Another Note on Distributed Computing
July 17th, 2008

A Note on Distributing Computing is among the most widely quoted papers on
distributed computing. While I agree with much of what Jim Waldo et al. wrote,
there is quite a bit I find myself disagreeing with, so here is “Another Note on
Distributed Computing”, to iron out a few misconceptions.

What is right
Here is a quote from the paper:

Programming a distributed application will require the use of different
techniques than those used for non-distributed applications. Programming
a distributed application will require thinking about the problem in a
different way than before it was thought about when the solution was a
non-distributed application.

I could not agree more: I've been preaching for years that, if you go and design
the APIs for a distributed application the same way as for a non-distributed one,
you are likely to fall flat on your face. Waldo et al. cite a number of reasons for
this, among them:

Latency issues cannot be ignored.

Yes, that is absolutely correct. Little surprise when one considers that a remote
invocation is around four orders of magnitude (that’s 10,000 times) slower than
a local invocation.

It is impossible to provide uniform memory access for both local and remote
objects.

Correct. Even if we were to provide a programming model that allows
completely transparent access to local and remote memory at the programming
language level, the different error semantics of local and distributed access
would create non-uniform semantics.

Distributed invocations are subject to partial failure.

Correct, they are. If a server goes down unexpectedly, and the invocations
executing in the server at the time of the failure are not completely stateless, the
system as a whole will be in an indeterminate state, which makes it harder to
recover from a failure on re-start.

Concurrency adds additional failure modes due to indeterminism.

Correct. For example, depending on how operations are invoked by the client
and how they are dispatched in the server, it is possible for sequential
invocations made by a single client to be processed out of order in the server.

Distributed invocations provide a fundamentally different quality of service.

Correct. It is harder to create robust distributed applications than non-
distributed ones. That should not come as a surprise, seeing that there are many
more ways for the former to fail.

What is not so right

So far, | have not actually disagreed with anything, so it’s time to look a bit
deeper...

Waldo et al. write that early distributed systems, such as CORBA, Arjuna,
Emerald, and Clouds strived to provide a seamless view of distributed objects,
such that “there is no essential distinction between objects that share an address
space and objects that are on two machines with different architectures located on
different continents. In such systems, an object, whether local or remote, is defined
in terms of a set of interfaces declared in an interface definition language.”

The authors do not make it clear what they mean by “share an address space”,
and do not further explain what they mean by “local” and “remote”. To talk
meaningfully about this vision of unified objects, we need to be clear about what
kinds of objects there actually are:

* Remotable objects. These are objects that can (but need not) reside in a
different address space. If they do reside in a different address space, they
can be reached only via inter-process communication, such as by sharing
memory or sending messages over the backplane (for same-machine
communication) or over a network (for communication with objects on
other machines). If a remotable object is in the same address space, it
offers the same interface as if it were remote. It just so happens that it can
be reached via a more efficient communication mechanism.

* Local, language-native objects. These are the objects that come built
into the programming language, such as C++ or Java objects. These objects
have nothing to do with distribution.

For remotable objects, the implementation of operations is hidden behind their
interface and, as far as the caller of an operation is concerned, the same API is
used to invoke the operation, regardless of the actual location of the object (local
or remote). However, that API is not necessarily the same as the API for a
language-native object.

The authors go on to say that “The vision is that developers write their
applications so that the objects within the application are joined using the same
programmatic glue as objects between applications.” This suggests that the
authors, when they talk about local objects, actually mean language-native
objects. However, they also say that local objects have an interface declared in an
interface definition language, which suggests collocated remotable objects.

Now, while it is true that systems such as CORBA and Ice indeed strive to make
distributed computing as frictionless as possible and to make a remote operation
as easy to call as a local or language-native one, they do not try to paper over the
difference between language-native objects and remotable objects. It just so
happens that, if an object can be called remotely, it can be called the same way
whether the object happens to be collocated in the same address space or not.

This does not mean that a language-native object can be called the same way as a
remotable one, or vice versa. In particular, in systems such as CORBA and Ice,
remotable objects have a type that differs from the type of any language-native
object, and pointers (or references) to remotable objects cannot be used
interchangeably with language-native ones. In particular, invocations on
remotable objects are made via proxy types (such as Ice’s Prx types), and these
proxy types are not type compatible with a language-native pointer or reference.

Similarly, CORBA never suggested that all objects within an application should
have an IDL interface. In fact, CORBA makes a very clear distinction between
objects that have an IDL interface (and, therefore, can be made remotely
accessible), and objects that do not (and, therefore, are part of the
implementation, not interface, of an application).

In fact, neither CORBA nor Ice ever attempted to provide a unified vision of
objects. Instead, they make it easy to call and implement remotable objects
regardless of whether client and server are collocated or not. This is a far cry
from saying that local and remote objects are the same, or that they can be
treated as if they were the same.

The authors then assert:

Writing a distributed application in this model proceeds in three phases.
The first phase is to write the application without worrying about where
objects are located and how their communication is implemented.

What? Where on earth do they take this from? I cannot recall a single instance
where anyone with even the least shred of credibility claimed such a thing, even
in the dim-distant days of DCOM and CORBA. There is a big difference between
making it easy to call a remote operation, and claiming that, because remote
operations are easy to call, we can ignore object location when we design an
application. If this is how people start out writing their applications, they are
guaranteed to fail, and that fact has been well known and well documented for at
least 15 years.

The second phase is to tune performance by “concretizing” object locations
and communication methods.

No, most definitely not. If | design the interfaces to my application as they say in
phase 1, it is highly unlikely that any amount of performance tuning will save the
day. True, performance tuning is necessary for distributed applications, just as it
is for local ones. But the preceding two phases are tantamount to saying “Write
your application any which way you like, with complete disregard of
distribution, and you can fix things in phase 2.”

To suggest that such an approach could actually work is disingenuous, to say the
least and, again, | am not aware of anyone with any reputation whatsoever
having made such a claim, not now, and not 15 years ago.

The final phase is to test with “real bullets” (e.g., networks being
partitioned, machines going down). Interfaces between carefully selected
objects can be beefed up as necessary to deal with these sorts of partial
failures introduced by distribution by adding replication, transactions, or
whatever else is needed.

This, in all seriousness, suggests that [can succeed in dealing with partial failures
after 1 have designed the application with complete disregard of distribution, and
after 1 have carefully tuned its performance, only to then even start worrying
about partial failure semantics and remedies to them. Clearly, this is utterly
ridiculous—no-one in his right mind would do this.

Now, don’t get me wrong—I don’t for one moment believe that Jim Waldo and
his co-authors actually believe these things. In fact, the second half of their paper
makes it abundantly clear that they do not.

But why do they talk for the first nine of fourteen pages about something that no-
one in his right mind ever believed in the first place, either now, or a long time
ago? And why do they say that CORBA pretended that a distributed application
could be written like a non-distributed one when, to the best of my knowledge,
no-one even half-way competent ever made such a claim? To me, the answer is
that they want to set the stage for the conclusion of the paper. In other words,
the first part of the paper softens the ground for the second part.

Waldo et al. go on to cite NFS as an example of the consequences of ignoring the
distinction between local and distributed computing at the interface level. They
point out that, in a sense, NFS was doomed because it either provides non-
transparent semantics to applications with soft mounts (which causes
applications to fail in unexpected ways), or provides transparent semantics with
hard mounts (which causes applications to hang in unexpected ways). Neither
alternative is palatable because each leads to failures in the distributed case that
simply do not happen in the local case.

They also correctly point out that the problem can be traced to the interface
level: because NFS retained the original Unix system calls for file I/0O, the catch-
22 of NFS is inevitable. But, so what? All this shows is that it is a stupid idea to
build a distributed application as if it were a non-distributed one.

The authors go on to say that

A better approach is to accept that there are irreconcilable differences
between local and distributed computing, and to be conscious of those
differences at all stages of the design and implementation of distributed
applications.

Yes! That is exactly how we should build distributed applications. We cannot
forget—ever—when we are dealing with distribution and when we are not. That
is true regardless of the technology we use for distribution, regardless of the
specific APIs, and regardless of the underlying protocol. The differences are due
to distribution itself, not due to any artifact of design or implementation.

What is wrong

Now we get to the part of the paper where Waldo et al. jump to seriously wrong
conclusions. Let me quote a few key passages.

Rather than trying to merge local and remote objects, engineers need to be
constantly reminded of the differences between the two, and know when it is
appropriate to use each kind of object.

This is a trivial truism, and hardly worth mentioning. Of course engineers need to
know when it is appropriate to use a remote object. In fact, engineers need to
know not only when it is appropriate to use a remote object, they also need to
know when it is appropriate to use any object. That is, engineers must know not
only about the side-effects of remote invocations, they must know about the side
effects of all invocations, whether they are remote or not.

Whenever I call any function or method, I must be aware of the potential
consequences of doing so:

* I must know the performance characteristics of the function—0O(log n),
0(n), 0(n?), or whatever.

* I must know whether the function performs disk I/0, reads user input, or
may attempt to acquire a lock.

* [must know what state the function may leave the system in if something
goes wrong. Does the function provide the strong or weak exception
guarantee? What is the state of its in- and inout-parameters when
something goes wrong?

In fact, just about everything I need to think about for a remote invocation, I also
need to think about for a local invocation:

* Even if everything works perfectly, many local function invocations take a
lot longer than many remote invocations. And many local function
invocations take just as long as a remote invocation for the same data.
(Just think of sorting a large set of values—the performance difference of
the local and remote case is negligible.)

* Alocal invocation can block or take a long time just as much as a remote
invocation can. For example, any invocation that does disk I/O can block
(potentially indefinitely, as Waldo et al. point out themselves). Similarly,
any operation that gets input from a user or attempts to commit a
transaction can block for extended amounts of time. And, of course, any
operation that attempts to acquire locks can block and, depending on the
exact operation, can block for an extended period.

* There are many local APIs that provide neither the strong nor the weak
exception guarantee. For example, most APIs that perform /0 leave the
system in an indeterminate state when something goes wrong during a
write (unless we use transactions). Similarly, almost all libraries I have
ever seen fail in weird ways in the face of memory starvation. If [am
lucky, my process will crash and I'll at least know that something went
badly wrong. But, quite often, the programmer who wrote the code wrote
it with a mind-set of “Memory never runs out.” What happens when
memory does run out is anyone’s guess—it is not unusual for a program
to survive temporary memory starvation, but to leave partially updated
data structures behind that may (or may not) cause the program to fail
later.

The point is that Waldo and his colleagues discuss things such as performance
and partial failure in great detail when, in fact, that discussion is largely
orthogonal to distributed computing. That is because the same issues arise in the
local case as well. Not as frequently maybe, but they do arise and, when they do,
all the same issues come up as for a distributed system.

Note that even what looks like a non-distributed system may turn out to be
distributed. In fact, any program that reads from a (local) disk and writes data
back to that disk is distributed. Not distributed in space, but distributed in time:
if a previous incarnation of the program crashed while it was writing to disk, the
next incarnation of the program has to make sense of the mess that its
predecessor left behind. This is little different from recovering a distributed
system after a crash: either way, one side has to make sense of the mess that was
left by “the other side”.

A compiler for the interface definition language used to specify classes of
objects will need to alter its output based on whether the class definition
being compiled is for a class to be used locally or a class being used
remotely. For interfaces meant for distributed objects, the code produced
might be very much like that generated by RPC stub compilers today. Code
for a local interface, however, could be much simpler, probably requiring
little more than a class definition in the target language.

In other words, the APIs for local and remote objects should be different and
local APIs “could be much simpler, probably requiring little more than a class
definition in the target language”.

This statement is factually incorrect. For one, with a modern platform such as
Ice, if a remotable object is collocated, call dispatch to it is essentially as efficient
as for a language-native call. (If you know that an object will be called only
locally, you can tell the compiler to get rid of unnecessary marshaling and
dispatch code.) Second, with Ice, native APIs cannot be much simpler than
remote ones. That's because remote invocations are already as simple as native
ones, and because implementing an interface already requires little more than a
class definition in the target language. (In defense of the authors, at the time they
wrote their paper, things were not as elegant as they are with Ice today.)

But here is where Waldo et al. really go off the deep end:

While writing code, engineers will have to know whether they are sending
messages to local or remote objects, and access those objects differently.
While this might seem to add to the programming difficulty, it will in fact
aid the programmer by providing a framework under which he or she can
learn what to expect from the different kinds of calls.

Translation:

If we give fundamentally different APIs to local and remote objects, that will help
programmers write better distributed applications.

[am stunned how the authors can possibly arrive at this conclusion, especially in
light of what they so lucidly explain in the first part of their paper. The premises
in no way support the conclusion; there simply is no logical link between them.
The whole argument reads like:

All Greeks have beards. Socrates was a Greek. Therefore, income tax
increases will stimulate the economy.

In fact, the authors themselves explain that much of the difficulty of writing
distributed systems stems from problems that have nothing to do with any
specific API. And yet, somehow, an API for remote calls that differs from the API

for local calls is going to “aid the programmer” and solve all our distributed
computing problems? Hardly.

What gets me is how patronizing (if not insulting) this conclusion is to
programmers. Do Waldo et al. really believe that programmers who write
distributed systems are so naive that they need a different syntax that
“constantly reminds” them when they are making a remote call? That is giving
distributed programmers a lot less credibility than they deserve. (Not to mention
that, as we have seen, programmers must be aware of the consequences of
making any call—whether local or remote—anyway.)

But there is something else that Waldo et al. apparently did not consider. Let us
suppose for a moment that [have what they ask for, and that any remote
invocation has to be enclosed in a remote call function or macro. (Let’s not
quibble about the exact syntax—the point is that there is some syntactic
reminder that a call is remote.) Now I write something like this:

public class Person

{
public void
updateAddress (Address a)
{
_person.remote_call("updateAddress", a);
}
private RemotePerson _person;
/...
}

The caller of this person object can now write:
Person p = new Person();

Address a = new Address();

/...

p-updateAddress(a);

As far as [can see, the authors’ suggestion dies right there: as soon as [make any
remote invocation inside another function or method, that function or method
itself now must be called like a remote function, otherwise the syntactic marker
that is supposed to “remind the programmer” is lost. In other words, the
“remoteness” of invocations is transitive and very quickly permeates a program
at almost all levels. But in turn, that greatly diminishes the already dubious value
of a syntactic marker. Instead, it creates constant overexposure to an
inconvenient syntax without any benefit.

Conclusion

In the introduction to their paper, the authors say that a “unified view of objects is
mistaken”, and then proceed to arrive at the recommendation that “engineers

need to be constantly reminded of the differences” between local and distributed
computing. I do believe that is indeed good to remind engineers of the difference.

And platforms such as Ice do exactly that, but in a way that does not get in the
way of programming. For example, if I want to pass a proxy to a remotable
person object to a function, I have to declare the function as follows:

void doSomethingWithPerson(PersonPrx person);

Because the remotable version of a person has a type PersonPrx, and that type
differs from and is not compatible with any language-native type Person, the
act of passing a remotable object is made explicit, and there can be no doubt as to
what kind of object we are dealing with. That is all the reminder the programmer
needs.

As far as the unified view is concerned, it is not mistaken, at least not for
remotable objects. Whether a remotable object is collocated or not should not
matter at the point of call, and should not matter in the implementation of the
object. Keeping the two the same does not provide a unified view, but location
transparency. And location transparency is important. For example, moving out-
of-process objects in-process is possible only with this transparency. (Anyone
who has ever turned a stand-alone Ice server into an Icebox service will know
how easy this is, and that it intrinsically relies on location transparency.)
Another advantage of location transparency is that programmers do not
constantly have to deal with different syntax and can put their attention where it
is needed, namely on the application semantics.

A unified view is mistaken if it attempts to paper over the difference between
language-native and remotable objects, or tries to pretend that programmers can
treat remote objects the same way as local ones (whether remotable or not). But
neither CORBA nor Ice ever tried to do this, and neither system is unified in that
sense.

Distributed computing is hard enough as is, and Ice does its best to not make it
harder still. But, ultimately, API style has little to do with the real reasons for
why distributed computing is hard. What we need to accept, first and foremost,
is that—regardless of APIs, technologies, whether interactions are synchronous
or asynchronous, and whether we use objects or “services” (whatever those
might be)—distributed computing is hard because it is distributed computing.

As far as A Note on Distributed Computing is concerned, it argues from false
premises and arrives at conclusions that are not supported by these premises. In
fact, the paper is largely irrelevant to modern middleware such as Ice.

Now, does it matter whether I use CORBA, or Ice, or REST, or something else?
You bet it does! But that I will make the topic of other posts...

Cheers,
Michi.

