
7.14 Parameter Passing Rules 297

Simple types, enumerated types, and fixed-point types are necessarily absent from
the table._var types are not generated for these types because_var types are
not needed (simple types are always fixed-length, caller-allocated, and passed by
value).

Note that_var types are provided forin parameters even though no memory
management issues arise here. This is both for consistency and to allow a_var
type to be passed transparently when an operation expects the underlying type.

Following is an example that illustrates the advantages. The example uses a
fixed-length and a variable-lengthstruct passed asout parameters, and a string
as the return value. Here is the IDL:

struct Fls {
long l_mem;
double d_mem;

};

struct Vls {
double d_mem;
string s_mem;

};

interface Foo {
string op(out Fls fstruct, out Vls vstruct);

};

Table 7.4. Parameter passing with_var types.

IDL Type in inout/out Return

string const String_var & String_var & String_var

wstring const WString_var & WString_var & WString_var

any const Any_var & Any_var & Any_var

objref const objref _var & objref _var & objref _var

sequence const sequence _var & sequence _var & sequence _var

struct const struct _var & struct _var & struct _var

union const union _var & union _var & union _var

array const array _var & array _var & array _var

298 Client-Side C++ Mapping

If you use the low-level mapping and choose to manage memory yourself, you
must write code such as the following:

Foo_var fv = ...; // Get reference

Fls fstruct; // Note _real_ struct
Vls * vstruct; // Note _pointer_ to struct
char * ret_val;

ret_val = fv->op(fstruct, vstruct);

delete vstruct;
CORBA::string_free(ret_val);

This doesn’t look very bad at first glance, but it contains its share of potential
problems. You must remember to pass a structure as the first parameter and a
pointer to a structure as the second parameter, and you also must remember that
the variable-length structure and the returned string must be deallocated. More-
over, you must remember to use the correct deallocation function. If your code has
any degree of complexity, throws exceptions, and possibly takes early returns out
of functions, you can easily make a mistake that leads to a memory leak or, worse,
causes memory corruption because you deallocated something twice.

The same code using_var types is much simpler:

Foo_var fv = ...; // Get reference

Fls_var fstruct; // Don't care if fixed or variable
Vls_var vstruct; // Ditto
CORBA::String_var ret_val; // To catch return value

ret_val = fv->op(fstruct, vstruct);

// Show some return values
cout << "fstruct.d: " << fstruct->d_mem << endl;
cout << "vstruct.d: " << vstruct->d_mem << endl;
cout << "ret_val: " << ret_val << endl;

// Deallocation (if needed) is taken care of by _var types

The differences in parameter passing rules for the two structures are completely
hidden here. To access the structure members, you use the overloaded
indirection-> operator whether the underlying structure is fixed-length or vari-
able-length. When the three_var types go out of scope,vstruct calls

7.14 Parameter Passing Rules 299

delete , ret_val callsstring_free , andfstruct behaves like a stack-
allocated structure.

Because_var types can also be passed asin andinout parameters, it is easy
to receive a result from one operation and pass that result to another operation.
Consider the following IDL:

interface Foo {
string get();
void modify(inout string s);
void put(in string s);

};

Assume that you are given stringified references to three of these objects and that
you want to get a string from the first object, pass it to the second object for modi-
fication, and then pass the modified string to the third object. Using_var types,
this is trivial:

{
Foo_var fv1 = orb->string_to_object(argv[1]);
Foo_var fv2 = orb->string_to_object(argv[2]);
Foo_var fv3 = orb->string_to_object(argv[3]);

// Test fv1, fv2, and fv3 with CORBA::is_nil() here...

CORBA::String_var s;
s = fv1->get(); // Get string
fv2->modify(s); // Change string
fv3->put(s); // Put string

}
// Everything is deallocated here

You can also use the explicit directional member functions to pass_var parame-
ters, either to get around compiler bugs or to improve the readability of your code:

s = fv1->get(); // Get string
fv2->modify(s.inout()); // Change string
fv3->put(s.in()); // Put string

This code does the same thing as the previous example but makes it explicit in
which direction the parameter is passed.

Note that_var types are useful mainly to ensure thatout parameters and
return values are deallocated correctly. There is no point in using a_var type
purely as anin parameter, because this forces two unnecessary calls to the
memory allocator. It is far better to instead use a stack-allocated variable. Here is
an IDL operation that expects a variable-lengthstruct as anin parameter:

