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The Nice Thing about 
Standards…
Recently, another raging debate broke 
out in comp.object.corba about the 
value of standards. The standard in 
question is DDS (which Bernard wrote 
about in Issue 6 of Connections). DDS 
is actually the fifth (yes, fifth) specifi-
cation published by the OMG for event 

distribution (not counting a sixth attempt for a real-time notification 
service that never went anywhere). These specifications are: the 
original event service, the lightweight event service, the notification 
service, the unreliable multi-cast specification, and DDS.

Why so many of these standards, all of which are meant to do 
the same thing, namely, to provide publish-subscribe decoupled 
communications? The answer can be found in history. The original 
event service, published in 1994 (and revised in minor ways in 
2001) turned out to be severely dysfunctional. In particular, its pull 
model makes it pretty much impossible to build robust and scalable 
implementations of the service, and its lack of topic-based event 
distribution requires applications to be aware of the channel topol-
ogy, which creates an administrative and maintenance nightmare. 
And, to top it off, a large part of the specification, namely the typed 
event service, was so under-specified that no-one ever implemented 
it.

The lightweight event service (published in 2004) is essentially 
the same as the event service, but with the problematic pull model 
removed. However, it retains the awkward channel-based distribu-
tion as well as the typed event APIs.

The notification service, first published in 2000 and revised in 
2002, improves on the event service by adding filtering capabilities 
and structured events (in a somewhat clumsy attempt at provid-
ing an alternative to the typed event service). However, despite 
the known problems, the notification service retained both the pull 
model and the typed event APIs. The 2002 revision fixed quite 
a few defects, including a major one, namely, that the original 
specification contained illegal IDL: the specification could not be 
compiled with a conforming IDL compiler and had obviously never 
been fully implemented prior to publication. (One wonders about 
the obvious procedural problems of an international standards orga-
nization that publishes unimplementable standards…)

Another issue with the notification service was that implementa-
tions performed rather poorly: the requirements on filtering and 
quality-of-service imposed by the specification make it essentially 
impossible to create a scalable and high-performance implementa-
tion.

In response to these performance problems, the OMG published 
the unreliable multi-cast specification for event distribution. True, 
multi-cast does indeed perform very well. However, it is pragmati-
cally useless: on LANs under moderate load, many events are lost; 
on WANs, even more events are lost (disregarding the fact that 
most routers will not forward multi-cast packets anyway, meaning 
that all events are lost).

The latest incarnation of the OMG’s event distribution service, 
DDS, is supposed to address these problems. Whether it will 
remains to be seen. What we do know is that the specification re-
quires several hundred lines of IDL definitions, and that implemen-
tations from different vendors do not interoperate until the DDS 
interoperability specification is finally published and implemented.

In the mean time, OMG customers get to choose among five 
specifications that, respectively, do not scale and have poor per-
formance, lose a prohibitively large number of events, or do not 
interoperate. I’m reminded of Andy Tanenbaum’s famous quote 
about standards: “The nice thing about standards is that there are so 
many to choose from.”

Michi Henning 
Chief Scientist
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Dynamic Ice, Part 1
Mark Spruiell, Senior Software Engineer

Dynamic Ice, Part 1: Efficient Request Forwarding
Some Ice features don’t normally attract much attention, as is the 
case with the “Dynamic Ice” APIs. What we call Dynamic Ice is 
really a collection of related APIs that allows you to manipulate 
data in the Ice encoding format as well as handle Ice requests with-
out knowledge of the operation’s parameters. Most applications 
don’t need these capabilities, but when you do need it, you really 
need it. The APIs can be separated into two categories:

•	 streaming
•	 untyped invocation and dispatch

The streaming API encodes the values of Slice types into a 
sequence of bytes, and vice versa. The untyped invocation and 
dispatch API makes it possible to send and receive Ice requests 
in a generic fashion. These two APIs can be used independently 
of one another. For example, the streaming API might come in 
handy when you need to store a persistent representation of a Slice 
type in a database, and the untyped invocation and dispatch API is 
extremely useful for event distribution and routing applications. Of 
course, you can also combine the APIs, which is exactly how the 
Ice extensions for Python and PHP work.

We’ll explore the streaming API in a future article. For now, 
let’s focus on the functionality provided by untyped invocation and 
dispatch.

The Man Behind the Curtain
If you’ve ever peeked at the generated code produced by your Slice 
definitions, you’d know that a lot of work is being done behind 
the scenes whenever you invoke an operation on a proxy. Your 
application code appears to be making a simple function call, and 
of course our goal is to make distributed object computing with Ice 
as familiar as possible. In response to a proxy invocation, however, 
the generated code for the operation encodes the parameters in 
their proper order and hands this data off to the Ice run time, which 
prepares and sends a request message in the format defined by the 
Ice protocol.

A request message consists of header information, such as the 
object identity and the operation name, followed by a block of 
data containing the parameters as encoded by the generated code. 
Similarly, a reply message contains the encoded form of the output 
parameters and return value, which the generated code knows how 
to interpret.

You can think of the generated code as a typed wrapper around 
the untyped Ice core: the core treats the request and reply data as 
arbitrary sequences of bytes. The core doesn’t care what’s con-
tained in these “blobs” of bytes, its only responsibility is to deliver 
them safely and efficiently. The information in the message header 
enables the core to process these messages without needing to 
examine their operation-specific payloads.

A Bit of History
Early on in Ice’s development, the need for a secure connection 
concentrator became readily apparent. The program would serve 
as the front-end for a collection of servers, accepting connections 
from hundreds or thousands of clients and forwarding their re-
quests over a single connection to each back-end server. Thus, the 
Glacier router was born, the predecessor to our current Glacier2 
service.

Just like a network router device, the Glacier router’s duty was 
to forward messages to their intended destinations as quickly as 
possible. To that end, the router needed the ability to forward a 
message without decoding and re-encoding it. Not only would this 
have a severe impact on its throughput, but it would also require 
application-specific knowledge. That is, the router would need 
to know the parameter signature of each operation, and therefore 
would need to be updated each time a Slice definition changed. 
This requirement would impose other limitations as well, such as 
the inability to support multiple versions of an application simulta-
neously.

Fortunately, the Ice encoding makes it possible to forward mes-
sages without wasting precious time decoding and re-encoding 
them. (See Michi’s editorial for information on another distributed 
computing technology that cannot make this claim.) The API that 
allowed Glacier, and later IceStorm, to perform this task was pres-
ent in early Ice releases but remained undocumented for some time 
while we evaluated its usability.

Introducing the Blobject
Blobject is the name of the Ice superclass for a special kind of 
servant that intercepts the normal request dispatching process. In 
a regular servant, which derives from the generated class corre-
sponding to a Slice interface, the untyped message is interpreted 
by the inner workings of the generated code and transformed into 
a method call on the implementation class. A Blobject servant 
skips this step and exposes the untyped message via the  ice_
invoke method:

Dynamic Ice, Part 1
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// C++ 
namespace Ice 
{ 
class Blobject : virtual public Object 
{ 
public: 
	 virtual bool 
	 ice_invoke( 
		  const vector<Byte>& inParams, 
		  vector<Byte>& results, 
		  const Current& curr) = 0; 
}; 
};

As you can see, the input parameters are provided as a blob, 
and the operation's results are expected in the same form. If the 
servant needed to interpret the input parameters or manually 
construct the results, it would use the aforementioned streaming 
API, but of course the servant must know exactly how each blob 
is structured. A general purpose request-forwarding application 
typically considers these blobs to be opaque.

It’s important to understand that all of the requests received by 
this servant are passed to ice_invoke. The last argument, having 
the type Ice::Current, provides a wealth of information about 
the request, including the identity of the target object and the name 
of the operation. A Blobject servant generally uses the members 
of Ice::Current to determine how it should process the request.

The ice_invoke method is expected to return true if the re-
quest succeeded. In the case of a user exception, the method must 
return false and supply the encoded exception in results. The meth-
od may also throw subclasses of RequestFailedException, 
such as ObjectNotExistException.

Since Blobject derives from Object, you can use a 
Blobject servant anywhere a regular servant is accepted. For 
example, you can populate an object adapter’s active servant 
map with a combination of  Blobject and regular servants; the 
adapter does not distinguish between them. More often though, a 
Blobject servant is used as a default servant in conjunction with 
a servant locator, enabling a single servant to process the requests 
of any number of target objects.

Matchmaker
We’ll use an object registry service to demonstrate the implementa-
tion of a Blobject servant. The service enables peers that reside 
behind firewalls to advertise and locate objects. Some peers will 
act as servers and register their objects with the service, while 
others will obtain proxies for those objects and invoke requests on 
them. The registry is acting as a forwarding service, blissfully un-
aware of the interfaces supported by the advertised objects as well 
as the contents of the messages it is passing along. To circumvent 
firewall restrictions, the peers that advertise objects must establish 
bidirectional connections to the registry so that requests targeted 
at their objects can be forwarded back to them. Figure 1 shows the 
relationship between the registry and the peers.

The Slice interface for our registry is quite simple:

// Slice 
#include <Ice/Identity.ice> 
 
module Demo 
{ 
interface Registry 
{ 
	 void add(Ice::Identity id); 
	 void remove(Ice::Identity id); 
	 Object* locate(Ice::Identity id); 
}; 
};

A peer invokes add to inform the registry that an object with the 
given identity is available and can be reached via the peer’s bidi-
rectional connection with the registry. When the object is no longer 
available, the peer must call remove to notify the registry. Finally, 
peers use locate to find registered objects. The locate opera-
tion returns a nil proxy if no match was found; otherwise, the peer 
can downcast the returned proxy to the appropriate interface and 
invoke operations on it as usual. The proxy returned by locate 
actually refers to our Blobject servant, which transparently for-
wards the request to its intended recipient and returns the results.

The complete source code for the registry service is available as 
a separate download.

Initial Design
We know we want to use a Blobject servant in the registry, but 
there are several approaches we could take. For example, we could 
add a new servant to the object adapter’s active servant map for 
each object in the registry. This one-to-one relationship between 
objects and servants is easy to understand and implement, and 
would work fine as long as the number of active objects doesn’t 
grow very large. However, we can create a more scalable design 
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Figure 1: Matchmaker
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without much additional effort by using a default servant and a 
servant locator.

The plan is to add our registry servant to the active servant map 
and install a servant locator. Invocations directed at the registry’s 
identity will be handled by the registry servant; invocations on 
all other identities result in a query to the servant locator, which 
always returns our Blobject servant to handle the requests.

The Blobject servant will need to maintain a map that as-
sociates identities with proxies. In each call to ice_invoke, 
the servant must access the map to obtain the proxy it can use to 
forward the message. The operations on the Registry interface 
represent manipulations of this map, so our implementation of the 
registry interface will simply delegate to the Blobject servant, as 
illustrated by the class diagram in Figure 2.

Figure 2: Class Diagram

Registry Servant
To reinforce the relationship shown in Figure 2, let’s begin our 
examination of the sample application with the registry servant. It’s 
little more than a wrapper around the Blobject servant:

// C++ 
class RegistryI : public Demo::Registry 
{ 
public: 
	 RegistryI(const BlobjectIPtr& blobject) 
		  : _blobject(blobject) {} 
 
	 virtual void 
	 add(const Identity& id, const Current& curr) 
	 { 
		  _blobject->add(id, curr.con); 
	 } 
 
	 virtual void 
	 remove(const Identity& id, const Current&) 
	 { 
		  _blobject->remove(id); 
	 } 
 
	 virtual ObjectPrx 
	 locate(const Identity& id, const Current&) 
	 { 

		  return _blobject->locate(id); 
	 } 
 
private: 
	 BlobjectIPtr _blobject; 
};

Notice that the implementation of add passes a member of 
Current to the Blobject in addition to the identity. The con 
member represents the incoming connection from the peer to the 
registry service.

The peer must configure its connection to our service for bidi-
rectional use, which allows the registry to forward requests over 
the incoming connection. In the absence of a bidirectional connec-
tion, the registry would need to be able to establish a new connec-
tion to the peer in order to deliver a request. If that was possible, 
the need for a separate forwarding service is greatly reduced, since 
it means peers could communicate directly with one another. For 
the sake of discussion, we’ll assume that firewalls prevent peers 
from establishing direct connections to each other, and therefore 
bidirectional connections are a necessity.

Blobject Servant
Now that we understand the relationship between the registry ser-
vant and the Blobject servant, we can move on to the Blobject 
implementation:

// C++ 
class BlobjectI : public Blobject, public Mutex 
{ 
public: 
	 BlobjectI(const ObjectAdapterPtr&); 
 
	 virtual bool 
	 ice_invoke( 
		  const vector<Ice::Byte>& inParams, 
		  vector<Ice::Byte>& results, 
		  const Current& curr); 
 
	 void 
	 add(const Identity& id, 
		  const ConnectionPtr& conn); 
	 void 
	 remove(const Identity& id); 
	 ObjectPrx 
	 locate(const Identity& id); 
 
private: 
	 ObjectAdapterPtr _adapter; 
	 map<Identity, ObjectPrx> _objects; 
}; 
typedef Handle<BlobjectI> BlobjectIPtr;

The class derives from both Blobject and IceUtil::Mutex; the 
latter is necessary so that we can safely access the map from mul-
tiple threads. For the convenience of our registry servant, we’ve 
used the IceUtil::Handle template to define a smart pointer for 
our Blobject implementation class.

Dynamic Ice, Part 1
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Administrative Tasks
The add, remove and locate methods in our servant correspond 
directly to the administrative operations of the Registry inter-
face. Let’s examine those first, then we’ll proceed to ice_invoke.

In the implementation of add, we acquire a lock and then check 
to see if the map already contains an entry for the given identity. 
If so, we remove it, and then add a new association between the 
identity and a proxy. As previously discussed, the registry servant 
supplies the Connection object so that add can create a proxy 
that uses the peer’s bidirectional connection.

// C++ 
void 
BlobjectI::add( 
	 const Identity& id, const ConnectionPtr& conn) 
{ 
	 Lock lock(*this); 
	 map<Identity, ObjectPrx>::iterator p = 
		  _objects.find(id); 
	 if(p != _objects.end()) 
	 { 
		  _objects.erase(p); 
	 } 
	 _objects[id] = conn->createProxy(id); 
}

Figure 3 shows the map that add updates as each object is an-
nounced. In the diagram, Peer 1 hosts the objects O1 and O2, while 
Peer 2 hosts the objects O3 and O4. The proxies P1 through P4 
were created by the bidirectional connections from Peer 1 and Peer 
2 and are stored in the map using the object identities as keys.

The implication with all bidirectional connections is that they 
can only be used as long as the connection remains active. For 
this reason, we must disable active connection management in our 
peers to prevent idle connections from being automatically closed 
by the Ice run time.

The remove method simply disassociates the identity from a 
proxy:

// C++ 
void 
BlobjectI::remove(const Identity& id) 
{ 
	 Lock lock(*this); 
	 map<Identity, ObjectPrx>::iterator p = 
		  _objects.find(id); 
	 if(p != _objects.end()) 
	 { 
		  _objects.erase(p); 
	 } 
}

The locate method looks so simple that its importance might be 
overlooked. The caller of the equivalent registry operation expects 
to receive a proxy that will enable it to invoke operations on the 
desired target object. It would be tempting to return the proxy that 

we find in the map, but that is not the correct proxy. This proxy 
was created in the add method to allow the servant to communi-
cate with the target object, but a remote peer could not use this 
proxy. In fact, the Ice run time would raise an exception if we tried 
to return that proxy because it can only be used in the address 
space of the registry service and thus cannot be marshaled. (Refer 
to the Ice manual for more information on the semantics of proxies 
created by bidirectional connections.)

The correct proxy needs to contain the endpoints of the 
Blobject servant’s object adapter so that all invocations on the 
proxy are sent to our servant. Therefore, we invoke createProxy 
on the object adapter and pass the target identity:

ObjectPrx 
BlobjectI::locate(const Identity& id) 
{ 
	 Lock lock(*this); 
	 map<Identity, ObjectPrx>::iterator p = 
		  _objects.find(id); 
	 if(p != _objects.end()) 
	 { 
		  return _adapter->createProxy(id); 
	 } 
	 return 0; 
}

Implementing ice_invoke
Now that we’ve covered the administrative duties of our service, 
let’s discuss ice_invoke. To minimize the amount of time we 
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Figure 3: Adding an item to the registry

Matchmaker

Bidir
Connection

Peer 1

O1 O2

map<Identity,ObjectPrx>

O1 -> P1 O2 -> P2 O3 -> P3 O4 -> P4

Connection

P1 P2

Bidir
Connection

Peer 2

O3 O4

Connection

P3 P4



Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 11, February 2006 Page �Issue 11, February 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 11, February 2006 Connections
ZeroC’s Newsletter for the Ice Community

hold the lock, we obtain the proxy for the target object in a nested 
block. Assuming a match was found, we first ensure that we are 
using the appropriate facet name, and then we forward the request. 
Finally, if no match was found for the target identity, ice_invoke 
raises ObjectNotExistException.

// C++ 
bool 
BlobjectI::ice_invoke( 
	 const vector<Byte>& inParams, 
	 vector<Byte>& results, const Current& curr) 
{ 
	 ObjectPrx proxy; 
 
	 { 
		  Lock lock(*this); 
		  map<Identity, ObjectPrx>::iterator p = 
			   _objects.find(curr.id); 
		  if(p != _objects.end()) 
		  { 
			   proxy = p->second; 
		  } 
	 } 
 
	 if(proxy) 
	 { 
		  if(!curr.facet.empty()) 
		  { 
			   proxy = proxy->ice_newFacet( 
				    curr.facet); 
		  } 
		  // forward request here ... 
		  return ...; 

	 } 
	 ObjectNotExistException ex( 
		  __FILE__, __LINE__); 
	 ex.id = curr.id; 
	 ex.facet = curr.facet; 
	 ex.operation = curr.operation; 
	 throw ex; 
}

Forwarding a Request
Before we can write the line of code that’s incomplete in ice_
invoke shown above, we need to discuss the API for forwarding a 
request. The base proxy class (ObjectPrx) defines a method, not 
coincidentally named ice_invoke, that allows us to do just that:

// C++ 
bool ice_invoke( 
	 const string& name, 
	 OperationMode mode, 
	 const vector<Byte>& inParams, 
	 vector<Byte>& results);

The return value of this method has the same semantics as in 
Blobject: a value of true indicates success, whereas false indi-
cates the occurrence of a user exception.

We have all of the data we need in our servant to complete this 
request, so the complete line of code becomes the following:

// C++ 
return proxy->ice_invoke( 
	 curr.operation, curr.mode, inParams, results, 

curr.ctx);

The operation's name, mode and context 
are obtained from the servant's Current 
argument. The return value of the proxy’s 
ice_invoke method becomes the return 
value of the servant’s ice_invoke 
method. User exceptions are handled 
automatically, and local exceptions such 
as OperationNotExistException pass 
unhindered back to the caller.

Figure 4 shows a request as it travels 
from one peer to another via the registry 
service. Peer 3 has used locate to obtain 
a proxy for the object O1. When Peer 3 
invokes an operation using the proxy, the 
request is delivered to our Blobject ser-
vant as a call to ice_invoke. The servant 
retrieves the proxy P1 from its map; this 
proxy corresponds to the identity O1 of 
the target object. Next, the servant calls 
ice_invoke on proxy P1, forwarding the 
request over the bidirectional connection 
to Peer 1 and returning the results to Peer 
3.

Dynamic Ice, Part 1

Figure 4: Request from Peer 3 to Peer 1
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Core Operations
All Ice objects support a few core operations:

•	 string ice_id()
•	 StringSeq ice_ids()
•	 bool ice_isA(string id)
•	 void ice_ping()

These operations are described in the Ice manual, but they need to 
be mentioned because a Blobject servant might encounter them. 
As mentioned earlier, a Blobject receives all operations invoked 
on the object, including these core operations. A regular servant 
derived from a generated class normally ignores these operations 
because their implementations are provided by a base class, but 
that is not the case with Blobject. You must decide whether these 
operations are relevant for your application and respond appro-
priately. In the case of the registry service, these operations are 
forwarded to the target object just like all other operations. Under 
different circumstances, an entirely different response might be 
necessary.

For example, the IceStorm publish-subscribe service supports N-
to-N relationships between publishers and subscribers. It would not 
make sense for IceStorm to forward operations such as ice_id, 
ice_ids and ice_isA to subscribers, for a number of reasons. 
First, there may not be any subscribers at the time the operation 
is invoked. Or there might be several subscribers, each of which 
might return a different response to the same request, so selecting 
one at random would not provide a meaningful answer. Finally, 
IceStorm only forwards oneway requests, so all of the core opera-
tions except ice_ping are ineligible anyway.

In other cases, the forwarding service might be able to respond 
on behalf of the target object without needing to consult it directly.

Lastly, you might decide not to support these operations at all, 
in which case you should consider raising an exception such as 
OperationNotExistException in order to notify the caller. Be 
aware that eliminating support for ice_isA means that clients of 
your service cannot use checked casts to narrow their proxies.

Registry Server
The implementation of the servant locator is so trivial that I will 
refer you to the accompanying source archive for the (meager) de-
tails. However, the main program for the registry service is worth 
a brief look. We’ll use the Service helper class, which makes it 
easy to run our server as a Windows service or Unix daemon (see 
my article in issue 10 issue of Connections for more information 
on this class). Here’s the class definition:

// C++ 
class RegistryService : public Service 
{ 
public: 
	 RegistryService(); 

 
protected: 
	 virtual bool start(int, char*[]); 
};

The start method is where our server does all of its initialization 
work:

// C++ 
bool 
RegistryService::start(int, char*[]) 
{ 
	 ObjectAdapterPtr adapter = communicator()-> 
		  createObjectAdapter(“Registry”); 
 
	 BlobjectIPtr blobj = new BlobjectI(adapter); 
	 RegistryPtr registry = new RegistryI(blobj); 
	 adapter->add(registry, 
		  stringToIdentity(“registry”)); 
	 ServantLocatorPtr locator = 
		  new LocatorI(blobj); 
 
	 adapter->addServantLocator(locator, “”); 
	 adapter->activate(); 
 
	 return true; 
}

After creating the object adapter and the Blobject servant, we 
add our registry servant to the active servant map. Next we create 
and register the servant locator; using an empty string as its cat-
egory marks it as the default servant locator.

Notice that our registry servant and the servant locator are 
installed on the same object adapter. Given the rules by which an 
adapter searches for a servant in response to a request, an invoca-
tion on the identity registry will always be directed to our registry 
servant. The implication is that a peer must never attempt to regis-
ter that identity.

There are a couple of things we could do about this situation. 
One possibility is to choose an identity for the registry servant 
that is less likely to conflict with a peer’s. Or we could create two 
object adapters, one to host the registry servant and one for the ser-
vant locator and Blobject servant. The disadvantage of creating 
another object adapter is that it adds another endpoint that peers 
must be able to reach. For our purposes, we can accept the need for 
a single “reserved” identity.

For the sake of completeness, here’s our main function, which 
simply instantiates the service and blocks until terminated:

// C++ 
int 
main(int argc, char* argv[]) 
{ 
	 RegistryService service; 
	 return service.main(argc, argv); 
}

Dynamic Ice, Part 1
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Sample Peer
Our registry service is able to forward invocations on Ice objects 
of any type, so let’s create a simple peer to exercise the Blobject 
servant. We’ll use a variation of our classic hello demo as the Slice 
interface for our application:

// Slice 
module Demo 
{ 
interface Hello 
{ 
	 void sayHello(string from); 
}; 
};

Our implementation of the Hello interface does what you’d 
expect:

// C++ 
class HelloI : public Hello 
{ 
public: 
 
	 virtual void 
	 sayHello(const string& from, 
		  const Current&) 
	 { 
		  cout << from << “ says hello.” << endl; 
	 } 
};

We use the Application helper class to simplify our peer:

// C++ 
class Client : public Application 
{ 
public: 
	 virtual int run(int, char*[]); 
};

Finally, the notable parts of the run method are shown below. You 
can find the complete source code in the corresponding source 
archive for this article.

The peer accepts two command-line arguments. The first argu-
ment is the identity of the Ice object hosted by the peer. The op-
tional second argument is the identity of another object that we’ll 
locate and, if found, invoke sayHello on it.

// C++ 
int 
Client::run(int argc, char* argv[]) 
{ 
	 string name = argv[1]; 
	 string peer; 
	 if(argc > 2) 
	 { 
		  peer = argv[2]; 
	 } 
}

Next, we create an object adapter and activate our servant:

// C++ 
ObjectAdapterPtr adapter = communicator()-> 
	 createObjectAdapterWithEndpoints( 
		  “Client”, “tcp”); 
Identity ident = stringToIdentity(name); 
adapter->add(new HelloI, ident); 
adapter->activate();

We're ready to use the registry, so we set up the bidirectional con-
nection and invoke add on the registry to announce our object:

// C++ 
RegistryPrx registry = ...; 
registry->ice_connection()->	setAdapter(adapter); 
registry->add(ident);

It's important to establish the bidirectional connection before call-
ing add, as we have shown above. Doing it in the opposite order 
would leave open an (admittedly small) window of opportunity for 
another peer to locate our object and attempt to invoke an opera-
tion on it before the bidirectional connection was properly estab-
lished, resulting in an exception.

If the identity of a peer was supplied on the command line, we 
try to locate the object using the registry and then pass our own 
name to sayHello:

// C++ 
if(!peer.empty()) 
{ 
	 ObjectPrx peerProxy = 
	 registry->locate(stringToIdentity(peer)); 
	 if(peerProxy) 
	 { 
		  HelloPrx hello = 
			   HelloPrx::checkedCast(peerProxy); 
		  hello->sayHello(name); 
	 } 
	 else 
	 { 
		  cerr << appName() << “: no peer found" 
		  <<  " matching `” << peer << “’” << endl; 
		  return EXIT_FAILURE; 
	 } 
}

Instructions for running the sample application are provided in a 
README file in the source archive.

Threading Issues
In its current form, the registry service suffers from a few prob-
lems. With a default configuration, the service uses the thread pool 
concurrency model with a single thread in each of the client and 
server thread pools. As a result, the service would deadlock while 
forwarding the first request. To understand the reason for the hang, 
you need to be familiar with the responsibilities of the two thread 
pools.

Dynamic Ice, Part 1
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The client thread pool is responsible for all messages received 
from an outgoing connection. This normally consists of process-
ing replies to outstanding requests, but it also includes dispatching 
incoming requests if the connection is configured for bidirectional 
use.

Similarly, the server thread pool handles incoming connections, 
dispatching requests to servants but also processing replies to out-
going requests sent on a bidirectional connection.

Now let’s review the sequence of events that causes the service 
to hang:

1. a request arrives for a target object
2. the request is received by the (only) thread in the server thread 

pool
3. that same thread forwards the request on the bidirectional 

connection to the target object
4. the target object completes the operation and returns the reply
5. the service hangs because the reply is not processed; the 

server thread pool is responsible for processing this reply, but 
its only thread is blocked waiting for the outgoing request to 
complete.

We could avoid this situation by increasing the maximum size of 
the server thread pool in the service, and that might be sufficient in 
a carefully controlled environment. However, when the maximum 
number of simultaneous peers is unknown, you must either set 
the maximum size of the thread pool to be so large that, if it ever 
actually reached that size, the service might run out of resources, 
or you must set the maximum size to a reasonably large value 
and hope that it never grows that large. To prevent a deadlock, we 
must ensure that there is always at least one thread available in the 
server thread pool to process replies.

A second problem is the way in which the service is forwarding 
requests. As we saw in the sequence of events leading up to the 
deadlock, a thread from the server thread pool is blocked while the 
forwarded request completes. Not only is this a waste of a scarce 
resource, but it also makes the service vulnerable to misbehaving 
or malicious peers. For example, suppose that the target object 
becomes blocked in its implementation, caused by a program-
ming error or a conflict while attempting to acquire some resource. 
The service’s thread is now blocked indefinitely. If several peers 
attempt to invoke requests on this object, the number of available 
threads in the server thread pool will shrink rapidly and could 
eventually result in the same deadlock we experienced before.

It was exactly these types of problems that prompted the addi-
tion of the thread-per-connection concurrency model. The Glacier 
router needed to be robust in the face of such challenges, and 
the thread-per-connection model helps in this regard. Using this 
model, a new thread is dedicated to each incoming and outgo-
ing connection. Although it’s less scalable than a thread pool, 
the thread-per-connection model is preferable for this particular 
application because it isolates each peer from the activities of other 

peers, thereby eliminating the possibility of resource starvation.

We can change our registry service to use the thread-per-con-
nection model instead of thread pool with a simple change to its 
configuration properties. We have now avoided a potential dead-
lock, as long as a peer does not attempt to invoke an operation 
on one of its own objects. If a peer did try to call one of its own 
objects via the service, the service’s thread associated with the 
peer’s connection would deadlock in a sequence of events similar 
to that described above. To remedy this limitation, we’ll need some 
new tools.

Asynchronous Blobject
Our threading issues primarily revolve around the fact that our 
Blobject servant forwards its requests using synchronous nested 
invocations, blocking the thread until the nested invocation com-
pletes. We can improve this situation by using the asynchronous 
API for untyped invocation and dispatch.

A different superclass, BlobjectAsync, enables a Blobject 
servant to receive requests with asynchronous semantics. The class 
definition is shown below:

// C++ 
class BlobjectAsync : virtual public Object 
{ 
public: 
 
	 virtual void ice_invoke_async( 
		  const AMD_Object_ice_invokePtr& callback, 
		  const vector<Byte>& inParams, 
		  const Current& curr) = 0; 
};

Like any asynchronous method dispatch (AMD) operation, the  
ice_invoke_async method receives an AMD callback object, 
the input parameters (as a blob), and the Current argument. For 
the Ice run time to consider the request complete, the implemen-
tation is required to invoke one of the methods on the callback 
object, at which point a reply message is sent back to the caller. 
Note that the Ice run time does not require the request to complete 
before ice_invoke_async returns. For example, the implemen-
tation of ice_invoke_async could store the request information 
in a queue that is processed by a separate worker thread. As the 
thread finishes each task, it invokes the stored callback object to 
complete the request and send the reply.

As you might expect, the base proxy class ObjectPrx provides 
an equivalent method for sending untyped invocations asynchro-
nously:

// C++ 
void ice_invoke_async( 
	 const AMI_Object_ice_invokePtr& callback, 
	 const string& operation, 
	 OperationMode mode, 
	 const vector<Byte>& inParams, 
	 const Context& ctx);

Dynamic Ice, Part 1
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The asynchronous method invocation (AMI) operation ice_
invoke_async expects the caller to supply a callback object 
in addition to the other information comprising the request. The 
callback object must be a subclass of AMI_Object_ice_invoke, 
shown below:

// C++ 
class AMI_Object_ice_invoke : public ... 
{ 
public: 
 
	 virtual void 
	 ice_response(bool ok, 
		  const vector<Ice::Byte>& results) = 0; 
	 virtual void 
	 ice_exception(const Exception& ex) = 0; 
};

The Ice run time invokes ice_response if the request completes 
successfully, or if a user exception occurred. The boolean argument 
has the value true for success and false for a user exception. The 
results argument supplies the encoded data.

In the case of an exception such as 
ObjectNotExistException, the Ice run time calls ice_
exception and passes the exception instance.

Request Chaining
The definition of our Blobject servant requires only minor 
changes to use the asynchronous API. We change its superclass 
from Blobject to BlobjectAsync, its name from BlobjectI to 
BlobjectAsyncI, and replace ice_invoke with ice_invoke_
async:

// C++ 
class BlobjectAsyncI : 
	 public BlobjectAsync, public Mutex 
{ 
public: 
	 // ... 
	 virtual void 
	 ice_invoke_async( 
		  const AMD_Object_ice_invokePtr& cb, 
		  const vector<Ice::Byte>& inParams, 
		  const Current& curr); 
	 // ...

The changes to the servant's implementation are more interest-
ing. The servant receives an AMD callback object, but we cannot 
invoke it until the forwarded request completes. Furthermore, 
we have to supply a callback object to the proxy method ice_
invoke_async when forwarding the request. Our solution is to 
store the AMD callback object in the AMI callback object. Here’s 
the definition of our AMI callback:

// C++ 
class AsyncCallback : public AMI_Object_ice_invoke 
{ 
public: 

 
	 AsyncCallback( 
		  const AMD_Object_ice_invokePtr& cb) 
		  : _cb(cb) {} 
 
	 virtual void 
	 ice_response(bool ok, 
		  const vector<Byte>& results) 
	 { 
		  _cb->ice_response(ok, results); 
	 } 
 
	 virtual void 
	 ice_exception(const Exception& ex) 
	 { 
		  _cb->ice_exception(ex); 
	 } 
 
private: 
 
	 AMD_Object_ice_invokePtr _cb; 
};

As you can see, the callback is fairly simple. The ice_response 
and ice_exception methods delegate to the AMD callback ob-
ject. We call this technique “request chaining.” If you stop to think 
about it, this solution makes perfect sense: the AMI callback object 
knows when the forwarded request completes, so it is the most 
logical entity to complete the AMD request.

Now we’re ready to discuss the new ice_invoke_async meth-
od. You’ll notice that it looks largely the same as its synchronous 
version, but there are subtle differences. After obtaining the correct 
proxy, the method creates an AMI callback object, passing the 
AMD callback object to its constructor to save for later use. Next, 
the method forwards the request by calling ice_invoke_async 
on the proxy, and lets the AMI callback object notify the AMD 
callback object when the request completes. Figure 5 shows these 
interactions as a request is forwarded using the asynchronous APIs.

The return statement following the call to ice_invoke_
async is important so that we don’t fall through to the code that 
raises ObjectNotExistException. In this case, the exception 
isn’t actually raised, but rather returned to the caller via the AMD 
callback object. (We did this for demonstration purposes; the Ice 
run time also allows you to raise these exceptions directly.)

void 
BlobjectAsyncI::ice_invoke_async( 
	 const AMD_Object_ice_invokePtr& amdCallback, 
	 const vector<Byte>& inParams, 
	 const Current& curr) 
{ 
	 ObjectPrx proxy; 
 
	 { 
		  Lock lock(*this); 
		  map<Identity, ObjectPrx>::iterator p = 
			   _objects.find(curr.id); 
		  if(p != _objects.end()) 
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	 { 
			   proxy = p->second; 
		  } 
	 } 
 
	 if(proxy) 
	 { 
		  if(!curr.facet.empty()) 
		  { 
			   proxy = proxy->ice_newFacet( 
				    curr.facet); 
		  } 
		  AMI_Object_ice_invokePtr amiCallback = 
			   new AsyncCallback(amdCallback); 
		  proxy->ice_invoke_async( 
			   amiCallback, curr.operation, 
			   curr.mode, inParams, curr.ctx); 
		  return; 
	 } 
 
	 ObjectNotExistException ex( 
		  __FILE__, __LINE__); 
	 ex.id = curr.id; 
	 ex.facet = curr.facet; 
	 ex.operation = curr.operation; 
	 amdCallback->ice_exception(ex); 
}

That's all there is to it. The combination of thread-per-connection 

and asynchronous request chaining makes our registry service 
much more robust. Admittedly, we have increased the complexity 
of the implementation somewhat, but the effort was worthwhile.

For another example of using asynchronous APIs and request 
chaining, see issue 4 of Connections.

Future Directions
There are several ways you could extend the registry service to add 
more functionality.

One possibility is a store-and-forward feature: if a request ar-
rives for an object that is registered but not currently active, the 
service could save the header information and parameter blob until 
the object becomes available. Realistically, this feature would need 
to be implemented using the asynchronous API. Callers must also 
be prepared to wait for a response if the object is inactive.

Security is another area for potential improvement. At pres-
ent, any peer can request a proxy for any registered object. More 
restrictions might be necessary in a real-world situation.

Finally, it might be useful to have other ways to search for an 
object of interest. An efficient solution is to change the add opera-
tion to accept metadata that describes the object and add an opera-
tion that queries this metadata for one (or more) matching objects.

Dynamic Ice, Part 1
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Freeze Indexes
Matthew Newhook, Senior Software Engineer

The previous article in this series showed how to use Freeze maps 
with the introduction of a user registry service. This article demon-
strates the use of Freeze indexes and ranged searches in both Java 
and C++.

What is an Index?
An index allows the application to do an efficient lookup by a 
value other than a Freeze dictionary’s primary key. The initial 
implementation of the user manager in Issue 7 of Connections used 
a Freeze index to do a reverse lookup of the username to the user 
proxy. I recommend that you review this article before continuing. 
The primary need for an index is efficiency: it is possible to imple-
ment the queries supported by an index without it, but it is very 
inefficient because it requires a linear search of all the database 
records, whereas an index performs lookups in O(log n) time.

Imagine that you want to implement a query to find all inactive 
users—that is all users who have not logged into the chat server 
for some period of time. To implement this, we must record a time 
stamp when a user logs into the chat server. Where does this time 
stamp belong? We could place it into the user record that is main-
tained by the user manager. However, if we do this, to implement 
the query, we must contact all user managers and then consolidate 
the query results returned by each manager. To avoid this, we can 
put the time stamp into the user registry. Let’s first review the user 
registry interface:

// Slice 
interface UserRegistry 
{ 
	 void add(string name, User* proxy) 
		  throws UserExistException; 
	 void remove(string name) 
		  throws UserNotExistException; 
	 nonmutating User* find(string name); 
 
	 void checkConsistency(); 
};

The user registry maintains a Freeze map called 
StringUserPrxDict that maps a user name to a user proxy. 
Since we will now also maintain a time stamp, we’ll define a struct 
as follows:

// Slice 
struct UserInfo 
{ 
	 User* proxy; 
	 string username;  
	 long lastLoginTime; 
};

The lastLoginTime member is the time in seconds since Janu-
ary 1, 1970 UTC. We’ve also added a field for the user name 
because callers frequently need this information; adding the field 
avoids the need for an additional RPC. The Freeze map now maps 
a user name to a UserInfo.

FreezeScript Transformation
First, we’ll write a database transformation using FreezeScript so 
that we can transform the old database to the new Slice format.

We have changed a Freeze map of string–User* pairs to a 
Freeze map of string–UserInfo pairs. The proxy field of the 
UserInfo will contain the value field of the old map. What 
about the username and lastLoginTime field? Clearly we can-
not compute a meaningful value for lastLoginTime, since this 
information was not previously stored. Therefore, we’ll initialize 
this field to 0 (which is the default value that FreezeScript assigns 
to a long).

How about the username field? Can’t we use the map key for 
this? As the implementation currently stands, we can because the 
unaltered user name is used as the database key. However, this is 
actually a bug in the previous implementation: it allows two user 
names to differ only in case, which should not be permitted. As 
such, we’ll fix this bug in the code and proceed in this section as if 
the bug did not exist.

The user name can only be looked up via a call on the user ob-
ject, which is not possible during a transform. Therefore, we need 
to write code to fill in the username field. When is a good time 
to run this code? With the current implementation, the best time 
is during a database consistency check: if the username field is 
empty, we’ll fill in the value. After an administrator runs the data-
base transform and restarts the chat server, a database consistency 
check should be run immediately. The code change to the consis-
tency check is as follows:

// C++ 
StringUserInfoDict::iterator p = dict.begin(); 
while(p != dict.end()) 
{ 
	 try 
	 { 
		  if(p->second.username.empty()) 
		  { 
			   UserProfile profile = 
				    p->second.proxy->getProfile(); 
			   UserInfo info = p->second; 
			   info.username = profile.userId; 
			   p.set(info); 
		  } 
		  else 
		  { 
			   p->second.proxy->ice_ping(); 
		  } 
	 } 
	 catch(const ObjectNotExistException&) 
	 { 

Freeze Indexes
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		  dict.erase(p++); 
		  continue; 
	 } 
	 catch(const Exception&) 
	 { 
		  // Ignore 
	 } 
	 ++p; 
}

Ok, now the transform itself. This is done as follows:

// FreezeScript XML 
<transformdb> 
  <database key="string" 
   value="::Chat::User*,::Chat::UserInfo"> 
    <record> 
      <set target="newvalue.proxy" 
       value="oldvalue"/> 
    </record> 
  </database> 
</transformdb>

The database element says that they map key is a string and 
does not change. The old map value is a ::Chat::User* and the 
new map value is a ::Chat::UserInfo. The record element 
defines several variables, including newvalue (the new database 
value) and oldvalue (the old database value). As described 
above, we want to assign oldvalue to the proxy field.

Ok, now let’s test this. First start the chat server demo from 
Issue 10. Start the chat server, add two users foo and foo2, and then 
terminate the server. Now dump the contents of the old database. 
These instructions assume that the current working directory is the 
demo for this article, and that the old demo resides in ../chat.old.

may$ dumpdb -I. --load ../chat.old/UserRegistry.ic 
e --key string --value ::Chat::User* ../chat.old/d 
b/node/servers/UserRegistry/dbs/UserRegistry userr 
egistry 
Key: 'foo' 
Value: ::Chat::User*("user/c0:a8:1:68:3526cf:108fb 
0e7532:-7fff" -t @ UserManager.UserManager.UserMan 
ager) 
Key: 'foo2' 
Value: ::Chat::User*("user/c0:a8:1:68:3526cf:108fb 
0e7532:-7ffe" -t @ UserManager.UserManager.UserMan 
ager)

 As you can see, there are two records in the database: foo and 
foo2. Next, start the icegridnode and use icegridadmin to 
deploy the chat server—this creates the correct directory structure 
in the db directory. Once this is done, shut down the server and 
transform the database. The FreezeScript XML is contained in a 
file called migrate.xml.

may$ transformdb --include-old ../chat.old --old  
../chat.old/UserRegistry.ice --include-new . --new  
UserRegistry.ice -f migrate.xml ../chat.old/db/nod 
e/servers/UserRegistry/dbs/UserRegistry userregist 
ry db/node/servers/UserRegistry/dbs/UserRegistry 

warning: unable to transform from ::Chat::User* to 
::Chat::UserInfo 
warning: unable to transform from ::Chat::User* to 
::Chat::UserInfo

Now dump the contents of the new database

may$ dumpdb -I. --load UserRegistry.ice --key stri 
ng --value ::Chat::UserInfo db/node/servers/UserRe 
gistry/dbs/UserRegistry userregistry 
Key: 'foo' 
Value: struct ::Chat::UserInfo 
{ 
    proxy = ::Chat::User*("user/c0:a8:1:68:3526cf: 
108fb0e7532:-7fff" -t @ UserManager.UserManager.Us 
erManager) 
    username = '' 
    lastLoginTime = long(0) 
} 
Key: 'foo2' 
Value: struct ::Chat::UserInfo 
{ 
    proxy = ::Chat::User*("user/c0:a8:1:68:3526cf: 
108fb0e7532:-7ffe" -t @ UserManager.UserManager.Us 
erManager) 
    username = '' 
    lastLoginTime = long(0) 
}

Great! That’s exactly what should be there. Next, copy the old user 
manager database environment (this doesn’t need a transform) into 
the new database directory for the user manager.

may$ cp ../chat.old/db/node/servers/UserManager/db 
s/UserManager/* db/node/servers/UserManager/dbs/Us 
erManager

Start the chat server, and run a consistency check. This can be done 
with the admin tool.

may$ ./admin 
commands 
add <user> <password 
password <user> <password 
delete <user> 
findInactive 
findByRange t1 t2 
check 
quit 
==> check 
checking user registry consistency... ok! 
checking user manager consistency.... ok! 
==> quit

Now dump the database contents again:

may$ dumpdb -I. --load UserRegistry.ice --key stri 
ng --value ::Chat::UserInfo db/node/servers/UserRe 
gistry/dbs/UserRegistry userregistry 
Key: 'foo' 
Value: struct ::Chat::UserInfo 
{ 

Freeze Indexes
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    proxy = ::Chat::User*("user/c0:a8:1:68:3526cf: 
108fb0e7532:-7fff" -t @ UserManager.UserManager.Us 
erManager) 
    username = 'foo' 
    lastLoginTime = long(0) 
} 
Key: 'foo2' 
Value: struct ::Chat::UserInfo 
{ 
    proxy = ::Chat::User*("user/c0:a8:1:68:3526cf: 
108fb0e7532:-7ffe" -t @ UserManager.UserManager.Us 
erManager) 
    username = 'foo2' 
    lastLoginTime = long(0) 
}

As you can see, the username field has been correctly filled in.

C++ Freeze Indexes
For the C++ version, we need to change the slice2freeze com-
mand as follows:

slice2freeze –I. –I<slice-dir> --dict Chat::String 
UserInfoDict,string,Chat::UserInfo StringUserInfoD 
ict UserRegistry.ice

Now we’ll add a new method to notify the user registry that a user 
has logged in.

// Slice 
sequence<UserInfo> UserInfoSeq; 
interface UserRegistry 
{ 
	 // … 
	 User* login(string user); 
};

The implementation without error checking and deadlock recovery 
is as follows:

// C++ 
UserPrx 
UserRegistryI::login(const string& username, const 
Current&) 
{ 
	 ConnectionPtr connection = 
		  createConnection(_communicator, _name); 
	 StringUserInfoDict dict( 
		  connection, "userregistry"); 
	 StringUserInfoDict::iterator p = 
		  dict.find(username); 
	 if(p != dict.end()) 
	 { 
		  UserInfo info = p->second; 
		  info.lastLoginTime = 
			   Time::now().toSeconds(); 
		  p.set(info); 
		  return p->second.proxy; 
	 } 
	 return 0; 
}

Next, we need to add a method to find all inactive users. We can 
do this by adding a method that does a ranged search returning all 
values that fall between two login times.

// Slice 
sequence<UserInfo> UserInfoSeq; 
interface UserRegistry 
{ 
	 // … 
	 nonmutating UserInfoSeq findByRange( 
		  long t1, long t2); 
};

Now how can we implement this? Without an index, we would 
have to use something like the following (once again, without error 
checking or deadlock recovery):

// C++ 
UserInfoSeq 
UserRegistryI::findByRange( 
	 Long lowerBound, Long upperBound, 
	 const Current&) const 
{ 
	 ConnectionPtr connection = 
		  createConnection(_communicator, _name); 
	 StringUserInfoDict dict( 
		  connection, "userregistry"); 
	 UserInfoSeq l; 
	 StringUserInfoDict::const_iterator p; 
	 for(p = dict.begin(); p != dict.end(); ++p) 
	 { 
		  if(p->second.lastLoginTime >= lowerBound&& 
			   p->second.lastLoginTime < upperBound)  
		  { 
			   l.push_back(p->second); 
		  } 
	 } 
	 return l; 
}

This implementation is very inefficient because it iterates over all 
records in the database. With a Freeze index, we can make this far 
more efficient. To generate the index, we must pass the –-dict-
index option to slice2freeze as follows:

--dict-index Chat::StringUserInfoDict,lastLoginTi
me

The –-dict-index option extends the implementation of the 
Freeze map by adding the following member functions to the 
generated class:

// C++ 
iterator findByLastLoginTime(Long, bool = true); 
iterator lowerBoundForLastLoginTime(Long); 
iterator upperBoundForLastLoginTime(Long); 
std::pair<iterator, iterator> 
equalRangeForLastLoginTime(Long); 
int lastLoginTimeCount(Long) const;

In addition, slice2freeze adds const versions of the first 
four functions. These methods match the find, upper_bound, 
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lower_bound, equal_range and count methods defined by the 
C++ standard for an associative collection. In a nutshell, they work 
as follows:

•	findByLastLoginTime returns an iterator to the first ele-
ment in the map that matches the parameter value. If the bool-
ean parameter is false, you get an iterator to the first element 
in the map that matches the parameter value; if the parameter 
is true, the returned iterator will only return those elements 
that match the parameter. (This boolean is only present for 
backwards compatibility purposes, and I recommend that you 
use equalRangeForLastLoginTime instead.)

•	lowerBoundForLastLoginTime returns an iterator to the 
first element in the map that has a value greater than or equal 
to the given parameter value.

•	upperBoundForLastLoginTime returns an iterator to the 
first element in the map with a key greater than the parameter 
value.

•	equalRangeForLastLoginTime returns a pair of iterators. 
The first points to the first element in the map that contains 
the given parameter value, and the second to the element just 
after the last element that contains the parameter value.

•	lastLoginTimeCount returns the number of elements that 
match the given parameter.

For our lastLoginTime use case, the findByLastLoginTime, 
equalRangeForLastLoginTime and lastLoginTimeCount 
are not very useful methods because searching for a precise time-
stamp is uncommon. The default collation order used by an index 
is based on the Ice binary encoding (and sorting by binary little-en-
dian encoding of an Ice::Long is not very meaningful). We need 
the data sorted by the actual lastLoginTime value, which we can 
do as follows:

--dict-index Chat::StringUserInfoDict,lastLoginTi
me,sort

The third argument specifies a sort function. By default, the 
comparator used for sorting is std::less<MEMBER_TYPE>. If we 
want a map to be sorted in most-recently-logged-in order instead, 
we can use:

--dict-index Chat::StringUserInfoDict,lastLoginTim
e,sort,std::greater<long>

For our use case we want the map in least-recently-logged-in order, 
so this is just what we need.

With that out of the way, findInactive can be implemented as 
follows (once again, no error checking or deadlock recovery):

// C++ 
UserInfoSeq 
UserRegistryI::findByRange( 
	 Long lowerBound, Long upperBound, 
	 const Current&) const 
{ 
	 ConnectionPtr connection = 

		  createConnection(_communicator, _name); 
	 StringUserInfoDict dict( 
		  connection, "userregistry"); 
	 UserInfoSeq l; 
	 StringUserInfoDict::const_iterator q = 
	  dict.upperBoundForlastLoginTime(upperBound); 
	 StringUserInfoDict::const_iterator p; 
	 for(p = dict.lowerBoundForlastLoginTime( 
			   lowerBound); p != q; ++p) 
	 { 
		  l.push_back(p->second); 
	 } 
	 return l; 
}

This is much more efficient because the sorting and ordering is 
done by the database, meaning that only the records of interest are 
extracted.

To find all inactive users in C++, the method could be called as 
follows:

// C++ 
UserRegistryPrx registry = …; 
// 30 days ago 
const Long upperBound = 
	 (Time::now() - Time::seconds( 
		  60 * 60 * 24 * 30)).toSeconds(); 
UserInfoSeq user = registry->findByRange( 
	 0, upperBound);

To make the findByRange method somewhat more tolerant of 
user error, we’ll ensure that the lower bound is less than the upper 
bound and swap if necessary. (Without the swap, findByRange 
would fail if lowerBound >= upperBound.)

// C++ 
UserInfoSeq 
UserRegistryI::findByRange( 
	 Long lowerBound, Long upperBound, 
	 const Current&) const 
{ 
	 // … 
	 if(lowerBound != upperBound) 
	 { 
		  // 
		  // Swap the values if necessary. 
		  // 
		  if(upperBound < lowerBound) 
		  { 
		      Long tmp = upperBound; 
		      upperBound = lowerBound; 
		      lowerBound = tmp; 
		  } 
	 } 
	 // … 
}

Freeze Indexes
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Java Freeze Indexes
As with C++, the Java Freeze implementation is also based on the 
Java standard API. For Freeze indexes, we make use of the java.
util.SortedMap interface.

The first step is to set up the slice2freezej command in 
the build.xml ant file. As before, we have a dictionary named 
StringUserInfoDict that uses a string key and UserInfo 
value. The dictionary has an associated index using the 
lastLoginTime member of the dictionary’s value type.

// Ant XML 
<slice2freezej casesensitive="on" 
outputdir="${generated.dir}"> 
  <includepath> 
    <pathelement path="."/> 
    <pathelement path="${slice.dir}"/> 
  </includepath> 
  <fileset dir="." includes="UserRegistry.ice"/> 
  <dict name="Chat.StringUserInfoDict" 
   key="string" value="::Chat::UserInfo"/> 
  <dictindex name="Chat.StringUserInfoDict" 
   member="lastLoginTime"/> 
</slice2freezej>

The dictindex element adds the following methods to the gener-
ated code:

public Freeze.Map.Iterator 
	 findByLastLoginTime(long);  
public int lastLoginTimeCount(long);

•	findByLastLoginTime returns an iterator to the first ele-
ment in the map that matches the given parameter value.

•	lastLoginTimeCount returns a count of elements that 
match the given parameter value.

Unlike the C++ version, the sort order for the index must be 
provided by the implementation, not through an option to the 
slice2freezej compiler. This is accomplished through a map 
that associates the index name to a java.util.Comparator. For 
our implementation, this is done as follows:

// Java 
java.util.Map indexComparators = 
	 new java.util.HashMap(); 
final java.util.Comparator less = 
new java.util.Comparator() 
{ 
	 public int compare(Object o1, Object o2) 
	 { 
		  if(o1 == o2) 
		  { 
			   return 0; 
		  } 
		  else if(o1 == null) 
		  { 
			   return -((Comparable)o2). 
				    compareTo(o1); 
		  } 

		  else 
		  { 
			   return ((Comparable)o1).compareTo(o2); 
		  } 
	 } 
}; 
indexComparators.put("lastLoginTime", less);

When we create the Freeze map, we pass the comparator map as a 
parameter:

// Java 
Freeze.Connection connection = 
	 Freeze.Util.createConnection( 
		  _communicator, _name); 
StringUserInfoDict dict = 
	 new StringUserInfoDict(connection, 
		  "userregistry", true, null, 
		  indexComparators);

It is possible to add or remove a comparator, but you must not 
change the semantics of a comparator. For example, you cannot 
change the above less-than comparator to have greater-than seman-
tics—if you do, you will suffer the consequences!

The Java Freeze map implements the java.util.SortedMap 
interface, the details of which can be viewed at http://java.sun.
com/j2se/1.4.2/docs/api/java/util/SortedMap.html. In addition, the 
Freeze map defines a number of non-standard methods.

// Java 
public SortedMap mapForIndex(String indexName);

This returns a SortedMap that uses the sort order as defined by the 
corresponding comparator in the comparators map passed to the 
constructor of the Freeze map.  

// Java 
public java.util.SortedMap 
headMapForIndex(String indexName, Object toKey); 
public java.util.SortedMap 
tailMapForIndex(String indexName, Object fromKey); 
public java.util.SortedMap 
subMapForIndex(String indexName, Object fromKey, 
	 Object toKey);

Each of these methods has the same semantics as headMap, 
tailMap, and subMap as described in the SortedMap documenta-
tion, except that the sort order is determined by the comparator for 
indexName.

There is an important difference in the Java API compared to the 
C++ API: with the C++ API, the iterators returned by the vari-
ous index methods iterate on the main map, with an order defined 
by the sort order of the index—therefore, duplicate index values 
present no difficulty.In contrast, the Java API returns a totally 
new map. This map uses the index value as the key, meaning 
that for a single key there may be multiple values. Therefore, the 
SortedMap maps an index value to a java.util.Set of java.
util.Map.Entry, each java.util.Map.Entry being an entry 
contained in the main map.

Freeze Indexes
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Next, let’s examine the implementation of the findByRange 
method. (Once again, we omit the error checking and deadlock 
recovery code.)

// Java 
public UserInfo[] 
findByRange(long lowerBound, long upperBound, 
			   Current current) 
{ 
	 List l = new ArrayList(); 
	 if(lowerBound != upperBound) 
	 { 
		  // 
		  // Swap the values if necessary. 
		  // 
		  if(upperBound < lowerBound) 
		  { 
			   long tmp = upperBound; 
			   upperBound = lowerBound; 
			   lowerBound = tmp; 
		  } 
		  Freeze.Connection connection = 
			   Freeze.Util.createConnection( 
				    _communicator, _name); 
		  StringUserInfoDict dict = 
			   new StringUserInfoDict( 
				    connection, "userregistry", true, 
				    null, _indexComparators); 
		  SortedMap sm = dict.subMapForIndex( 
			    "lastLoginTime", 
			    new Long(lowerBound), 
			    new Long(upperBound)); 
		  Iterator p = sm.values().iterator(); 
		  while(p.hasNext()) 
		  { 
			   Set values = (Set)p.next(); 
			   Iterator q = values.iterator(); 
			   while(q.hasNext()) 
			   { 
				    Map.Entry entry = 
					     (Map.Entry)q.next(); 
				    l.add((UserInfo)entry.getValue()); 
			   } 
		  } 
		  connection.close(); 
	 } 
	 return (UserInfo[])l.toArray(new UserInfo[0]); 
}

This implementation uses the subMapForIndex method to return 
a java.util.SortedMap that contains the elements in the range 
lowerBound to upperBound.

Note that when opening a connection or a database with Freeze 
for Java, it is very important to close the database and connection 
when done with it. If you do not do this, they will not be released 
until the garbage collector runs, thus keeping resources open far 
longer than necessary. Note that the code above only closes the 
connection since closing the connection closes all associated dic-
tionaries.

The complete implementation in Java can be seen in the source 
distribution accompanying the newsletter.

There you have it! I hope the article makes the new index sorting 
facilities introduced in Ice 3.0 clearer. If you have any questions 
please ask on the forums and we’ll do our best to help you.
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FAQ Corner

In each issue of our newsletter, we present a few frequently-asked 
questions about Ice. The questions and answers are taken from our 
support forum at http://www.zeroc.com/vbulletin/ and deal with 
specific problems that developers tend to encounter, and for which 
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this 
section useful.

Q: Why do I not get concurrent invocations in a 
server?

By default, the Ice server-side run time uses a thread pool to dis-
patch incoming requests. The number of requests that can execute 
concurrently in a server is limited to the number of threads in the 
pool. If more clients attempt to concurrently call operations than 
there are threads in the pool, the corresponding requests are not 
dispatched until a currently executing invocation completes and 
returns its thread to the pool; that thread then picks up the next 
pending request.

By default, the server-side thread pool has a size of one, mean-
ing that only one operation can execute in the server at a time. If 
you don’t see concurrent invocations in a server, it is likely that 
the server is running with a thread pool containing only a single 
thread, thereby serializing all incoming invocations.

The size of the server-side thread pool is controlled by a number 
of properties:

•	 Ice.ThreadPool.Server.Size
•	 Ice.ThreadPool.Server.SizeMax
•	 Ice.ThreadPool.Server.SizeWarn

The Ice.ThreadPool.Server.Size property controls the num-
ber of threads in the pool. When you create a communicator, the 
specified number of threads are created and added to the pool; the 
size of the pool never drops below this number of threads.

The Ice.ThreadPool.Server.SizeMax property has a 
default value that equals the size of the thread pool. However, 
you can set this property to a value that is larger than Ice.
ThreadPool.Server.Size. If you do, the server-side run time 
will allow the thread pool to grow in size up to this value if enough 
requests arrive concurrently. The run time also dynamically shrinks 
the thread pool back to its initial size as demand on threads is 
reduced (with some hysteresis to avoid continuously creating and 
destroying threads).

Finally, the Ice.ThreadPool.Server.SizeWarn property 
sets a threshold. If the number of threads in use exceeds this value, 
the run time emits a warning via the communicator’s logger. The 
default value of this property is 80% of the value specified by 
Ice.ThreadPool.Server.SizeMax.

Q: Why do I not get concurrent replies to 
asynchronous invocations?

Just as there is a server-side thread pool, there is a correspond-
ing client-side thread pool. The client-side thread pool is used to 
dispatch replies to asynchronous invocations (AMI) and to process 
requests received via bidirectional connections.

Like the server-side pool, the client-side pool has a default size 
of one. If your client sends several asynchronous invocations and 
you expect to receive replies to these invocations concurrently but, 
in reality, all the replies are serialized, it is likely that the client-
side thread pool is at its default size of one.

The size of the client-side thread pool is controlled by the 
properties Ice.ThreadPool.Client.Size, Ice.ThreadPool.
Client.SizeMax, and Ice.ThreadPool.Client.SizeWarn. 
The defaults and meaning of these properties is analogous to the 
ones for the server-side pool.
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