Choosing Middleware
February 26th, 2009

[have been in the middleware game for fifteen years now and, over these
years, have had contact with many potential customers. A potential
customer, having made the decision to use middleware, is faced with the
question “which one?” In an attempt to exercise due diligence and protect
their investment, the customer typically launches a middleware evaluation
project to find out which middleware “is best.”

Inevitably, one prominent aspect of the evaluation is the well-known
product comparison matrix: a spreadsheet with one column for each
contender and one row for each feature. The cells contain ticks or crosses
depending on whether a particular product does or does not support the
feature.

While such tick lists can be useful, frequently, I found them to be irrelevant
(if not harmful) for two reasons:

* Features that are not required by the customer are irrelevant to the
evaluation and should not even appear on the list.

* The product with the most ticks is useless if it lacks the one critical
feature that would save the customer a lot of time and money.

As an example, from my CORBA days, I remember customers who had dutifully
collected all the headings from the CORBAservices specification and turned them
into rows in their table. Never mind that at least half of all the services had never
been implemented or, if they were implemented, provided no useful
functionality whatsoever. Yet, the absence of a threading model that was critical
to the customer was overlooked, with serious financial consequences. And we
see similar feature tick lists today, when a customer decides whether or not to
use Ice.

It is fairly obvious that what matters is not the number of features, but whether
those features that will shorten development and deployment costs the most are
present. What is less obvious is that more features do not necessarily mean
“better.” For one, more features imply a larger product in terms of code size,
memory requirements, and execution speed, and, as a rule, require a steeper
learning curve. (Ice is the notable exception here—it has a lot of features and is
very careful to not make developers pay for what they do not use.)

Another prominent aspect of middleware evaluation is performance. Being faced
with the question “which middleware?”, the response often is “the one that goes
fastest must be best, right?”

At that point, the customer embarks on lengthy (and expensive) benchmarking
projects that, more often than not, measure completely irrelevant things. Often
this happens because the actual workload that the application will place on the
middleware is completely different, so application performance cannot be
extrapolated from the benchmark. Or it happens because the hardware,

operating system, network, or compiler used for the benchmarks differ in some
detail that happens to have large impact on the results. And ironically, just as
often, it happens because middleware performance is irrelevant to the
application: if the application does not have high performance requirements,
there is no need for high-performance middleware, and the benchmarking
amounts to wasted effort.

This point is important because performance is only one of many evaluation
criteria; there are dozens of other things that should enter the evaluation too.
For example, ease of use of the APIs, quality of the documentation, licensing
conditions, support quality and timeliness, and learning curve (among many
others) are factors that are often side-lined because they are harder to quantify,
even though they may well be far more important to the project than
performance alone.

Having said this, of course there are projects for which performance is
paramount. Typically, these projects don’t just require high performance, they
also require high scalability. After all, it is rare for a small system to need high
performance; more often, the high performance requirement comes from the
need to run dozens or hundreds of servers in a system that has tens of thousands
of concurrent clients.

And here is where the benchmark fallacy may well strike again: a simple
benchmark that shows two different middlewares as having comparable
performance with a handful of clients may be useless because, once the system
has tens of thousands of clients, the performance characteristics can be
completely different. Unless the benchmarks are designed and executed very
carefully, they easily lead to invalid conclusions.

With the preceding caveats in mind, here at ZeroC, we decided to go ahead and
do some benchmarks regardless. The middlewares involved are Ice, WCF, and
RMI. You can find the results in Choosing Middleware: Why Performance and
Scalability do (and do not) Matter. We put a lot of effort into these benchmarks.
The scalability benchmarks in particular tested our patience and ingenuity:
benchmarking a server with a handful of clients is easy—benchmarking a server
with 80,000 clients is a lot harder, and a surprising number of things can go
wrong.

We learned as we went. For example, we had known for quite some time that use
of select to monitor incoming connections does not scale well on Windows.
(No such problem with Linux, where we use epol1.) But it was the benchmark
that demonstrated how serious the situation really was: 2,700 clients was the
best we could do with Ice for C++ on Windows. (Again, no such problem with Ice
for Java and Ice for .NET on Windows, which both scale much better.) Needless to
say, we are doing something about this and Ice 3.4 will not have this scalability
problem with C++ on Windows.

Another lesson we learned was that Java and C# add scalability issues of their
own: as process size and level of activity increase, the cost of garbage collection
becomes much more noticeable; this issue does not show up in a small-scale
benchmark.

And, of course, we found out about the relative performance of Ice, WCF, and
RMI, which you can read about in the paper. While we were at it, we added tips
for how you can design and implement an Ice application to get the best
performance, and we suggest what factors other than performance and
scalability you may want to consider before choosing a particular middleware.
So, the paper is more than just raw benchmark numbers.

As to which middleware you end up settling on, we hope that the information in
the paper will provide some of the many data points you should consider before
you make your final choice. Of course, you may decide that Ice is easy to use, well
supported, provides excellent documentation and APIs, and is the fastest and
most scalable middleware. If you do, please let us know—we appreciate being
told when we do something right

Cheers,
Michi.

