller responsible for deallo-
cating a variable-length result when it is no longer needed.

By definition, the following IDL types are considered variable-length:

• Strings and wide strings (whether bounded or unbounded)

• Object references

• Typeany

• Sequences (whether bounded or unbounded)

• Structures and unions if they (recursively) contain variable-length members

• Arrays if they (recursively) contain variable-length elements

For example, an array ofdouble is a fixed-length type, whereas an array of
string is a variable-length type.

For each structured IDL type in a definition, the IDL compiler generates a pair
of C++ types. For example, for an IDL unionfoo, the compiler generates two
C++ classes: classfoo and classfoo_var . Classfoo provides all the function-
ality required to use the union and corresponds to the lower mapping level.
Classfoo_var provides the higher mapping level by acting as a memory
management wrapper around classfoo . In particular, if classfoo happens to
represent an IDL variable-length type, classfoo_var takes care of deallocating
foo instances at the appropriate time.

The correspondence between IDL types and the lower and higher mapping
levels is shown in Table 6.2.

Table 6.2. Correspondence of IDL types to C++ types.

IDL Type C++ Type Wrapper C++ Type

string char * CORBA::String_var

any CORBA::Any CORBA::Any_var

interface foo foo_ptr class foo_var

struct foo struct foo class foo_var

union foo class foo class foo_var

typedef sequence<X> foo; class foo class foo_var

typedef X foo[10]; typedef X foo[10]; class foo_var

156 Basic IDL-to-C++ Mapping

Note that structures, unions, and arrays can be fixed-length or variable-length.
The IDL compiler generates a_var class even if the corresponding IDL type is
fixed-length. For a fixed-length type, the corresponding_var class effectively
does nothing. As you will see in Section 6.19, this class is useful for hiding the
memory management differences between fixed-length and variable-length types.

_var classes have similar semantics as the standard C++auto_ptr
template. However, the C++ mapping does not useauto_ptr (and other stan-
dard C++ types) because at the time the mapping was developed, many of the
standard C++ types were not yet conceived.

We explore_var classes and their uses incrementally throughout the next
few chapters. For now, we examineCORBA::String_var as an example of
how_var classes help with dynamic memory management.

6.10 The String_var Wrapper Class

The classCORBA::String_var provides a memory management wrapper for
char * , shown in Figure 6.1. The class stores a string pointer in a private vari-
able and takes responsibility for managing the string’s memory. To make this
more concrete, following is the class definition forString_var . We examine
the purpose of each member function in turn. Once you understand how
String_var works, you will need to learn little new for the remaining_var
classes. The_var classes for structures, unions, and so on are very similar to
String_var .

Figure 6.1. String_var wrapper class.

class String_var {
public:

String_var();
String_var(char *);
String_var(const char *);
~String_var();
// etc...

private:
char * s;

};
H e l l o \0

6.10 The String_var Wrapper Class 157

class String_var {
public:

String_var();
String_var(char * p);
String_var(const char * p);
String_var(const String_var & s);
~String_var();

String_var & operator=(char * p);
String_var & operator=(const char * p);
String_var & operator=(const String_var & s);

operator char *();
operator const char *() const;
operator char * &();

char & operator[](ULong index);
char operator[](ULong index) const;

const char * in() const;
char * & inout();
char * & out();
char * _retn();

};

String_var()

The default constructor initializes aString_var to contain a null pointer. If
you use a default-constructedString_var value without initializing it first, you
will likely suffer a fatal crash because the code ends up dereferencing a null
pointer:

CORBA::String_var s;
cout << "s = \"" << s << "\"" << endl; // Core dump imminent!

String_var(char *)

This constructor initializes theString_var from the passed string. The
String_var takes responsibility for the string: it assumes that the string was
allocated withCORBA::string_alloc or CORBA::string_dup and calls
CORBA::string_free when its destructor runs. The point is that you can
initialize theString_var with a dynamically allocated string and forget about
having to explicitly deallocate the string. TheString_var takes care of deallo-
cation when it goes out of scope. For example:

158 Basic IDL-to-C++ Mapping

{
CORBA::String_var s(CORBA::string_dup("Hello"));
// ...

} // No memory leak here, ~String_var() calls string_free().

String_var(const char *)

If you construct aString_var using theconst char * constructor, the
String_var makes a deep copy of the string. When theString_var goes
out of scope, it deallocates its copy of the string but leaves the original copy unaf-
fected. For example:

const char * message = "Hello";
// ...

{
CORBA::String_var s(message); // Makes a deep copy
// ...

} // ~String_var() deallocates its own copy only.

cout << message << endl; // OK

String_var(const String_var &)

The copy constructor also makes a deep copy. If you initialize oneString_var
from anotherString_var , modifications to one copy do not affect the other
copy.

~String_var

The destructor callsCORBA::string_free to deallocate the string held by the
String_var .

String_var & operator=(char *)
String_var & operator=(const char *)
String_var & operator=(const String_var &)

The assignment operators follow the conventions of the constructors. The
char * assignment operator assumes that the string was allocated with
string_alloc or string_dup and takes ownership of the string.

Theconst char * assignment operator and theString_var assign-
ment operator each make a deep copy.

Before accepting the new string, the assignment operators first deallocate the
current string held by the target. For example:

6.10 The String_var Wrapper Class 159

CORBA::String_var target;
target = CORBA::string_dup("Hello"); // target takes ownership

CORBA::String_var source;
source = CORBA::string_dup("World"); // source takes ownership

target = source; // Deallocates "Hello" and takes
// ownership of deep copy of "World".

operator char *()
operator const char *() const

These conversion operators permit you to pass aString_var as achar * or
const char * . For example:

CORBA::String_var s;
s = get_string(); // get_string() allocates with string_alloc(),

// s takes ownership
size_t len;
len = strlen(s); // const char * expected, OK

The main reason for the conversion operators is to let you transparently pass a
String_var to IDL operations that expect an argument of typechar * or
const char * . We discuss the details of parameter passing in Chapter 7.

operator char * &()

This conversion operator allows you to pass a string for modification to a function
using a signature such as

void update_string(char * &);

Conversion to areferenceto the pointer (instead of just to the pointer) is necessary
so that the called function can increase the length of the string. A reference to the
pointer is passed because lengthening the string requires reallocation, and this in
turn means that thepointer value, and not just the bytes it points to, needs to
change.

char & operator[](ULong)
char operator[](ULong) const

The overloaded subscript operators permit you to use an index to get at the indi-
vidual characters of aString_var as if it were an array. For example:

CORBA::String_va r s = CORBA::string_dup("Hello");
cout << s[4] << endl; // Prints 'o'

160 Basic IDL-to-C++ Mapping

Strings are indexed as ordinary arrays are, starting at zero. For the"Hello"
string, the expressions[5] is valid and returns the terminating NUL byte.
Attempts to index beyond the NUL terminator result in undefined behavior.

6.10.1 Pitfalls of Using String_var

As you will see in Section 7.14.12, classString_var (and the other_var
classes) exists mainly to deal with return values andout parameters for operation
invocations. There are a number of situations in whichString_var can be used
inefficiently or inappropriately. Following are some of the pitfalls.

Initialization or Assignment from String Literals

String literals need special attention, at least if you are using classic (non-
standard) C++; the type of a string literal ischar * in classic C++ but is
const char * in standard C++. If you are using a classic C++ compiler, the
following code is guaranteed to crash sooner or later:

CORBA::String_var s1("Hello"); // Looming disaster!
CORBA::String_var s2 = "Hello"; // Same problem!

Note that even though the second declaration looks like an assignment, it really is
a declaration, and therefore boths1 ands2 are initialized by a constructor. The
question is, which constructor?

In classic C++, the type of the string literal"Hello" , when passed as an
argument, ischar * . The compiler therefore invokes thechar * constructor,
which takes ownership of the passed string. Whens1 ands2 are destroyed, the
destructor invokesstring_free with an address in the initialized data
segment. Of course, freeing non-heap memory results in undefined behavior and
in many implementations causes a core dump.

The same problem arises if you assign a string literal to aString_var :

CORBA::String_var s3;
s3 = "Hello"; // Calls operator=(char *), looming disaster!

Again, in classic C++, the type of"Hello" is char * (and not
const char *), so the assignment is made by a call to
String_var::operator=(char *) . As with thechar * constructor,
this operator assigns ownership of the string to theString_var , and that will
cause the destructor to attempt to free non-heap memory.

6.10 The String_var Wrapper Class 161

To work around this problem, either you can create a copy of the literal your-
self and make theString_var responsible for the copy, or you can force a deep
copy by casting toconst char * :

// Force deep copy
CORBA::String_var s1((const char *)"Hello");

// Explicit copy
CORBA::String_var s2(CORBA::string_dup("Hello"));

// Force deep copy
CORBA::String_var s3 = (const char *)"Hello";

// Explicit copy
CORBA::String_var s4 = CORBA::string_dup("Hello");

CORBA::String_var s5;
s5 = (const char *)"Hello"; // Force deep copy

CORBA::String_var s6;
s6 = CORBA::string_dup("Hello"); // Explicit copy

const cha r * p = "Hello"; // Make const char * pointer

CORBA::String_var s7(p); // Make deep copy
CORBA::String_var s8 = p; // ditto...
CORBA::String_var s9;
s9 = p; // ditto...

The preceding code shows various ways of initializing and assigning string
literals. In all cases, eachString_var variable ends up with its own separate
copy of the literal, which can be deallocated safely by the destructor.

Wherever a cast toconst char * is used, the constructor or assignment
operator makes a deep copy. Wherever a call tostring_dup is used, a copy of
the string literal is created explicitly, and theString_var takes responsibility
for deallocation of the copy.

Both approaches are correct, but as a matter of style we prefer a call to
string_dup instead of a cast. To a casual reader, casts indicate that something
unusual is happening, whereas callingstring_dup emphasizes that an alloca-
tion is made.

162 Basic IDL-to-C++ Mapping

The explicit copy style works correctly for both classic and standard C++, and
we use that style throughout the remainder of this book. Of course, if you are
working exclusively in a standard C++ environment, the following is safe:

CORBA::String_va r s = "Hello"; // OK for standard C++, deep copy

Assignment of String_var to Pointers

If you assign aString_var variable to achar * or const char * vari-
able, you need to remember that the assigned pointer will point at memory
internal to theString_var . This means that you need to take care when using
the pointer after such an assignment:

CORBA::String_var s1 = CORBA::string_dup("Hello");
const char * p1 = s1; // Shallow assignment
char * p2;
{

CORBA::String_var s2 = CORBA::string_dup("World");
p2 = s2; // Shallow assignment
s1 = s2; // Deallocate "Hello", deep copy "World"

} // Destructor deallocates s2 ("World")

cout << p1 << endl; // Whoops, p1 points nowhere
cout << p2 << endl; // Whoops, p2 points nowhere

This code illustrates two common mistakes. Both of them arise from the fact that
assignment from aString_var to a pointer is always shallow.

• The first pointer assignment (p1 = s1) makesp1 point at memory still
owned bys1 . The assignments1 = s2 is a deep assignment, which deallo-
cates the initial value ofs1 ("Hello"). The value ofp1 is not affected by
this, sop1 now points at deallocated memory.

• The second pointer assignment (p2 = s2) is also a shallow assignment, so
p2 points at memory owned bys2 . Whens2 goes out of scope, its destructor
deallocates the string, which leavesp2 pointing at deallocated memory.

This does not mean that you should never assign aString_var to a pointer (in
fact, such assignments are often useful). However, if you make such an assign-
ment and want to use the pointer, you must ensure that the pointed-to string is not
deallocated by assignment or destruction.

6.10 The String_var Wrapper Class 163

6.10.2 Passing Strings as Parameters for Read Access
Frequently, you will find yourself writing functions that accept strings as parame-
ters for read access. Your program is also likely to have variables of both type
char * and typeString_var . It would be nice to have a single helper func-
tion that could deal with both types. Given the choice ofchar * and
String_var , how should you declare the formal parameter type of such a func-
tion?

Here is hownot to do it:

void
print_string(CORBA::String_var s)
{

cout << "String is \"" << s << "\"" << endl;
}

int
main()
{

CORBA::String_var msg1 = CORBA::string_dup("Hello");
print_string(msg1); // Pass String_var
return 0;

}

This code is correct but inefficient. Theprint_string function expects a
parameter of typeString_var . The parameter is passed by value, and that
forces the compiler to create a temporaryString_var instance that is passed to
print_string . The result is that for every call toprint_string , several
function calls are actually made: a call to the copy constructor to create the tempo-
rary, followed by a call to an overloadedostream operator<< to print the
string, followed by a call to the destructor to get rid of the temporary
String_var again. The constructor callsstring_dup (which calls
strcpy), and the destructor callsstring_free . Thestring_dup and
string_free functions will probably calloperator new[] and
operator delete[] , which in turn are often implemented in terms of
malloc andfree . This means that the preceding innocent-looking piece of
code can actually result in as many as ten function calls for each call to
print_string !

In most implementations, at least some of the function calls will be inlined, so
the cost is not quite as dramatic as it may first seem. Still, we have observed
massive slowdowns in large systems because of such innocent mistakes. Most of
the cost arises from the hidden dynamic memory allocation. As shown in [11],

164 Basic IDL-to-C++ Mapping

allocating and destroying a class instance on the heap is on average about 100
times as expensive as allocating and destroying the same instance on the stack.

Here is another problem with theprint_string function:

print_string("World"); // Call with char *, looming disaster!

This code compiles fine, and it prints exactly what you think it should. However, it
will likely cause your program to dump core. This happens for the same reasons
as discussed earlier: the type of the string literal ischar * (at least in
classic C++), and that eventually results in an attempt to deallocate non-heap
memory in the destructor.

The key to writingprint_string correctly is to pass a formal argument of
typeconst char * :

void
print_string(const char * s)
{

cout << "String is \"" << s << "\"" << endl;
}

int
main()
{

CORBA::String_var msg1 = CORBA::string_dup("Hello");
print_string(msg1); // Pass String_var, fine
print_string("World"); // Pass as const char *, fine too
return 0;

}

With this definition ofprint_string , things are well behaved. When the
actual parameter is of typeString_var , the compiler uses the
const char * conversion operator to make the call. The conversion operator
returns the private pointer inside theString_var and is typically inlined, and
that keeps the cost of the call to a minimum.

Passing the string literal"World" to print_string does not create prob-
lems. The literal is simply passed as aconst char * to the function.

No temporary is created in either case, and no calls to the memory allocator
are necessary.

6.10.3 Passing Strings as Parameters for Update Access
To pass a string either as achar * or as aString_var to a function for
update, a formal parameter of typeString_var & will not work. If you pass a

6.10 The String_var Wrapper Class 165

char * where aString_var & is expected, the compiler creates a temporary.
This results in construction of aString_var from achar * literal and even-
tually causes a core dump. To get it right, we must use a formal argument type of
char * & :

void
update_string(cha r * & s)
{

CORBA::string_free(s);
s = CORBA::string_dup("New string");

}

int
main()
{

CORBA::String_var sv = CORBA::string_dup("Hello");
update_string(sv);
cout << sv << endl; // Works fine, prints "New string"

char * p = CORBA::string_dup("Hello");
update_string(p);
cout << p << endl; // Fine too, prints "New string"
CORBA::string_free(p);

return 0;
}

A final warning:update_string assumes that the string it is passed was allo-
cated withstring_alloc or string_dup . This means that the following
code is not portable:

char * p = new char[sizeof("Hello")];
strcpy(p, "Hello");
update_string(p); // Bad news!
delete[] p;

This code causes a string allocated bynew[] to be deallocated by
string_free and causes a string allocated bystring_dup to be deallocated
by delete[] , and that simply does not work on some platforms.

Callingupdate_string with an uninitialized pointer is also asking for
trouble, because it results in passing a stray pointer tostring_free , most
likely with disastrous consequences. However, passing a variable initialized to
null is safe;string_free does nothing when given a null pointer.

166 Basic IDL-to-C++ Mapping

6.10.4 Problems with Implicit Type Conversions
Passing aString_var where achar * is expected relies on implicit type
conversion. Some compilers do not correctly apply conversion operators, or they
incorrectly complain about ambiguous calls. Rather than expect every C++
compiler to be perfect, the C++ mapping provides member functions that allow
you to perform explicit conversions. These member functions arein , inout ,
out , and_retn (the names suggest the use for passing a parameter in the corre-
sponding direction).

const char * in() const

You can call this conversion function if your compiler rejects an attempt to pass a
String_var where aconst char * is expected. For example:

void print_string(const char * s) { /* ... */ } // As before

// ...

CORBA::String_var sv(CORBA::string_dup("Hello"));
print_string(sv); // Assume compiler bug prevents this
print_string(sv.in()); // Explicit call avoids compiler bug

The in member function returns the private pointer held by theString_var
wrapper as aconst char * . You could achieve the same thing by using a cast:

print_string((const char *)sv);

This code explicitly invokesoperator const char * on the
String_var . However, using thein member function is safer than a “sledge-
hammer” cast that bypasses all type checking. Similar arguments apply to using
the inout andout member functions in preference to a cast.

char * & inout()

You can call theinout member function if your compiler refuses to accept a
String_var where achar * & is expected. For example:

void update_string(cha r * & s) { /* ... */ } // As before

// ...

CORBA::String_var sv;
update_string(sv); // Assume compiler bug prevents this
update_string(sv.inout()); // Explicit call avoids compiler bug

6.10 The String_var Wrapper Class 167

The inout member function returns a reference to the pointer held by the
String_var wrapper so that it can be changed (for example, by reallocation).

char * & out()

This conversion operator allows you to pass aString_var as anoutput param-
eter where achar * & is expected. Theout member function differs from the
inout member function in thatout deallocates the string before returning a
reference to a null pointer. To see why this is necessary, consider the following
helper function:

void
read_string(cha r * & s) // s is an out parameter
{

// Read a line of text from a file...
s = CORBA::string_dup(line_of_text);

}

The caller can useread_string as follows without causing a memory leak:

CORBA::String_var line;
read_string(line.out()); // Skip first line
read_string(line.out()); // Read second line - no memory leak
cout << line << endl; // Print second line

Calling theout member function does two things: it first deallocates whatever
string is currently held by theString_var , and then it returns a reference to a
null pointer. This behavior allows the caller to callread_string twice in a row
without creating a memory leak. At the same time,read_string need not (but
can) deallocate the string before allocating a new value. (If it deallocates the
string, no harm is done because deallocation of a null pointer is safe.)

6.10.5 Yielding Ownership of a String
The_retn member function returns the pointer held by aString_var and
also yields ownership of the string. This behavior is useful if a function must
return a dynamically allocated string and also must worry about error conditions.
For example, consider aget_line helper function that reads a line of text from
a database. The caller uses the function this way:

for (int i = 0; i < num_lines; i++) {
CORBA::String_var line = get_line();
cout << line << endl;

} // Destructor of line deallocates string

168 Basic IDL-to-C++ Mapping

Consider how this works. Theget_line function dynamically allocates the
returned string and makes the caller responsible for deallocation. The caller
responds by catching the return value in theString_var variableline . This
makesline responsible for deallocating each returned line in its destructor.
Becauseline is declared inside the body of the loop, it is created and destroyed
once per iteration, and the memory allocated to each line is deallocated immedi-
ately after each line is printed.

Following is an outline of theget_line function. The important point is
thatget_line may raise an exceptionafter it has allocated the string:

char *
get_line()
{

// Open database connection and read string into buffer...

// Allocate string
CORBA::String_va r s = CORBA::string_dup(buffer);

// Close database connection
if (db.close() == ERROR) {

// Whoops, a serious problem here
throw DB_CloseException();

}

// Everything worked fine, return string
return s._retn();

}

The trick here is that the variables is aString_var . If an exception is thrown
sometime after memory is allocated tos , there is no need to worry about memory
leaks; the compiler takes care of invoking the destructor ofs as it unwinds the
stack to propagate the exception.

In the normal case, in which no error is encountered,get_line must return
the string and make the caller responsible for freeing it. This means that
get_line cannot simply returns (even though it would compile), because then
the string would be incorrectly deallocated twice: once by the destructor ofs , and
a second time by the caller.

The final statement inget_line could be the following instead:

return CORBA::string_dup(s);

This code is correct but makes an unnecessary and expensive copy of the string.
By invoking the_retn member function instead,get_line transfers responsi-

6.11 Mapping for Wide Strings 169

bility for deallocatings to the caller. This technique leaves the string in place and
avoids the cost of making a copy.

6.10.6 Stream Operators
The C++ mapping provides overloadedString_var insertion and extraction
operators for C++iostream s:

CORBA::String_va r s = ...;
cout << "String is \"" << (s ! = 0 ? s : "") << "\"" << endl;
cin >> s;
cout << "String is now \"" << (s ! = 0 ? s : "") << "\"" << endl;

Overloaded operators are provided foristream andostream , so they can also
be used with string (strstream) and file (fstream) classes.

6.11 Mapping for Wide Strings

The mapping for wide strings is almost identical to that for strings. Wide strings
are allocated and deallocated with the functionswstring_alloc ,
wstring_dup , andwstring_free (see page 147). The mapping also
provides aWString_var class (in theCORBA namespace) that behaves like a
String_var but operates on wide strings.

6.12 Mapping for Fixed-Point Types

C++ does not have built-in fixed-point types, so C++ support for fixed-point types
and arithmetic is provided by a class and a number of overloaded operator func-
tions:

namespace CORBA {
// ...
class Fixed {
public:

Fixed(int val = 0);
Fixed(unsigned);
Fixed(Long);
Fixed(LongLong);
Fixed(ULongLong);
Fixed(Double);

170 Basic IDL-to-C++ Mapping

Fixed(LongDouble);
Fixed(const char *);

Fixed(const Fixed &);
~Fixed();

operator LongLong() const;
operator LongDouble() const;
Fixed round(UShort scale) const;
Fixed truncate(UShort scale) const;

Fixed & operator=(const Fixed &);
Fixed & operator+=(const Fixed &);
Fixed & operator-=(const Fixed &);
Fixed & operator*=(const Fixed &);
Fixed & operator/=(const Fixed &);

Fixed & operator++();
Fixed operator++(int);
Fixed & operator--();
Fixed operator--(int);
Fixed operator+() const;
Fixed operator-() const;
Boolean operator!() const;

UShort fixed_digits() const;
UShort fixed_scale() const;

};

istream & operator>>(istream &, Fixed &);
ostream & operator<<(ostream &, const Fixed &);

Fixed operator+(const Fixed &, const Fixed &);
Fixed operator-(const Fixed &, const Fixed &);
Fixed operator*(const Fixed &, const Fixed &);
Fixed operator/(const Fixed &, const Fixed &);

Boolean operator<(const Fixed &, const Fixed &);
Boolean operator>(const Fixed &, const Fixed &);
Boolean operator<=(const Fixed &, const Fixed &);
Boolean operator>=(const Fixed &, const Fixed &);
Boolean operator==(const Fixed &, const Fixed &);
Boolean operator!=(const Fixed &, const Fixed &);

// ...
}

6.12 Mapping for Fixed-Point Types 171

This mapping enables you to use fixed-point quantities in C++ and to perform
computations on them. Note that a single genericFixed class is used, so the IDL
compile-time digits and scale for fixed-point types become run-time values in
C++.

6.12.1 Constructors
TheFixed class provides a number of constructors that permit construction from
integer and floating-point types.

The default constructor initializes the value of aFixed to zero and internally
sets the digits to 1 and the scale to 0—that is, the value has the typefixed<1,0>.

Constructing aFixed value from an integral value sets the digits to the
smallest value that can hold all the value’s digits and sets the scale to zero:

Fixe d f = 999; // As if IDL type fixed<3,0>

Constructing aFixed value from a floating-point value sets the digits to the
smallest value that can represent the floating-point value. The scale is set to
preserve as much of the fractional part of the floating-point value as possible,
truncating at the relevant digit. Here are a few examples:

Fixed f1 = 1000.0; // As if IDL type fixed<4,0>
Fixed f2 = 1000.05; // As if IDL type fixed<6,2>
Fixed f3 = 0.1; // Typically as if IDL type fixed<18,17>
Fixed f4 = 1E30; // As if IDL type fixed<31,0>
Fixed f5 = 1E29 + 0.89; // As if IDL type fixed<31,1>,

// value is 1E29 + 0.8

Note that initialization from floating-point values can result in surprising digits
and scale because of the vagaries of binary floating-point representation. For
example, the value 0.1 results in an actual value of 0.10000000000000001 in
many implementations. Also note that even though the value1E29 + 0.89 is
treated as1E29 + 0.8 for the purpose of truncation, it is unlikely that your
C++ compiler will be able to represent floating-point numbers with the required
precision. For example, on many implementations, theFixed value will be
initialized to 99999999999999991000000000000 instead.

Initialization with a value that has more than 31 integral digits throws a
DATA_CONVERSION exception (see Section 7.15 for details on exception handling):

Fixe d f = 1E32; // Throws DATA_CONVERSION

172 Basic IDL-to-C++ Mapping

Constructing aFixed value from a string follows the rules for IDL fixed-
point constants (see Section 4.21.4). Leading and trailing zeros are ignored, and a
trailing “D” or “d” is optional:

Fixed f1 = "1.3"; // As if fixed<2,1>
Fixed f2 = "01.30D"; // As if fixed<2,1>

Note that for initialization of strings, the digits and scale of the value are set
precisely according to the rules in Section 4.21.4, whereas initialization from
floating-point values may result in a much larger number of digits than you would
expect, depending on how accurately a value can be represented as a floating-
point number. For that reason, it is probably best to avoid initialization from
floating-point numbers.

6.12.2 Accessors
Thefixed_digits andfixed_scale member functions return the total
number of digits and the number of fractional digits respectively:

Fixe d f = "3.14D";
cout << f.fixed_digits() << endl; // Prints 3
cout << f.fixed_scale() << endl; // Prints 2

6.12.3 Conversion Operators
TheLongLong conversion operator converts aFixed value back into a
LongLong value, ignoring fractional digits. If the integral part of aFixed value
exceeds the range ofLongLong , the operator throws aDATA_CONVERSION excep-
tion.

TheLongDouble conversion operator converts aFixed value to
LongDouble .

6.12.4 Truncation and Rounding
Thetruncate member function returns a newFixed value with the specified
digits and scale, truncating fractional digits if necessary:

Fixe d f = "0.999";
cout << f.truncate(0) << endl; // Prints 0
cout << f.truncate(1) << endl; // Prints 0.9
cout << f.truncate(2) << endl; // Prints 0.99

6.13 Mapping for Structures 173

Theround member function returns a newFixed value with the specified
digits and scale, rounded to the specified digit:

Fixed r;

Fixed f1 = "0.4";
Fixed f2 = "0.45";
Fixed f3 = "-0.445";

r = f1.round(0); // 0
r = f1.round(1); // 0.4

r = f2.round(0); // 0
r = f2.round(1); // 0.5

r = f3.round(1); // -0.4
r = f3.round(2); // -0.45

Neithertruncate nor round modifies the value it is applied to; instead, they
return a new value.

6.12.5 Arithmetic Operators
TheFixed class provides the usual set of arithmetic operators. Arithmetic is
carried out internally with at least 62-digit precision, and the result is coerced to
fit a maximum of 31 digits, truncating fractional digits. If the result of an arith-
metic operation exceeds 31 integral digits, arithmetic operators throw a
DATA_CONVERSION exception.

6.12.6 Stream Operators
TheFixed mapping provides stream insertion (<<) and extraction (>>) opera-
tors. They work like their floating-point counterparts; that is, you can control
padding and precision using the usual stream features.

6.13 Mapping for Structures

The C++ mapping treats fixed-length structures differently from variable-length
structures, particularly with respect to parameter passing (see Section 7.14). We

174 Basic IDL-to-C++ Mapping

first examine the mapping for fixed-length structures and then show the mapping
and memory management rules for variable-length structures.

6.13.1 Mapping for Fixed-Length Structures
IDL structures map to C++ structures with corresponding members. For example:

struct Details {
double weight;
unsigned long count;

};

This IDL maps to

class Details_var;

struct Details {
CORBA::Double weight;
CORBA::ULong count;
typedef Details_var _var_type;
// Member functions here...

};

Note that the structure may have member functions, typically class-specific
operator new andoperator delete . These member functions allow use
of the ORB on platforms that have non-uniform memory management. However,
any additional member functions in the structure are purely internal to the
mapping; you should ignore them and write your code as if they did not exist. The
_var_type definition is used for template-based programming, and we show an
example of its use in Section 18.14.1.

You can use the generated structure just as you use any other C++ structure in
your code. For example:

Details d;
d.weight = 8.5;
d.count = 12;

C++ permits static initialization of aggregates. A class, structure, or array is an
aggregate if it does not have user-declared constructors, base classes, virtual func-
tions, or private or protected non-static data members. The preceding structure is
an aggregate, so you can initialize it statically:

Detail s d = { 8.5, 12 };

6.13 Mapping for Structures 175

Some C++ compilers have problems with aggregate initializations, so use the
feature with caution.

6.13.2 Mapping for Variable-Length Structures
TheDetails structure shown in the preceding section is a fixed-length type, so
there are no memory management issues to consider. For variable-length struc-
tures, the C++ mapping must deal with memory management. Here is an example:

struct Fraction {
double numeric;
string alphabetic;

};

This structure is a variable-length type because one of its members is a string.
Here is the corresponding C++ mapping:

class Fraction_var;

struct Fraction {
CORBA::Double numeric;
CORBA::String_mgr alphabetic;
typedef Fraction_var _var_type;
// Member functions here...

};

As before, you can pretend that any member functions in the structure do not
exist. As you can see, the IDL string is mapped to a typeString_mgr instead of
String_var or char * . String_mgr behaves like aString_var except
that the default constructor initializes the string to the empty string instead of
initializing it to a null pointer.

In general, strings nested inside user-defined types (such as structures,
sequences, exceptions, and arrays) are always initialized to the empty string
instead of to a null pointer. Initializing to the empty string for nested types is
useful because it means that you need not explicitly initialize all string members
inside a user-defined type before sending it across an IDL interface. (As you will
see in Section 7.14.15, it is illegal to pass a null pointer across an IDL interface.)2

2. Note that initialization to the empty string for nested string members was introduced with
CORBA 2.3. In CORBA 2.2 and earlier versions, you must explicitly initialize nested string
members.

176 Basic IDL-to-C++ Mapping

If you look at the generated code for your ORB, you may find that the actual
name of this class is something other thanString_mgr , such as
String_item or String_member . The exact name is not specified by the
C++ mapping. For the remainder of this book, we use the nameString_mgr
whenever we show a string that is nested inside another data structure. A word of
warning: do not useString_mgr (or its equivalent) as a type in your application
code. If you do, you are writing non-portable code because the name of the type is
not specified by the C++ mapping. Instead, always useString_var when you
require a managed string type.

Apart from the initialization to the empty string,String_mgr behaves like a
String_var . After you assign a string to the memberalphabetic , the struc-
ture takes care of the memory management for the string; when the structure goes
out of scope, the destructor foralphabetic deallocates its string for you.
String_mgr provides the same conversions asString_var , and
String_mgr andString_var can be freely assigned to each other, so you
can effectively forget about the existence ofString_mgr .

Automatic memory management is common to all structured types generated
by the mapping. If a structure (or sequence, union, array, or exception) contains
(perhaps recursively) a variable-length type, the structure takes care of the
memory management of its contents. To you, this means that you need worry
about the memory management only for the outermost type, and you need not
worry about managing memory for the members of the type.

Here is an example to make this concept more concrete:

{
Fraction f;
f.numeric = 1.0/3.0;
f.alphabetic = CORBA::string_dup("one third");

} // No memory leak here

Here, we declare a local variablef of typeFraction . The structure’s
constructor performs memberwise initialization. For the membernumeric , it
does nothing. However, the memberalphabetic is a nested string, so the
constructor initializes it to the empty string.

The first assignment to the membernumeric does nothing unusual. To
assign toalphabetic , we must allocate memory, andalphabetic takes
responsibility for deallocating that memory again (the assignment invokes
operator=(char *) onalphabetic).

Whenf goes out of scope, its default destructor uses memberwise destruction
and calls the destructor ofalphabetic , which in turn calls

6.13 Mapping for Structures 177

CORBA::string_free . This means that there is no memory leak whenf goes
out of scope.

Note that you cannot statically initializef , because it is not a C++ aggregate
(it contains a member with a constructor):

Fractio n f = { 1.0/3.0, "one third" }; // Compile-time error

In general, variable-length structures can never be statically initialized, because
they contain members that have constructors.

6.13.3 Memory Management for Structures
You can treat structures in much the same way that you treat any other variable in
your program. Most of the memory management activities are taken care of for
you. This means that you can freely assign structures and structure members to
one another:

{
struct Fraction f1;
struct Fraction f2;
struct Fraction f3;

f1.numeric = .5;
f1.alphabetic = CORBA::string_dup("one half");
f2.numeric = .25;
f2.alphabetic = CORBA::string_dup("one quarter");
f3.numeric = .125;
f3.alphabetic = CORBA::string_dup("one eighth");

f2 = f1; // Deep assignment
f3.alphabetic = f1.alphabetic; // Deep assignment
f3.numeric = 1.0;
f3.alphabetic[3] = '\0'; // Does not affect f1 or f2
f1.alphabetic[0] = 'O'; // Does not affect f2 or f3
f1.alphabetic[4] = 'H'; // Ditto

} // Everything deallocated OK here

178 Basic IDL-to-C++ Mapping

Figure 6.2. Structures before and after assignments.

Figure 6.2 shows the initial and final values of the three structures for this
example. As you can see, structure and member assignments make deep copies.
Moreover, when the structures are deleted, the memory held by the three string
members is automatically deallocated by the correspondingString_mgr
destructor.

If you need to work with dynamically allocated structures, you usenew and
delete :

Fraction * fp = new Fraction;
fp->numeric = 355.0 / 113;
fp->alphabetic = CORBA::string_dup("Pi, approximately");
// ...
delete fp;

There is no need to call special helper functions for allocation and deallocation. If
such functions are required for non-uniform memory architectures, they are
generated as class-specificoperator new andoperator delete members
of the structure.

6.13.4 Structures Containing Structure Members
Structure members that are themselves structures do not require any special
mapping rules:

struct Fraction {
double numeric;
string alphabetic;

};

struct Problem {

0.5

One Half

f1

numeric

alphabetic

0.5

one half

f2

1.0

one

f3

0.5

one half

f1

numeric

alphabetic

0.25

one quarter

f2

0.125

one eighth

f3

Before

After

6.14 Mapping for Sequences 179

string expression;
Fraction result;
boolean is_correct;

};

This generates the following mapping:

struct Fraction {
CORBA::Double numberic;
CORBA::String_mgr alphabetic;
// ...

};

struct Problem {
CORBA::String_mgr expression;
Fraction result;
CORBA::Boolean is_correct;
// ...

};

Using a variable of typeProblem follows the usual rules for initialization and
assignment. For example:

Problem p;
p.expression = CORBA::string_dup("7/8");
p.result.numeric = 0.875;
p.result.alphabetic = CORBA::string_dup("seven eighths");
p.is_correct = 1;

Problem * p_ptr = new Problem;
*p_ptr = p; // Deep assignment
//
// It would be more efficient to use
// Problem * p_ptr = new Problem(p); // (deep) copy constructor
//
delete p_ptr; // Deep deletion

6.14 Mapping for Sequences

The mapping for sequences is large, mainly because sequences permit you to
control allocation and ownership of the buffer that holds sequence elements. We
discuss simple uses of unbounded sequences first and then show how you can use
more advanced features to efficiently insert and extract data. The advanced
features are particularly useful if you need to transmit binary data as an octet

180 Basic IDL-to-C++ Mapping

sequence. Finally, we explain the mapping for bounded sequences, which is a
subset of the mapping for unbounded sequences.

6.14.1 Mapping for Unbounded Sequences
IDL sequences are mapped to C++ classes that behave like vectors with a variable
number of elements. Each IDL sequence type results in a separate C++ class. For
example:

typedef sequence<string> StrSeq;

This maps to C++ as follows:

class StrSeq_var;

class StrSeq {
public:

StrSeq();
StrSeq(CORBA::ULong max);
StrSeq(

CORBA::ULong max,
CORBA::ULong len,
char ** data,
CORBA::Boolean release = 0

);
~StrSeq();

StrSeq(const StrSeq &);
StrSeq & operator=(const StrSeq &);

CORBA::String_mgr & operator[](CORBA::ULong idx);
const char * operator[](CORBA::ULong idx) const;

CORBA::ULong length() const;
void length(CORBA::ULong newlen);
CORBA::ULong maximum() const;

CORBA::Boolean release() const;

void replace(
CORBA::ULong max,
CORBA::ULong length,
char ** data,
CORBA::Boolean release = 0

);

6.14 Mapping for Sequences 181

const char ** get_buffer() const;
char ** get_buffer(CORBA::Boolean orphan = 0);

static char ** allocbuf(CORBA::ULong nelems);
static void freebuf(char ** data);

typedef StrSeq_var _var_type;
};

This class is complicated. To get through all the definitions without too much
pain, we discuss basic usage first and then cover the more esoteric member func-
tions.3

StrSeq()

The default constructor creates an empty sequence. Calling thelength accessor
of a default-constructed sequence returns the value0. The internal maximum of
the sequence is set to0 (see page 184).

StrSeq(const StrSeq &)
StrSeq & operator=(const StrSeq &)

The copy constructor and assignment operator make deep copies. The assignment
operator first destroys the target sequence before making a copy of the source
sequence (unless therelease flag is set to false; see page 187). If the sequence
elements are variable-length, the elements are deep-copied using their copy
constructor. The internal maximum of the target sequence is set to the same value
as the internal maximum of the source sequence (see page 184).

~StrSeq()

The destructor destroys a sequence. If the sequence contains variable-length
elements, dynamic memory for the elements is also released (unless the
release flag is set to false; see page 187).

CORBA::ULong length() const

The length accessor simply returns the current number of elements in the
sequence.

3. The_var_type definition generated into the class is useful for template-based programming.
We show an example in Section 18.14.1.

182 Basic IDL-to-C++ Mapping

void length(CORBA::ULong newlen)

The length modifier changes the length of the sequence.

• Increasing the length of a sequence createsnewlen - length() new
elements. The new elements are appended to the tail. Growing a sequence
initializes the newly appended elements with their default constructor. (If the
appended elements are strings or are complex types containing strings, the
strings are initialized to the empty string.)

• Decreasing the length of a sequence truncates the sequence by destroying the
length() - newlen elements at the tail. If you truncate a sequence by
reducing its length, the truncated elements are permanently destroyed. You
cannot expect the previously truncated elements to still be intact after you
increase the length again.

CORBA::String_mgr & operator[](CORBA::ULong idx)
const char * operator[](CORBA::ULong idx) const

The subscript operators provide access to the sequence elements (the operator is
overloaded to allow use of sequence elements in both rvalue and lvalue contexts).
In this example, using a sequence of strings, the return values areString_mgr
andconst char * , respectively. In general, for a sequence containing
elements of typeT, these operators return values of typeT & andconst T & ,
respectively. You may find that the actual type is something other than a reference
to aT, depending on exactly how your ORB implements sequences. However,
whatever type is returned, it will behave as if it were a reference to aT.

Sequences are indexed from0 to length() - 1 . Attempts to index into a
sequence beyond its current length result in undefined behavior, and many ORBs
will force a core dump to alert you of this run-time error.

If you do not like this, consider the alternatives: either you can run on blindly,
happily corrupting memory as you go, or the ORB could throw an exception when
a sequence index is out of bounds. However, that would not do you much good.
After all, indexing a sequence out of bounds is a serious run-time error (just as
overrunning an array is). What would be the point of throwing an exception?
None—it would just tell you that you have a bug in your code.

Simple Use of Sequences

The few member functions we have just discussed are sufficient to make use of
sequences. The following example demonstrates use of a sequence. The string
elements behave likeString_mgr instances:

6.14 Mapping for Sequences 183

const char * values[] = { "first", "second", "third", "fourth" };

StrSeq myseq; // Create empty sequence

// Create four empty strings
myseq.length(4);
for (CORBA::ULon g i = 0; i < myseq.length(); i++)

myseq[i] = values[i]; // Deep copy

// Print current contents
for (CORBA::ULon g i = 0; i < myseq.length(); i++)

cout << "myseq[" << i << "] = \"" << myseq[i] << "\"" << endl;
cout << endl;

// Change second element (deallocates "second")
myseq[1] = CORBA::string_dup("second element");

// Truncate to three elements
myseq.length(3); // Deallocates "fourth"

// Grow to five elements (add two empty strings)
myseq.length(5);

// Initialize appended elements
myseq[3] = CORBA::string_dup("4th");
myseq[4] = CORBA::string_dup("5th");

// Print contents once more
for (CORBA::ULon g i = 0; i < myseq.length(); i++)

cout << "myseq[" << i << "] = \"" << myseq[i] << "\"" << endl;

This code produces the following output:

myseq[0] = "first"
myseq[1] = "second"
myseq[2] = "third"
myseq[3] = "fourth"

myseq[0] = "first"
myseq[1] = "second element"
myseq[2] = "third"
myseq[3] = "4th"
myseq[4] = "5th"

Oncemyseq goes out of scope, it invokes the destructor for its elements, so all
the strings in the sequence are deallocated properly.

184 Basic IDL-to-C++ Mapping

To manage heap-allocated sequences, usenew anddelete :

StrSeq * ssp = new StrSeq;
ssp->length(4);
for (CORBA::ULon g i = 0; i < ssp->length(); i++)

(*ssp)[i] = values[i];
// ...
delete ssp;

If special allocation rules apply for non-uniform memory architectures, the
sequence class contains appropriate class-specific allocation and deallocation
operators.

You may be worried by the expression

(*ssp)[i] = values[i];

Dereferencing the pointer is necessary, because we need an expression of type
StrSeq for the subscript operator. If we instead write

ssp[i] = values[i]; // Wrong!!!

the compiler assumes that we are dealing with an array of sequences and are
assigning aconst char * to the i-th sequence, which causes a compile-time
error.

Controlling the Sequence Maximum

When you construct a sequence variable, you can supply an anticipated maximum
number of elements using the maximum constructor:

StrSeq myseq(10); // Expect to put ten elements on the sequence
myseq.length(20); // Maximum does *not* limit length of sequence
for (CORBA::ULon g i = 0; i < myseq.length(); i++)

// Initialize elements

As you can see, even though this code uses an anticipated maximum of 10
elements, it then proceeds to add 20 elements to the sequence. This is perfectly all
right. The sequence extends the maximum as necessary to accommodate the addi-
tional elements.

Why bother with supplying an anticipated maximum? The answer has to do
with how a sequence manages its buffer space internally. If you use the maximum
constructor, the sequence sets an internal maximum to a valueat least as large as
the one you supply (the actual maximum may be set to a larger value than the one
you supply). In addition, a sequence guarantees that elements will not be relocated
in memory while the current length does not exceed the maximum.

6.14 Mapping for Sequences 185

Typically, you do not care about relocation of elements in memory unless you
are maintaining pointers to the sequence elements. In that case, you must know
when sequence elements may relocate in memory because relocation will invali-
date your pointers.

Another reason for supplying a maximum is efficiency. If the sequence has
some idea of the expected number of elements, it can chunk memory allocations
more efficiently. This approach reduces the number of calls to the memory allo-
cator and reduces the number of times elements need to be copied as the sequence
grows in length. (Memory allocation and data copying are expensive.)

You can retrieve the current maximum of a sequence by invoking the
maximum member function. The following small program appends octets to a
sequence one octet at a time and prints the maximum every time it changes:

int
main()
{

BinaryFile s(20); // IDL: typedef sequence<octet> BinaryFile;

CORBA::ULong max = s.maximum();
cout << "Initial maximum: " << max << endl;

for (CORBA::ULon g i = 0; i < 256; i++) {
s.length(i + 1);
if (max != s.maximum()) {

max = s.maximum();
cout << "New maximum: " << max << endl;

}
s[i] = 0;

}
return 0;

}

On a particular ORB, this code might produce the following output:

Initial maximum: 64
New maximum: 128
New maximum: 192
New maximum: 256

This output allows you to reverse-engineer some knowledge about the sequence’s
internal implementation. In this particular implementation, the sequence uses
chunked allocation of 64 elements at a time, so the maximum of 20 given to the
constructor is rounded up to 64. Thereafter, the sequence extends its internal

186 Basic IDL-to-C++ Mapping

buffer space by another 64 elements whenever the length is incremented beyond a
multiple of 64.

The same code, when run on a different ORB, might produce this output:

Initial maximum: 20
New maximum: 21
New maximum: 22
New maximum: 23
...
New maximum: 255
New maximum: 256

In this implementation, the sequence simply allocates buffer space as needed for
each element.

For both implementations, whenever the maximum value changes, the actual
octetsmay be relocated in memory, but they also may stay where they are,
depending on the sequence implementation and the specific memory allocator in
use.

Be careful not to interpret too much into the maximum constructor and the
behavior of sequences.

• The mapping does not guarantee that the maximum constructor will preallo-
cate memory at the time it is called. Instead, allocation may be delayed until
the first element is created.

• The mapping does not guarantee that the maximum constructor will allocate
memory for exactly the requested number of elements. It may allocate more.

• The mapping does not guarantee that the maximum constructor will use a
single allocation to accommodate the requested number of elements. It may
allocate sequence elements in several discontiguous buffers.

• The mapping does not guarantee that sequence elements occupy a contiguous
region of memory. To avoid the cost of relocating elements, the sequence may
add new discontiguous buffer space as it is extended.

• The mapping does not guarantee that extending the length of a sequence
immediately default-constructs the newly created elements. Although this
would be far-fetched, the mapping implementation could delay construction
until a new element is first assigned to and at that point create the element
using its copy constructor.

It should be clear that the maximum constructor is no more than a hint to the
implementation of the sequence. If you create a sequence and have advance
knowledge of the expected number of elements, then by all means, use the

6.14 Mapping for Sequences 187

maximum constructor. It may help to get better run-time performance from the
sequence. Otherwise, do not bother.

Do not maintain pointers to sequence elements. If you do, you need to be
extremely careful about reallocation. Usually, the trouble is not worth it.

Using the Data Constructor

The data constructor allows you to assign a preallocated buffer to a sequence. The
main use of the data constructor is to efficiently transmit binary data as an octet
sequence without having to use bytewise copying. There are a number of prob-
lems associated with the data constructor, and we recommend that you do not use
it unless you have an overriding reason; you may wish to skip this section and
continue reading on page 194. Still, we describe the data constructor for
completeness.

The signature of the data constructor depends on the sequence element type.
For example, for the sequence of strings shown on page 180, the signature is as
follows:

StrSeq(// IDL: typedef sequence<string> StrSeq;
CORBA::ULong max,
CORBA::ULong len,
char ** data,
CORBA::Boolean release = 0

);

On the other hand, for a sequence of octets, the data constructor’s signature
becomes

BinaryFile(// IDL: typedef sequence<octet> BinaryFile;
CORBA::ULong max,
CORBA::ULong len,
CORBA::Octet * data,
CORBA::Boolean release = 0

);

Note that thedata parameter is of type pointer to element. The idea is that you
can provide a pointer to a buffer full of elements and have the sequence use that
buffer for its internal storage. To see why this may be useful, consider the
following scenario.

Imagine you have a GIF image in a file and want to transmit that image to a
remote server. The file contents are binary and need to get to the server without
being tampered with in transit, so you decide to send the image as an octet
sequence:4

188 Basic IDL-to-C++ Mapping

typedef sequence<octet> BinaryFile;

interface BinaryFileExchange {
void send(in BinaryFile f, in string file_name);
BinaryFile fetch(in string file_name);

};

On a UNIX system, a simple version of the code to initialize the sequence for
transmission might look something like this (for simplicity, we have omitted error
checking):

int fd;
fd = open("image.gif", O_RDONLY); // Open file for reading
struct stat st;
fstat(fd, &st); // Get file attributes
CORBA::Octet * buf;
buf = new CORBA::Octet[st.st_size]; // Allocate file buffer
read(fd, buf, st.st_size); // Read file contents

BinaryFile image_seq(st.st_size); // Create octet sequence
image_seq.length(st.st_size); // Set length of sequence

// Fill sequence
for (off_ t i = 0; i < st.st_size; i++)

image_seq[i] = buf[i];

delete[] buf; // Don't need buffer anymore
close(fd); // Done with file

// Send octet sequence to server...

The image file might be several hundred kilobytes long, but the preceding code
copies the file contents into the octet sequence one byte at a time. Even if the
sequence’s subscript operator is inlined, this approach is still massively ineffi-
cient.

We can avoid this problem by using the data constructor:

// Open file and get attributes as before...
CORBA::Octet * buf;
buf = new CORBA::Octet[st.st_size]; // Allocate file buffer
read(fd, buf, st.st_size); // Read file contents

4. A word of caution here: sending a binary file as shown will not work once the file size exceeds an
ORB-dependent limit. We discuss how to get around this in Section 18.7.

6.14 Mapping for Sequences 189

close(fd); // Done with file

// Initialize sequence with buffer just read
BinaryFile image_seq(st.st_size, st.st_size, buf, 0);

// Send octet sequence to server...

delete[] buf; // Deallocate buffer

The interesting line here is the call to the data constructor:

BinaryFile image_seq(st.st_size, st.st_size, buf, 0);

This call initializes both the maximum and the length of the sequence to the size
of the file, passes a pointer to the buffer, and sets therelease flag to false. The
sequence now uses the passed buffer for its internal storage, thereby avoiding the
cost of initializing the sequence one byte at a time. Setting therelease flag to
false indicates that we want to retain responsibility for memory management of
the buffer. The sequence does not deallocate the buffer contents. Instead, the
preceding code does this explicitly by callingdelete[] when the sequence
contents are no longer needed.

If you set therelease flag to true, the sequence takes ownership of the
passed buffer. In that case, the buffer must have been allocated withallocbuf ,
and the sequence deallocates the buffer withfreebuf :

// Open file and get attributes as before...
CORBA::Octet * buf;
buf = BinaryFile::allocbuf(st.st_size); // Allocate file buffer
read(fd, buf, st.st_size); // Read file contents

// Initialize, sequence takes ownership
BinaryFile image_seq(st.st_size, st.st_size, buf, 1);

close(fd); // Done with file

// Send octet sequence to server...

// No need to deallocate buf here, the sequence
// will deallocate it with BinaryFile::freebuf()

Theallocbuf andfreebuf member functions are provided to deal with non-
uniform memory architectures (for uniform architectures, they are simply imple-
mented in terms ofnew[] anddelete[]) . Theallocbuf function returns a
null pointer if it fails to allocate memory (it does not throw C++ or CORBA
exceptions). It is legal to callfreebuf with a null pointer.

190 Basic IDL-to-C++ Mapping

If you initialize a sequence withrelease set to true as shown earlier, you
cannot make assumptions about the lifetime of the passed buffer. For example, a
compliant (although inefficient) implementation may decide to immediately copy
the sequence and deallocate the buffer. This means that after you have handed the
buffer to the sequence, the buffer becomes private memory that is completely out
of your control.

If the release flag is true and the sequence elements are strings, the
sequence will release memory for the strings when it deallocates the buffer. Simi-
larly, if the release flag is true and the sequence elements are object references, the
sequence will callCORBA::release on each reference.

String elements are deallocated by a call toCORBA::string_free , so you
must allocate them withCORBA::string_alloc . The following example
shows use of a sequence of strings with therelease flag set to true. The code
reads lines of text from a file, making each line a sequence element. Again, for
brevity, we have not included any error handling. (The code also causes lines
longer than 512 characters to be split, which we will assume is acceptable.)

char linebuf[512]; // Line buffer

CORBA::ULong len = 0; // Current sequence length
CORBA::ULong max = 64; // Initial sequence max
char ** strvec = StrSeq::allocbuf(max); // Allocate initial chunk
ifstream infile("file.txt"); // Open input file

infile.getline(linebuf, sizeof(linebuf)); // Read first line
while (infile) { // While lines remain

if (len == max) {
// Double size if out of room
char ** tmp = StrSeq::allocbuf(max *= 2);
for (CORBA::ULon g i = 0; i < len; i++) {

CORBA::string_free(tmp[i]);
tmp[i] = CORBA::string_dup(strvec[i]);

}
StrSeq::freebuf(strvec);
strvec = tmp;

}
strvec[len++] = CORBA::string_dup(linebuf); // Copy line
infile.getline(linebuf, sizeof(linebuf)); // Read next line

}

StrSeq line_seq(max, len, strvec, 1); // Initialize seq

// From here, line_seq behaves like an ordinary string sequence:

6.14 Mapping for Sequences 191

for (CORBA::ULon g i = 0; i < line_seq.length(); i++)
cout << line_seq[i] << endl;

line_seq.length(len + 1); // Add a line
line_seq[len++] = CORBA::string_dup("last line");

line_seq[0] = CORBA::string_dup("first line"); // No leak here

This example illustrates the memory management rules. The buffer that is eventu-
ally handed to the string sequence isstrvec . This buffer is initialized by a call
to StrSeq::allocbuf , with sufficient room to hold 64 strings. During the
loop reading the file, the code checks whether the current maximum has been
reached; if it has, the code doubles the maximum (this requires reallocating and
copying the vector). Each line is copied into the vector by deallocating the
previous string element and callingCORBA::string_dup . When the loop
terminates,strvec is a dynamically allocated vector of pointers in which each
element points at a dynamically allocated string. This vector is finally used to
initialize the sequence with therelease flag set to true, so the sequence
assumes ownership of the vector.

Once the sequence is initialized in this way, it behaves like an ordinary string
sequence; that is, the elements are of typeString_mgr , and they manage
memory as usual. Similarly, the sequence can be extended or shortened and will
take care of allocating and deallocating memory as appropriate.

Contrast this with a string sequence withrelease set to false:

// Assume that:
// argv[0] == "a.out"
// argv[1] == "first"
// argv[2] == "second"
// argv[3] == "third"
// argv[4] == "fourth"
{

StrSeq myseq(5, 5, argv); // release flag defaults to 0
myseq[3] = "3rd"; // No deallocation, no copy
cout << myseq[3] << endl; // Prints "3rd"

} // myseq goes out of scope but deallocates nothing

cout << argv[1] << endl; // argv[1] intact, prints "first"
cout << argv[3] << endl; // argv[3] was changed, prints "3rd"

Because therelease flag is false, the sequence uses shallow pointer assign-
ment; it neither releases the target string"third" nor makes a copy of the
source string"3rd" . When the sequence goes out of scope, it does not release the

192 Basic IDL-to-C++ Mapping

string vector, so the assignment’s effect is visible beyond the lifetime of the
sequence.

Be careful, though: assignment to a sequence element is not guaranteed to
affect the original vector. By slightly modifying the preceding code, we get
different behavior:

// Assume that:
// argv[0] == "a.out"
// argv[1] == "first"
// argv[2] == "second"
// argv[3] == "third"
// argv[4] == "fourth"
{

StrSeq myseq(5, 5, argv); // release flag defaults to 0
myseq[3] = "3rd"; // No deallocation, no copy
cout << myseq[3] << endl; // Prints "3rd"
myseq.length(10000); // Force reallocation
myseq[1] = "1st"; // Shallow assignment
cout << myseq[1] << endl; // Prints "1st"

} // deallocate whatever memory was allocated by length(10000)

cout << argv[1] << endl; // prints "first" (not "1st")
cout << argv[3] << endl; // prints "3rd"

This example uses two assignments to sequence elements but separates them by a
large increase in the length of the sequence. This increase in length is likely to
cause reallocation. (It is not guaranteed to force reallocation. An implementation
is free instead to allocate additional separate memory while keeping the original
vector, even though such an implementation is unlikely.) The effect is that the first
assignment (before reallocation) affects the original vector, but the second assign-
ment (after reallocation) affects only an internal copy, which is deallocated when
the sequence goes out of scope.

This example demonstrates that initializing a sequence withrelease set to
false requires a lot of caution. Unless you are very careful, you will leak memory
or lose the effects of assignments.

Never pass a sequence withrelease set to false as aninout parameter to an
operation. Although the called operation can find out how the sequence was allo-
cated, it will typically assume thatrelease is set to true. If the actual sequence
hasrelease set to false, assignment to sequence elements by the called opera-
tion can result in deallocation of non-heap memory, typically causing a core
dump.

6.14 Mapping for Sequences 193

Manipulating the Sequence Buffer Directly

As you saw on page 180, sequences contain member functions to manipulate the
buffer of a sequence directly. For theBinaryFile sequence, the generated code
contains the following:

class BinaryFile {
public:

// Other member functions here...
void replace(

CORBA::ULong max,
CORBA::ULong length,
CORBA::Octet * data,
CORBA::Boolean release = 0

);
const CORBA::Octet * get_buffer() const;
CORBA::Octet * get_buffer(CORBA::Boolean orphan = 0);
CORBA::Boolean release() const;

};

These member functions let you directly manipulate the buffer underlying a
sequence.

Thereplace member function permits you to change the contents of a
sequence by substituting a different buffer. The meaning of the parameters is the
same as that for the data constructor. Obviously, the same caveats apply here as
for shortening or lengthening of a sequence: if you are holding pointers into a
sequence buffer and replace the buffer, the pointers are likely to point at garbage
afterward.

Theget_buffer accessor function provides read-only access to the under-
lying buffer. (If you callget_buffer on a sequence that does not yet have a
buffer, the sequence allocates a buffer first.) Theget_buffer function is useful
for efficient extraction of sequence elements. For example, you can extract a
binary file without copying the sequence elements:

BinaryFile bf = ...; // Get an image file...
CORBA::Octet * data = bf.get_buffer(); // Get pointer to buffer
CORBA::ULong len = bf.length(); // Get length
display_gif_image(data, len); // Display image

This code obtains a pointer to the sequence data and passes the pointer to a display
routine. The advantage here is that you can display the sequence contents without
copying any elements.

Theget_buffer modifier function provides read-write access to a
sequence buffer. Itsorphan argument determines who gets ownership of the

194 Basic IDL-to-C++ Mapping

buffer. If orphan is false (the default), the sequence retains ownership and
releases the buffer when it goes out of scope. Iforphan is true, you become
responsible for the returned buffer and must eventually deallocate it using
freebuf .

You need to exercise caution if you decide to use theget_buffer modifier.
The modifier enables you to assign to sequence elements in place. However, if the
elements are strings, wide strings, or object references, you need to check the
release flag of the sequence (returned by therelease member function). If the
release flag is false, you must not deallocate elements before assigning to them. If
the release flag is true, you must deallocate sequence elements before assigning to
them. The deallocation functions areCORBA::string_free ,
CORBA::wstring_free , andCORBA::release , depending on whether the
sequence elements are strings, wide strings, or object references. (Other element
types require no memory management from you.)

After you have taken ownership of the buffer from a sequence, the sequence
reverts to the same state it would have if it had been constructed by its default
constructor. If you attempt to remove ownership of a buffer from a sequence
whose release flag is false,get_buffer returns a null pointer.

6.14.2 Mapping for Bounded Sequences
The mapping for bounded sequences is identical to the mapping for unbounded
sequences except that the maximum is hard-wired into the generated class. For
example:

typedef sequence<double, 100> DoubleSeq;

This results in the following class:

class DoubleSeq_var;

class DoubleSeq {
public:

DoubleSeq();
DoubleSeq(

CORBA::ULong len,
CORBA::Double * data,
CORBA::Boolean release = 0

);
~DoubleSeq();

DoubleSeq(const DoubleSeq &);

6.14 Mapping for Sequences 195

DoubleSeq & operator=(const DoubleSeq &);

CORBA::Double & operator[](CORBA::ULong idx);
const CORBA::Double & operator[](CORBA::ULong idx) const;

CORBA::ULong length() const;
void length(CORBA::ULong newlen);
CORBA::ULong maximum() const;

Boolean release() const;
void replace(

CORBA::ULong length,
CORBA::Double * data,
CORBA::Boolean release = 0

);
CORBA::Double * get_buffer() const;
CORBA::Double * get_buffer(CORBA::Boolean orphan = 0);
static CORBA::Double * allocbuf(CORBA::ULong nelems);
static void freebuf(CORBA::Double * data);

typedef DoubleSeq_var _var_type;
};

As you can see, the only differences between a bounded sequence and an
unbounded sequence are that for a bounded sequence, the maximum constructor is
missing and that the data constructor does not accept a maximum parameter. (The
maximum value of 100 is generated into the source code for the class.)

Attempts to set the length of a bounded sequence beyond the maximum result
in undefined behavior, usually a core dump. Calls toallocbuf need not specify
a number of elements that is the same as the sequence bound.

6.14.3 Sequence Limitations

Insertion and Deletion of Elements

An annoying aspect of the sequence mapping is that you can change the length of
a sequence only at its tail. To insert an element somewhere in the middle, you
must open a gap by copying the elements to the right of the insertion point. The
following helper function preinserts an element into a sequence at a nominated
position. Passing an index value equal to the length of the sequence appends the
element at the tail. The function assumes that only legal index values in the range
0 to length()-1 will be passed:

196 Basic IDL-to-C++ Mapping

template<class Seq, class T>
void
pre_insert(Seq & seq, cons t T & elmt, CORBA::ULong idx)
{

seq.length(seq.length() + 1);
for (CORBA::ULon g i = seq.length() - 1 ; i > idx; i--)

seq[i] = seq[i - 1];
seq[idx] = elmt;

}

This code extends the sequence by one element, opens a gap by copying elements
from the insertion point to the tail over by one position, and then assigns the new
element.

Similar code is required for removal of an element, in which you need to close
the gap that is left behind at the deletion point:

template<class Seq>
void
remove(Seq & seq, CORBA::ULong idx)
{

for (CORBA::ULon g i = idx; i < seq.length() - 1; i++)
seq[i] = seq[i + 1];

seq.length(seq.length() - 1);
}

Insertion and removal operations on sequences haveO(n) run-time performance.
This performance becomes unacceptable if frequent insertions or deletions are
made, particularly for long sequences with elements of complex type. In such a
case, you are better off using a more suitable data structure instead of trying to
manipulate sequence elements in place.

For example, you can use an STL set or multiset to perform insertions and
deletions inO(log n) time. After the set is in its final state, simply create an
equivalent sequence by copying the contents of the set in a single pass. This tech-
nique is particularly useful if you need to make many updates to a sequence but
want to keep the sequence in sorted order.

Using the Data Constructor with Complex Types

The data constructor is of limited value if a sequence contains elements of user-
defined complex type. Consider the following IDL:

typedef string Word;
typedef sequence<Word> Line;
typedef sequence<Line> Document;

6.14 Mapping for Sequences 197

This IDL represents a line of text as a sequence of words, and a document as a
sequence of lines. The problem for the data constructor is that we have no idea
how the C++ class for a sequence of words is represented internally. For example,
the sequence class will almost certainly have private data members that point at
the dynamic memory for the sequence buffer. It follows that we cannot write a
sequence value into a binary file and read the file later to reconstruct the sequence.
By the time the file is read, the private pointer values of the sequence will likely
point at the wrong memory locations.

You can use the sequence data constructor to create a sequence of complex
values, but the sequence elements of the vector must be created by memberwise
assignment or copy. For example:

Line * docp = Document::allocbuf(3); // Three-line document
Line tmp; // Temporary line

tmp.length(4); // Initialize first line
tmp[0] = CORBA::string_dup("This");
tmp[1] = CORBA::string_dup("is");
tmp[2] = CORBA::string_dup("line");
tmp[3] = CORBA::string_dup("one.");
docp[0] = tmp; // Assign first line

tmp.length(1); // Initialize second line
tmp[0] = CORBA::string_dup("Line2");
docp[1] = tmp; // Assign second line

tmp[0] = CORBA::string_dup("Line3"); // Initialize third line
docp[2] = tmp; // Assign third line

Document my_doc(3, 3, docp, 1); // Use data constructor
// ...

This code is correct, but use of the data constructor no longer offers any advantage
in performance (because the sequence elements cannot be created by reading
them from a binary file or by copying memory). For this reason, you should avoid
using the data constructor for anything except sequences of simple types and for
sequences of string literals with therelease flag set to false.

6.14.4 Rules for Using Sequences
Here are some rules for safe use of sequences.

198 Basic IDL-to-C++ Mapping

• Do not make assumptions about when constructors or destructors run. The
implementation of the sequence mapping is free to delay construction or
destruction of elements for efficiency reasons. This means that your code must
not rely on side effects from construction or destruction. Simply assume that
elements are copy-constructed during the first assignment, default-constructed
during the first access, and destroyed when a sequence is shortened or goes
out of scope. In that way, you will not get any unpleasant surprises.

• Never pass a sequence to a function for modification if therelease flag is
false. If the sequence does not own its buffer, the called function will most
likely cause memory leaks if it modifies sequence elements.

• Avoid using the data constructor for elements of complex type. For complex
types, the data constructor does not offer any advantages but makes the source
code more complex.

• Remember that increasing the length of a sequence beyond the current
maximum may cause relocation of elements in memory.

• Do not index into a sequence beyond the current length.

• Do not increase the length of a bounded sequence beyond its bound.

• Do not use the data constructor or the buffer manipulation functions unless
you really need to. Direct buffer manipulation is fraught with potential
memory management errors, and you should first convince yourself that any
savings in performance justify the additional coding and testing effort.

6.15 Mapping for Arrays

IDL arrays map to C++ arrays of the corresponding element type. String elements
are mapped toString_mgr (or some other type proprietary to the mapping
implementation). The point is that string elements are initialized to the empty
string but otherwise behave like aString_var (that is, manage memory). For
example:

typedef float FloatArray[4];
typedef string StrArray[15][10];

struct S {
string s_mem;
long l_mem;

};
typedef S StructArray[20];

6.15 Mapping for Arrays 199

This maps to C++ as follows:

typedef CORBA::Float FloatArray[4];
typedef CORBA::Float FloatArray_slice;
FloatArray_slice * FloatArray_alloc();
FloatArray_slice * FloatArray_dup(

const FloatArray_slice *
);

void FloatArray_copy(
FloatArray_slice * to,
const FloatArray_slice * from

);
void FloatArray_free(FloatArray_slice *);

typedef CORBA::String_mgr StrArray[15][10];
typedef CORBA::String_mgr StrArray_slice[10];
StrArray_slice * StrArray_alloc();
StrArray_slice * StrArray_dup(const StrArray_slice *);
void StrArray_copy(

StrArray_slice * to,
const StrArray_slice * from

);
void StrArray_free(StrArray_slice *);

struct S {
CORBA::String_mgr s_mem;
CORBA::Long l_mem;

};
typedef S StructArray[20];
typedef S StructArray_slice;
StructArray_slice * StructArray_alloc();
StructArray_slice * StructArray_dup(

const StructArray_slice *
);

void StructArray_copy(
StructArray_slice * to,
const StructArray_slice * from

);
void StructArray_free(StructArray_slice *);

As you can see, each IDL array definition generates a corresponding array defini-
tion in C++. This means that you can use IDL array types just as you use any other
array type in your code. For example:

200 Basic IDL-to-C++ Mapping

FloatArray my_ f = { 1.0, 2.0, 3.0 };
my_f[3] = my_f[2];

StrArray my_str;
my_str[0][0] = CORBA::string_dup("Hello"); // Transfers ownership
my_str[0][1] = my_str[0][0]; // Deep copy

StructArray my_s;
my_s[0].s_mem = CORBA::string_dup("World"); // Transfers ownership
my_s[0].l_mem = 5;

To dynamically allocate an array, you must use the generated allocation and deal-
location functions (use ofnew[] anddelete[] is not portable):

// Allocate 2-D array of 150 empty strings
StrArray_slice * sp1 = StrArray_alloc();

// Assign one element
sp1[0][0] = CORBA::string_dup("Hello");

// Allocate copy of sp1
StrArray_slice * sp2 = StrArray_dup(sp1);

StrArray x; // 2-D array on the stack
StrArray_copy(x, sp1); // Copy contents of sp1 into x

StrArray_free(sp2); // Deallocate
StrArray_free(sp1); // Deallocate

The allocation functions return a null pointer to indicate failure and do not throw
CORBA or C++ exceptions.

The allocation functions use the array slice type that is generated. The slice
type of an array is the element type of the first dimension (or, for a two-dimen-
sional array, the row type). In C++, array expressions are converted to a pointer to
the first element and the slice types make it easier to declare pointers of that type.
For an array typeT, a pointer to the first element can be declared asT_slice * .
Because IDL arrays map to real C++ arrays, you can also use pointer arithmetic to
iterate over the elements of an array.

TheStrArray_copy function deep-copies thecontentsof an array. Neither
the source nor the target array need be dynamically allocated. This function effec-
tively implements assignment for arrays. (Because IDL arrays are mapped to C++
arrays and C++ does not support array assignment, the mapping cannot provide an
overloaded operator for array assignment.)

6.16 Mapping for Unions 201

6.16 Mapping for Unions

IDL unions cannot be mapped to C++ unions; variable-length union members
(such as strings) are mapped to classes, but C++ does not permit unions to contain
class members with non-trivial constructors. In addition, C++ unions are not
discriminated. To get around this, IDL unions map to C++ classes. For example:

union U switch (char) {
case 'L':

long long_mem;
case 'c':
case 'C':

char char_mem;
default:

string string_mem;
};

The corresponding C++ class has an accessor and a modifier member function for
each union member. In addition, there are member functions to control the
discriminator and to deal with initialization and assignment:

class U_var;

class U {
public:

U();
U(const U &);
~U();

U & operator=(const U &);

CORBA::Char _d() const;
void _d(CORBA::Char);

CORBA::Long long_mem() const;
void long_mem(CORBA::Long);
CORBA::Char char_mem() const;
void char_mem(CORBA::Char);
const char * string_mem() const;
void string_mem(char *);
void string_mem(const char *);
void string_mem(const CORBA::String_var &);

typedef U_var _var_type;
};

202 Basic IDL-to-C++ Mapping

As with other IDL generated types, there may be additional member functions
in the class. If there are, these functions are internal to the mapping implementa-
tion and you should pretend they do not exist.5

6.16.1 Union Initialization and Assignment
As with other complex IDL types, a union has a constructor, a copy constructor,
an assignment operator, and a destructor.

U()

The default constructor of a union performs no application-visible initialization of
the class. This means that you must explicitly initialize the union before reading
any of its contents. You are not even allowed to read the discriminator value of a
default-constructed union.

U(const U &)
U & operator=(const U &)

The copy constructor and assignment operator make deep copies, so if a union
contains a string, the string contents are copied appropriately.

~U()

The destructor destroys a union. If the union contains a variable-length member,
the memory for that member is deallocated correctly. Destroying an uninitialized
default-constructed union is safe.

6.16.2 Union Member and Discriminator Access
To activate or assign to a union member, you invoke the corresponding modifier
member function. Assigning to a union member also sets the discriminator value.
You can read the discriminator by calling the_d member function. For example:

U my_u; // 'my_u' is not initialized
my_u.long_mem(99); // Activate long_mem
assert(my_u._d() == 'L'); // Verify discriminator
assert(my_u.long_mem() == 99); // Verify value

5. We delay explanation of the_var_type definition in this class until Section 18.14.1, where we
show an example of its use.

6.16 Mapping for Unions 203

In this example, the union is not initialized after default construction. Calling
the modifier function for the memberlong_mem initializes the union by acti-
vating that member and setting its value. As a side effect, assigning to a member
via the modifier function also sets the discriminator value. The preceding code
tests the discriminator value in an assertion to verify that the union works
correctly. It also reads the value oflong_mem by calling its accessor member
function. Because we just set the value to 99, the accessor must of course return
that value. The code tests this with another assertion.

To change the active member of a union, you can use the modifier for a
different member to assign to that member:

my_u.char_mem('X'); // Activate and assign to char_mem
// Discriminator is now 'c' or 'C', who knows...
my_u._d('C'); // Now it is definitely 'C'

Activating the memberchar_mem sets the discriminator value accordingly. The
problem in this case is that there are two legal discriminator values:'c' and'C' .
Activating the memberchar_mem sets the discriminator to one of these two
values, but you have no way of knowing which one (the choice is implementation-
dependent). The preceding code example explicitly sets the value of the discrimi-
nator to'C' after activating the member.

You cannot set the discriminator value if that would deactivate or activate a
member:

my_u.char_mem('X'); // Activate and assign char_mem
assert(my_u._d() == 'c' || my_u._d() == 'C');
my_u._d('c'); // OK
my_u._d('C'); // OK
my_u._d('X'); // Illegal, would activate string_mem

The preceding example shows that you can set the discriminator only to a value
that is consistent with the currently active union member (the only legal values
here are'c' and'C'). Setting the discriminator value to anything else results in
undefined behavior, and many implementations will deliberately force a core
dump to let you know that your program contains a serious run-time error.

Setting the default member of the union leaves the discriminator in a partially
undefined state:

my_u.string_mem(CORBA::string_dup("Hello"));
// Discriminator value is now anything except 'c', 'C', or 'L'.
assert(my_u._d() != 'c' && my_u._d() != 'C' && my_u._d() != 'L');

204 Basic IDL-to-C++ Mapping

The implementation of the union type picks a discriminator value that is legal
for the default member, but, again, the precise value chosen is implementation-
dependent.

This behavior can be inconvenient, for example during tracing. Suppose you
have trace statements throughout your code that print the discriminator value to
the display at various points. A problem arises if the default member
string_mem is active in the union, because the value of the discriminator can be
any character except'c' , 'C' , and'L' . This makes it entirely possible for the
discriminator to contain non-printable characters, such as a form feed, escape, or
Ctrl-S. Depending on the display you are using, these characters may cause unde-
sirable effects. For example, an escape character can cause the display to clear its
screen or switch into block mode, and a Ctrl-S typically acts as a flow-control
character that suspends output.

In general, thedefault case and multiplecase labels for the same union
member do not assign a definite value to the discriminator of the union. We
recommend that you use these IDL features with caution. Usually, you can
express the desired design in some other way and avoid the potentially awkward
coding issues involved.

The preceding example also illustrates another important point. String
members inside a union behave like aString_var . In particular, the modifier
function for the memberstring_mem is overloaded forconst char * ,
char * , andString_var & . As always, thechar * modifier takes owner-
ship of the assigned string, whereas theconst char * andString_var
modifiers make deep copies:

U my_u;

// Explicit copy
my_u.string_mem(CORBA::string_dup("Hello"));

// Free "Hello", copy "World"
my_u.string_mem((const char *)"World");

CORBA::String_va r s = CORBA::string_dup("Again");
// Free "World", copy "Again"
my_u.string_mem(s);

// Free "Again", activate long_mem
my_u.long_mem(999);

cout << s << endl; // Prints "Again"

6.16 Mapping for Unions 205

For dynamically allocated unions, usenew anddelete :

U * up = new U;
up->string_mem(CORBA::string_dup("Hello"));
// ...
delete up;

On architectures with non-uniform memory management, the ORB generates
class-specific allocation and deallocation operators for the union, so you can still
safely usenew anddelete .

6.16.3 Unions without a default Case
Here is a union that can be used to simulate optional parameters (see page 67):

union AgeOpt switch (boolean) {
case TRUE:

unsigned short age;
};

This union does not have an explicitdefault case but has an implicit default
member when the discriminator isFALSE. If a union has an implicit default
member, the mapping generates an additional_default member function for
the corresponding C++ class:

class AgeOpt_var;

class AgeOpt {
public:

AgeOpt();
AgeOpt(const AgeOpt &);
~AgeOpt();

AgeOpt & operator=(const AgeOpt &);

CORBA::Boolean _d() const;
void _d(CORBA::Boolean);

CORBA::UShort age() const;
void age(CORBA::UShort);

void _default();

typedef AgeOpt_var _var_type;
};

206 Basic IDL-to-C++ Mapping

The mapping follows the normal rules but also adds the_default member
function. (It is a little unfortunate that a unionwithoutadefault case has an extra
member function called_default . You have to get used to this.) The
_default member function activates the implicit default member of the union
and sets the discriminator value accordingly:

AgeOpt my_age;
my_age._default(); // Set discriminator to false

In this case, the only legal default value for the discriminator is0 (which repre-
sents false). Note that the following code is illegal:

AgeOpt my_age;
my_age._d(0); // Illegal!

This code has undefined behavior, because it is illegal to activate a union member
by setting the discriminator. (The non-existent implicit default member of the
union is considered a member.)

Similarly, you cannot reset an initialized union to the default member by
setting the discriminator. You must instead use the_default member function:

AgeOpt my_age;
my_age.age(38); // Sets discriminator to 1
my_age._d(0); // Illegal!!!
my_age._default(); // Much better!

Here is another interesting union, taken from the Trading Service
Specification [21]:

enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyProps) {
case some:

PropertyNameSeq prop_names;
};

This union permits two different discriminator values for the no-value case:none
andall . Suppose you want to initialize the union to set the discriminator value to
none . Again, you must use the_default member function:

SpecifiedProps sp;
sp._default(); // Activate implicit default member

// Discriminator is now none or all
sp._d(none); // Fix discriminator

The call to_default is necessary. Without it, we would attempt to activate the
implicit default member by setting the discriminator, and that is illegal.

6.16 Mapping for Unions 207

6.16.4 Unions Containing Complex Members
If a union contains a member that is of typeany or contains a member that is a
structure, union, sequence, or fixed-point type, the generated class contains three
member functions for each union member instead of the usual two member func-
tions. Consider the following union:

struct Details {
double weight;
long count;

};

typedef sequence<string> TextSeq;

union ShippingInfo switch (long) {
case 0:

Details packaging_info;
default:

TextSeq other_info;
};

This union has two members: one is a structure and the other one is a sequence.
The generated class contains all the member functions we discussed previously
but hasthree member functions for each union member:

class ShippingInfo {
public:

// Other member functions as before...

const Details & packaging_info() const; // Accessor
void packaging_info(const Details &); // Modifier
Details & packaging_info(); // Referent

const TextSeq & other_info() const; // Accessor
void other_info(const TextSeq &); // Modifier
TextSeq & other_info(); // Referent

};

As with simple types, the union contains accessor functions that return the value
of a member. (To avoid unnecessary data copying, accessors for complex types
return the value by constant reference.) Also, as with simple types, each member
has a modifier function that makes a deep copy.

The referent member function returns a non-constant reference to the union
member and exists for efficiency reasons. For large types, such as sequences, it is
inefficient to change a member by calling its accessor followed by its modifier,

208 Basic IDL-to-C++ Mapping

because both functions make deep copies. The referent permits you to modify the
value of a union member in place without copying:

ShippingInfo info = ...; // Assume we have an initialized union...

if (info._d() != 0) { // other_info is active
TextSe q & s = info.other_info(); // get ref to other_info

// We can now modify the sequence while it is
// inside the union without having to copy
// the sequence out of the union and back in again...
for (CORBA::ULon g i = 0; i < s.length(); i++) {

// Modify sequence elements...
}

}

Of course, if you obtain a reference to a union member, that member must
currently be active (otherwise the behavior is undefined). Once you have a refer-
ence to a member, you must take care to use it only for as long as its corre-
sponding member remains active. If you activate a different union member and
use a reference to a previously active member, you are likely to end up with a core
dump.

6.16.5 Rules for Using Unions
Here are some rules for using unions safely.

• Never attempt to access a union member that is inconsistent with the discrimi-
nator value. This is just common sense. Unions are not meant to be used as a
backdoor mechanism for type casts. To safely read the value of a union
member, first check the discriminator value. It is common to check the
discriminator in a switch statement and to process each union member in a
different branch of the switch. Be careful if you obtain a reference to a union
member. The reference stays valid only for as long as its member remains
active.

• Do not assume that union members overlay one another in memory. In C and
C++, you are guaranteed that union members overlay one another in memory.
However, no such guarantee is provided by the C++ mapping for IDL unions.
A compliant ORB may keep all union members active simultaneously, or it
may overlay some union members but not others. This behavior allows the
ORB to intelligently adjust the behavior of a union depending on its member

6.17 Mapping for Recursive Structures and Unions 209

types. (For some member types, keeping them active simultaneously may be
more efficient.)

• Do not make assumptions about when destructors run. The C++ mapping does
not state when members should be destroyed. If you activate a new union
member, the previous member’s destructor may be delayed for efficiency
reasons. (It may be cheaper to delay destruction until the entire union is
destroyed, especially if members occupy only a small amount of memory.)
You should write your code as if each member were destroyed the instant it is
deactivated. In particular, do not expect a union member to retain its value if it
is deactivated and reactivated later.

6.17 Mapping for Recursive Structures and Unions

Consider the following recursive union:

union Link switch (long) {
case 0:

typeA ta;
case 1:

typeB tb;
case 2:

sequence<Link> sc;
};

The union contains a recursive membersc. Assume that you would like to acti-
vate thesc member of this union so thatsc is an empty sequence. As you saw
earlier, the only way to activate a union member is to pass a value of the member’s
type to its accessor. However,sc is of anonymous type, so how can you declare a
variable of that type?

The C++ mapping deals with this problem by generating an additional type
definition into the union class:

class Link {
public:

typedef some_internal_identifier _sc_seq;

// Other members here...
};

The generated class defines the type name_sc_seq to give a name to the
otherwise anonymous sequence type. In general, if a unionu contains a

210 Basic IDL-to-C++ Mapping

membermemof anonymous type, the type ofmemhas the nameu::_mem_seq .
You can use this type name to correctly activate the recursive member of a union:

Link::_sc_seq myseq; // myseq is empty
Link mylink; // uninitialized union
mylink.sc(myseq); // activate sc

The same mapping rule applies to recursive structures. If a structures contains an
anonymous sequence membermem, the type ofmem is s::_mem_seq .

6.18 Mapping for Type Definitions

IDL type definitions map to corresponding type definitions at the C++ level. If a
single IDL type results in multiple C++ types, each C++ type has a corresponding
type definition. Aliasing of type definitions is preserved. If function declarations
are affected by aliasing, a corresponding function using the alias name is defined
(usually as an inline function):

typedef string StrArray[4];
typedef StrArray Address;

This definition maps as follows:

typedef CORBA::String_mgr StrArray[4];
typedef CORBA::String_mgr StrArray_slice;
StrArray_slice * StrArray_alloc();
StrArray_slice * StrArray_dup(const StrArray_slice *);
void StrArray_free(StrArray_slice *);

typedef StrArray Address;
typedef StrArray_slice Address_slice;

Address_slice * Address_alloc()
{ return StrArray_alloc(); }

Address_slice * Address_dup(
const Address_slice * p

) { return StrArray_dup(p); }

void Address_free(Address_slice * p)
{ StrArray_free(p); }

The preceding code looks complicated, but it really means that aliases for types
can be used in exactly the same way as the original type. For example, with the

6.19 User-Defined Types and _var Classes 211

preceding mapping, you can useStrArray andAddress interchangeably in
your code.

6.19 User-Defined Types and _var Classes

As shown earlier in Table 6.2 on page 155, the IDL compiler generates a_var
class for every user-defined structured type. These_var classes serve the same
purpose asString_var ; that is, they take on memory management responsi-
bility for a dynamically allocated instance of the underlying type.

Figure 6.3 shows the general idea of the generated_var class for an IDL
typeT, whereT is a structure, union, or sequence. An instance of a_var class
holds a private pointer to an instance of the underlying type. That instance is
assumed to be dynamically allocated and is deallocated by the destructor when the
_var instance goes out of scope.

The_var class acts as a smart pointer that wraps the underlying type. The
overloaded indirection operator delegates member function calls on the_var
instance to the underlying instance. Consider the following code fragment, which
assumes thatT is a sequence type:

Figure 6.3. _var class for structures, unions, and sequences.

class T_var {
public:

T_var();
T_var(T *);
T_var(const T_var &);
~T();
T_var & operator=(T *);
T_var & operator=(const T_var &);
T * operator->();
cons t T * operator->() const;
// etc...

private:
T * myT;

};

class T { // or struct T
public:

// Public members of T...
};

212 Basic IDL-to-C++ Mapping

{
T_var sv = new T; // T is a sequence, sv assumes ownership
sv->length(1); // operator-> delegates to underlying T
// ...

} // ~T_var() deallocates sequence

This example illustrates that instances of a_var class behave much like ordinary
C++ class instance pointers. The difference is that_var classes also manage
memory for the underlying type.

6.19.1 _var Classes for Structures, Unions, and Sequences
The following code shows the general form of_var classes for structures,
unions, and sequences. (Depending on the exact underlying type, there may be
additional member functions, which we discuss shortly.)

class T_var {
public:

T_var();
T_var(T *);
T_var(const T_var &);
~T_var();

T_var & operator=(T *);
T_var & operator=(const T_var &);

T * operator->();
const T * operator->() const;

operator T &();
operator const T &() const;

TE & operator[](CORBA::ULong); // For sequences
const TE & operator[](CORBA::ULong) const; // For sequences

// Other member functions here...
private:

T * myT;
};

T_var()

The default constructor initializes the internal pointer to the underlying instance to
null. As a result, you cannot use a default-constructed_var instance until after
you have initialized it.

6.19 User-Defined Types and _var Classes 213

T_var(T *)

The pointer constructor assumes that the passed pointer points to a dynamically
allocated instance and takes ownership of the pointer.

T_var(const T_var &)

The copy constructor makes a deep copy of both theT_var and its underlying
instance of typeT. This means that assignment to a copy-constructedT_var
affects only that copy and not the instance it was copied from.

~T_var()

The destructor deallocates the instance pointed to by the internal pointer.

T_var & operator=(T *)

The pointer assignment operator first deallocates the instance of typeT currently
held by the targetT_var and then assumes ownership of the instance pointed to
by its argument.

T_var & operator=(const T_var &)

TheT_var assignment operator first deallocates the instance of typeT currently
held by the targetT_var and then makes a deep assignment of both theT_var
argument and the instance of typeT that the argument points to.

T * operator->()
cons t T * operator->() const

The indirection operator is overloaded to permit its use on both constant and non-
constant instances of the underlying type. It returns a pointer to the underlying
instance. This means that you can use theT_var to invoke any member function
of the underlying type.

operator T &()
const operator T &() const

These conversion operators permit aT_var to be used in places where a constant
or non-constant reference to the underlying type is expected.

214 Basic IDL-to-C++ Mapping

TE & operator[](CORBA::ULong)
const TE & operator[](CORBA::ULong) const

The subscript operators are generated if theT_var represents a sequence or an
array. They permit you to index into a sequence as if theT_var were the actual
sequence or array type. The operators exist for convenience, letting you avoid
awkward expressions such assv->operator[](0) . (In this example, we
assume thatTE is the element type of the sequence.)

6.19.2 Simple Use of _var Classes
Let us consider a simple example of using the_var class for a sequence. The
IDL definition of the sequence is

typedef sequence<string> NameSeq;

This generates two C++ types:NameSeq, which is the actual sequence, and
NameSeq_var , which is the corresponding memory management wrapper. Here
is a code fragment that illustrates use ofNameSeq_var instances:

NameSeq_var ns; // Default constructor
ns = new NameSeq; // ns assumes ownership
ns->length(1); // Create one empty string
ns[0] = CORBA::string_dup("Bjarne"); // Explicit copy

NameSeq_var ns2(ns); // Deep copy constructor
ns2[0] = CORBA::string_dup("Stan"); // Deallocates "Bjarne"

NameSeq_var ns3; // Default constructor
ns3 = ns2; // Deep assignment
ns3[0] = CORBA::string_dup("Andrew"); // Deallocates "Stan"

cout << ns[0] << endl; // Prints "Bjarne";
cout << ns2[0] << endl; // Prints "Stan";
cout << ns3[0] << endl; // Prints "Andrew";

// When ns, ns2, and ns3 go out of scope,
// everything is deallocated cleanly...

As with String_var , the generated_var types are useful mainly to catch
return values for dynamically allocated variable-length types. For example:

extern NameSeq * get_names(); // Returns heap-allocated instance
NameSeq_var nsv = get_names(); // nsv takes ownership
// No need to worry about deallocation from here on...

6.19 User-Defined Types and _var Classes 215

As you will see in Section 7.14, such allocation frequently happens when a
client invokes an IDL operation. Using a_var instance to take ownership means
that you need not constantly remember to deallocate the value at the correct time.

6.19.3 Some Pitfalls of Using _var Classes
Similar caveats apply to generic_var classes as apply toString_var . If you
initialize a_var instance with a pointer or assign a pointer, you need to make
sure that the pointer really points at dynamically allocated memory. Failure to do
so results in disaster:

NameSeq names; // Local sequence
// ... // Initialize sequence
NameSeq_var nsv(&names); // Looming disaster!
NameSeq_var nsv(new NameSeq(names)); // Much better!

After you have assigned a pointer to a_var instance, you must be careful when
dereferencing that pointer:

NameSeq_var famous = new NameSeq;
famous->length(1);
famous[0] = CORBA::string_dup("Bjarne");
NameSeq * fp = famous; // Shallow assignment
NameSeq * ifp;
{

NameSeq_var infamous = new NameSeq;
infamous->length(1);
infamous[0] = CORBA::string_dup("Bill");
ifp = infamous; // Shallow assignment
famous = infamous; // Deep assignment

}
cout << (*fp)[0] << endl; // Whoops, fp points nowhere
cout << (*ifp)[0] << endl; // Whoops, ifp points nowhere

These problems arise because assignment to a_var deallocates the previous
underlying instance and so invalidates a pointer still pointing to that instance.
Similarly, when a_var instance goes out of scope, it deallocates the underlying
instance and invalidates any pointers still pointing at that instance.

In practice, such problems rarely occur because_var classes are used mainly
to avoid memory leaks for return values andout parameters. You will see more
examples of using_var classes in Section 7.14.12.

216 Basic IDL-to-C++ Mapping

6.19.4 Differences Among Fixed- and Variable-Length Structures,
Unions, and Sequences
The generated_var classes vary slightly in their interfaces depending on whether
they wrap a fixed-length or a variable-length type. Normally, these differences are
transparent to you. They exist to hide differences in parameter passing rules for
fixed-length and variable-length types (we discuss this in more detail in
Section 7.14.12).

All _var classes providein , inout , out , and_retn member functions
(with different signatures depending on whether the_var class wraps a variable-
or a fixed-length type). In addition,_var classes for variable-length types have
an extra conversion operator, whereas_var classes for fixed-length types provide
an extra constructor and assignment operator.

Additional T_var Member Functions for Variable-Length Types

In addition to the member functions discussed on page 212, for a variable-length
structure, union, or sequence of typeT, the IDL compiler generates the following:

class T_var {
public:

// Normal member functions here...

// Member functions for variable-length T:
operato r T * &();

const T & in() const;
T & inout();
T * & out();
T * _retn();

};

operato r T * &()

This additional conversion operator allows you to pass a variable-lengthT_var
where a reference to a pointer toT is expected. This operator is used ifT_var
instances for variable-length types are passed asout parameters. We discuss this
in detail in Section 7.14.

cons t T & in() const
T & inout()
T * & out()

6.19 User-Defined Types and _var Classes 217

These member functions allow you to explicitly pass aT_var as anin,
inout, orout parameter instead of relying on default conversions. The functions
are useful mainly if your compiler has defects relating to default conversions. You
can also call these functions explicitly to improve code readability. If you pass a
T_var instance to a function, it may not be immediately obvious whether the
called function will modify the underlying value. By using these member func-
tions, you can improve readability of the code:

StrSeq_var sv = ...;
some_func(sv); // Passed as in, inout, or out?
some_func(sv.out()); // Much clearer...

Theout member function deallocates the underlying instance of typeT as a side
effect to prevent memory leaks if the sameT_var instance is passed to succes-
sive calls:

StrSeq_var sv = ...;
some_func(sv.out()); // Sets sv to heap-allocated instance.
some_func(sv.out()); // Deallocates previous instance, assumes

// ownership of new instance.

T * _retn()

This function returns the pointer to the underlying instance of typeT and also
relinquishes ownership of that pointer. It is useful mainly when you create a
T_var to avoid memory leaks but then must transfer ownership of the underlying
type (see page 168 for an example).

Additional T_var Member Functions for Fixed-Length Types

For aT_var for a fixed-length structure, union, or sequence of typeT, the IDL
compiler generates the following:

class T_var {
public:

// Normal member functions here...

// Member functions for fixed-length T:
T_var(const T &);

T_var & operator=(const T &);
const T & in() const;
T & inout();
T & out();
T _retn();

};

218 Basic IDL-to-C++ Mapping

T_var(const T &)
T & operator=(const T &)

The additional constructor and assignment operator permit you to construct or
assign aT_var from aT.

cons t T & in() const
T & inout()
T & out()
T _retn()

These member functions are provided to deal with defective compilers that cannot
handle default conversions correctly. They also make the direction in which a
parameter is passed explicit at the point of call, something that improves code
readability.

Theout and_retn member functions for fixed-length types donot relin-
quish ownership of the underlying type. They cannot do this because they do not
return a pointer.

6.19.5 _var Types for Arrays
The_var types generated for arrays follow a similar pattern as those for struc-
tures, unions, and sequences. The differences are that_var types for arrays do
not overload the indirection operator (it is not needed for arrays) and that the
return types of some of the member functions are different._var types for arrays
with variable-length and fixed-length elements also have some differences.

Array _var Mapping for Arrays with Variable-Length Elements

It is easiest to illustrate the mapping with an example. Here we define a three-
element array containing variable-length structures:

struct Fraction { // Variable-length structure
double numeric;
string alphabetic;

};
typedef Fraction FractArr[3];

This maps to the following C++ definitions:

struct Fraction {
CORBA::Double numeric;
CORBA::String_mgr alphabetic;

};

6.19 User-Defined Types and _var Classes 219

class Fraction_var {
public:

// As before...
};

typedef Fraction FractArr[3];
typedef Fraction FractArr_slice;

FractArr_slice * FractArr_alloc();
FractArr_slice * FractArr_dup(const FractArr_slice *);
void FractArr_copy(

FractArr_slice * to,
const FractArr_slice * from

);
void FractArr_free(FractArr_slice *);

class FractArr_var {
public:

FractArr_var();
FractArr_var(FractArr_slice *);
FractArr_var(const FractArr_var &);
~FractArr_var();

FractArr_var & operator=(FractArr_slice *);
FractArr_var & operator=(const FractArr_var & rhs);

Fraction & operator[](CORBA::ULong);
const Fraction & operator[](CORBA::ULong) const;

operator FractArr_slice *();
operator const FractArr_slice *() const;
operator FractArr_slice * &();

const FractArr_slice * in() const;
FractArr_slice * inout();
FractArr_slice * & out();
FractArr_slice * _retn();

};

If all this looks a little intimidating, remember that the various member functions
do exactly the same things as for_var types for structures, unions, and
sequences.

• The default constructor initializes the internal pointer to the underlying array
to null.

220 Basic IDL-to-C++ Mapping

• Constructors and assignment operators that accept an argument of type
FractArr_slice * assume that the array was allocated with
FractArr_alloc or FractArr_dup , and they take ownership of the
passed pointer.

• The copy constructor andFractArr_var & assignment operator each
make a deep copy.

• The destructor deallocates the array by callingFractArr_free .

• The subscript operators allow indexing into the array, so you can use a
FractArr_var as if it were the actual array.

• The conversion operators permit passing the array as anin, inout, orout
parameter (see Section 7.14.12).

• The explicit conversion functionsin , inout , andout behave as for struc-
tures, unions, and sequences (see page 216).

• The_retn function permits you to relinquish ownership of the underlying
type (see page 168 for an example).

All this means that you can use an array_var as if it were the actual array; you
just need to remember that an array_var must be initialized with dynamically
allocated memory.

const char * fractions[] = { "1/2", "1/3", "1/4" };

FractArr_var fa1 = FractArr_alloc();
for (CORBA::ULon g i = 0; i < 3; i++) { // Initialize fa1

fa1[i].numeric = 1.0 / (i + 2);
fa1[i].alphabetic = fractions[i]; // Deep copy

}

FractArr_var fa2 = fa1; // Deep copy
fa2[0].alphabetic = CORBA::string_dup("half"); // Explicit copy
fa2[1] = fa2[2]; // Deep assignment

cout.precision(2);
for (CORBA::ULon g i = 0; i < 3; i++) { // Print fa1

cout << "fa1[" << i << "].numeric = "
<< fa1[i].numeric
<< ",\tfa1[" << i << "].alphabetic = "
<< fa1[i].alphabetic << endl;

}
cout << endl;
for (CORBA::ULon g i = 0; i < 3; i++) { // Print fa2

cout << "fa2[" << i << "].numeric = "

6.19 User-Defined Types and _var Classes 221

<< fa2[i].numeric
<< ",\tfa2[" << i << "].alphabetic = "
<< fa2[i].alphabetic << endl;

}

The output of this program is as follows:

fa1[0].numeric = 0.5, fa1[0].alphabetic = 1/2
fa1[1].numeric = 0.33, fa1[1].alphabetic = 1/3
fa1[2].numeric = 0.25, fa1[2].alphabetic = 1/4

fa2[0].numeric = 0.5, fa2[0].alphabetic = half
fa2[1].numeric = 0.25, fa2[1].alphabetic = 1/4
fa2[2].numeric = 0.25, fa2[2].alphabetic = 1/4

Array _var Mapping for Arrays with Fixed-Length Elements

The mapping for_var types for arrays with fixed-length elements is almost iden-
tical to the mapping for_var types for arrays with variable-length elements.
Here we define a three-element array containing fixed-length structures:

struct S { // Fixed-length structure
long l_mem;
char c_mem;

};
typedef S StructArray[3];

The mapping for the correspondingStructArray_var type is as follows:

class StructArray_var {
public:

StructArray_var();
StructArray_var(StructArray_slice *);
StructArray_var(const StructArray_var &);
~StructArray_var();

StructArray_var & operator=(StructArray_slice *);
StructArray_var & operator=(const StructArray_var & rhs);

S & operator[](CORBA::ULong);
const S & operator[](CORBA::ULong) const;

operator StructArray_slice *();
operator const StructArray_slice *() const;

const StructArray_slice * in() const;

222 Basic IDL-to-C++ Mapping

StructArray_slice * inout();
StructArray_slice * out();
StructArray_slice * _retn();

};

The only differences between_var types for arrays with fixed-length and those
for variable-length elements are that for fixed-length elements, theout member
function returns a pointer instead of a reference to a pointer and that no user-
defined conversion operator forStructArray_slice * & is defined. These
differences originate in the different parameter passing rules for variable-length
and fixed-length types. We discuss these rules in detail in Section 7.14.

6.20 Summary

The basic C++ mapping defines how built-in types and user-defined types map to
C++. Although some of the classes generated by the mapping have a large number
of member functions, within a short time you will find yourself using them as you
use any other data type. Even the memory management rules, which may seem
complex right now, soon become second nature. When writing your code, keep in
mind that you should be looking at the IDL definitions and not at the generated
header files. In that way, you avoid getting confused by many internal details and
cryptic work-arounds for different platforms and compilers.

	6.1 Chapter Overview
	6.2 Introduction
	6.3 Mapping for Identifiers
	6.4 Mapping for Modules
	6.5 The CORBA Module
	6.6 Mapping for Basic Types
	6.6.1 64-bit Integer and long�double Types
	6.6.2 Overloading on Basic Types
	6.6.3 Types Mappable to char
	6.6.4 Mapping for wchar
	6.6.5 Boolean Mapping
	6.6.6 String and Wide String Mapping

	6.7 Mapping for Constants
	6.8 Mapping for Enumerated Types
	6.9 Variable-Length Types and _var Types
	6.9.1 Motivation for _var Types
	6.9.2 Memory Management for Variable-Length Types

	6.10 The String_var Wrapper Class
	6.10.1 Pitfalls of Using String_var
	6.10.2 Passing Strings as Parameters for Read Access
	6.10.3 Passing Strings as Parameters for Update Access
	6.10.4 Problems with Implicit Type Conversions
	6.10.5 Yielding Ownership of a String
	6.10.6 Stream Operators

	6.11 Mapping for Wide Strings
	6.12 Mapping for Fixed-Point Types
	6.12.1 Constructors
	6.12.2 Accessors
	6.12.3 Conversion Operators
	6.12.4 Truncation and Rounding
	6.12.5 Arithmetic Operators
	6.12.6 Stream Operators

	6.13 Mapping for Structures
	6.13.1 Mapping for Fixed-Length Structures
	6.13.2 Mapping for Variable-Length Structures
	6.13.3 Memory Management for Structures
	6.13.4 Structures Containing Structure Members

	6.14 Mapping for Sequences
	6.14.1 Mapping for Unbounded Sequences
	6.14.2 Mapping for Bounded Sequences
	6.14.3 Sequence Limitations
	6.14.4 Rules for Using Sequences

	6.15 Mapping for Arrays
	6.16 Mapping for Unions
	6.16.1 Union Initialization and Assignment
	6.16.2 Union Member and Discriminator Access
	6.16.3 Unions without a default Case
	6.16.4 Unions Containing Complex Members
	6.16.5 Rules for Using Unions

	6.17 Mapping for Recursive Structures and Unions
	6.18 Mapping for Type Definitions
	6.19 User-Defined Types and _var Classes
	6.19.1 _var Classes for Structures, Unions, and Sequences
	6.19.2 Simple Use of _var Classes
	6.19.3 Some Pitfalls of Using _var Classes
	6.19.4 Differences Among Fixed- and Variable-Length Structures, Unions, and Sequences
	6.19.5 _var Types for Arrays

	6.20 Summary

