
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �4, May 2006

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 14, May 2006

Next generation grid
computing
Grid computing is important, and it’s
here to stay. Without the ability to
compose super computers from grids
of cheap, ubiquitous hardware, solving
many of the problems posed by the
scientific community is simply too ex-
pensive and impractical. For example,

the distributed.net project cracked RC5-64 after �,757 days and
58,747,597,657 work units in 2002. Over the course of the project,
33�,252 individuals participated and tested a total of �5,769,938,
�65,96�,326,592 keys. Doing this type of computation on a single
host is clearly infeasible.

Over the past couple of months, I’ve been evaluating various
grid computing products. In general, they all work the same way.
The user writes a job description, which identifies the executable,
constraints (operating system, architecture, disk space, memory,
etc), and associated input and output data. The user then submits
the job to the grid and allows it to handle the details of selecting a
free node, running the job, and retrieving the results.

By no means is this worthless. Without the grid software, users
would have to do all of these steps themselves, which would be
quite time consuming and frustrating. Furthermore, scheduling and
allocating resources among multiple users is virtually impossible
without a central authority. This type of grid computing platform
is ideal for any application where the data can be easily subdivided
among multiple workers, and the workers can work independently
on their piece of the puzzle. However, this subset of problems is
quite limiting, since there are many other types of problems that
cannot be so easily decomposed, or that consist of a long work-flow
where the data must be processed in several steps, or problems such
as simulations where the results of one part of the simulation can
potentially affect all other parts.

Solving these problems requires grids composed of interacting
services. In my opinion, products that enable the construction of
such grids must contain the following features: discovery, deploy-
ment, security, administration, data management, fault tolerance
and scheduling. Together, these core features provide the infrastruc-
ture necessary to create grids of cooperating services. Furthermore,
since the grid is a development tool and not a complete solution,
it must also be lean, efficient, and most of all easy to learn, ex-
tend and use. With this in mind, I evaluated the current set of grid
computing products, and found them all lacking. Most are moving
in this direction, but at this time none have the features I feel are
necessary.

I spent quite a bit of time evaluating the feature set of Globus,
a popular grid computing product. It is interesting to compare the
distributed computing infrastructures that Globus and IceGrid are
using. As we have demonstrated on many occasions, Ice is a lean,
mean, distributed computing platform. The protocol is small, fast
and efficient. Globus has, to their detriment, selected web services
as the basis of their distributed computing infrastructure. Much has
been written by many people, including ZeroC’s Michi Henning,
on the poor performance and bandwidth utilization of web services.
There is no better example of this than the gridftp service, a core
utility used to transfer files around a Globus grid. Is this service
written using web services? No. And for obvious reasons – the
resulting bandwidth explosion would be enormous. It is telling that
such a central Globus component cannot be written using their cho-
sen distributed computing platform.

We at ZeroC strongly believe that grid computing is the key to
solving big problems. We were very excited to release IceGrid as
the major new feature of Ice 3.0, and we believe it is the key to
the future growth and success of ZeroC and Ice. As such, we are
continuing to work hard on IceGrid to add features essential to
building the next generation of grid computing products. With Ice
3.� you can look forward to enhanced scheduling and security for
IceGrid.

Matthew Newhook
Senior Software Engineer

Issue Features

Integrating Ice with a GUI: Part III
In the third of a four part series on integrating Ice with a GUI,
Matthew Newhook presents a non-invasive technique for making
invocations without blocking the application.

The Samsara of Objects: Life Cycle Operations
Michi Henning discusses some of the issues involved in manag-
ing the life cycle of Ice objects.

Contents
Integrating Ice with a GUI: Part III 2

The Samsara of Objects: Life Cycle Operations �0

FAQ Corner .. 23

http://www.distributed.net/
http://www1.distributed.net/pressroom/news-20020926.txt

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue �4, May 2006 Page 3Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 3Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Integrating Ice with a GUI: Part III
Matthew Newhook, Senior Software Engineer

Introduction
This is the third article in a series exploring the issues associated
with using Ice in a graphical application. What we’re striving to
achieve is the ability to invoke an operation without blocking the
calling thread, since a blocked thread can disrupt the user experi-
ence. The simple fact is any application thread that makes a remote
invocation may find itself blocked until a timeout is reached. Of
course, a regular twoway invocation always blocks the calling
thread until the invocation is complete. However, oneway and
asynchronous invocations, despite their non-blocking appearance,
can also block the calling thread during connection establishment,
or when underlying network buffers fill up. This article presents a
solution for avoiding a blocked thread and requires only minimal
changes to the application.

Request Interception
The technique used in the previous two columns requires the cre-
ation of a new subclass for each operation the application needs to
invoke. An instance of this class is then pushed onto a work queue
that makes the remote invocation from a separate thread. Since
adding the call to the work queue cannot block, it is now possible
to make oneway or asynchronous invocations without the risk of
blocking the calling thread. Unfortunately, the need to create lots
of small classes makes this a cumbersome technique to use. What I
really want is a guarantee that the calling thread never blocks with-
out giving up the traditional, more user-friendly invocation syntax
shown in the example below:

// C++
HelloPrx hello = …;
hello->sayHello_async();
hello = HelloPrx::uncheckedCast(
 hello->ice_oneway());
hello->sayHello();

If we had a way to transparently capture the data associated with a
request, we could push it onto a work queue and then make the ac-
tual invocation from a worker thread. The dynamic invocation and
dispatch facility, commonly referred to as Dynamic Ice, provides
most of what we need to implement this strategy. At this point, I
recommend that you read Mark Spruiell’s article on this subject
from issue �� of Connections.

First, let’s briefly review how the Blobject class works. The
class definition is summarized below:

// C++
class Blobject : virtual public Object
{
public:

 // Returns true if ok, false if user
 // exception.
 virtual bool ice_invoke(
 const std::vector<Byte>& inParams,
 std::vector<Byte>& outParams,
 const Current& current) = 0;
 // ...
};

By subclassing Blobject, the application can install a servant
that intercepts the regular request-dispatching process and receives
all invocations as calls to ice_invoke. The encoded input pa-
rameters are supplied by the inParams argument. A return value,
output parameters, or a user exception must be encoded into the
outParams argument. Finally, information about the request itself,
such as the operation name and object identity, is contained in the
current parameter. A return value of true indicates success,
whereas false indicates a user exception.

A Blobject servant can easily forward a request to a proxy by
calling the ice_invoke method defined by the base proxy class
ObjectPrx:

// C++
class ObjectPrx : ...
{
public:

 bool ice_invoke(
 const string& name,
 OperationMode mode,
 const vector<Byte>& inParams,
 vector<Byte>& outParams);
 // ...
};

The return value has the same semantics as the Blobject ice_
invoke method. In addition, there are versions of these methods
that you can use to make asynchronous requests. An application
can subclass BlobjectAsync to handle requests asynchronously:

// C++
class BlobjectAsync : virtual public Object
{
public:

 virtual void ice_invoke_async(
 const AMD_Object_ice_invokePtr& callback,
 const std::vector<Byte>& inParams,
 const Current& curr) = 0;
};

Similarly, ObjectPrx supplies an equivalent method for sending
untyped invocations asynchronously:

IntegratIng Ice wIth a gUI

http://www.zeroc.com/newsletter/issue11.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue �4, May 2006 Page 3Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 3Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

// C++
class ObjectPrx : ...
{
public:

 void ice_invoke_async(
 const AMI_Object_ice_invokePtr& callback,
 const std::string& operation,
 OperationMode mode,
 const std::vector<Byte>& inParams,
 const Context& ctx);
 // ...
};

The asynchronous method invocation (AMI) operation ice_
invoke_async expects the caller to supply a callback object in
addition to the other information that comprises the request. The
callback object must be a subclass of AMI_Object_ice_invoke,
shown below:

// C++
class AMI_Object_ice_invoke : public ...
{
public:

 virtual void ice_response(bool ok,
 const vector<Byte>& results) = 0;
 virtual void ice_exception(
 const Exception& ex) = 0;
};

The Ice run time invokes ice_response if the request com-
pletes successfully or if a user exception occurred. The bool-
ean argument has the value true for success and false for
a user exception. The results argument supplies the en-
coded return values. In the case of a run time exception such as
ObjectNotExistException, Ice
calls ice_exception and passes
the exception instance.

The technique that we’ll
explore in this article uses a
Blobject servant to capture the
request data. The servant encap-
sulates this data, along with the
target proxy, and adds it to the
call queue for eventual processing
by a worker thread. To make this
work, however, we must arrange
for the application to direct its
invocations to the local Blobject
servant instead of the remote
server. As a starting point, we’ll
require the application to register
its target proxy with the Blobject
servant, which returns an inter-
posed proxy for the application to
use instead.

Before we get started on the implementation, let’s first examine
the sequence of steps that must occur when making an invocation:

1. The application supplies the proxy for the target object and
receives an interposed proxy to use in its place.

2. The application makes an invocation using the interposed
proxy.

3. The Blobject servant intercepts the invocation.
4. The target proxy is looked up via the object identity.
5. The request data and target proxy are placed in a call object

and added to the call queue.
6. The worker thread in the call queue executes the call by mak-

ing the invocation on the target proxy.
7. The results of the invocation are returned to the application.

This all seems straightforward, except for the last part: how can
we return the results of the invocation to the application? The trick
here is to use request chaining, and to do that we need to use the
asynchronous Blobject interface:

�. The Ice run time calls ice_invoke_async on the
BlobjectAsync implementation.

2. The call object is created to hold the request data, the target
proxy and the AMD callback object.

3. Upon execution, the call object uses ice_invoke_async
on the target proxy to send the invocation. An AMI callback
object is provided to the Ice run time.

4. The AMI callback relays the results to the AMD callback,
which provides them to the application.

See Figure � for an interaction diagram of this process.

IntegratIng Ice wIth a gUI

Figure 1: Interaction Diagram

Client Peer

Target
Object

BlobjectAsyncI

operation

AsyncCallback

Ice Server
Runtime

<<create>>

ice_invoke_async

ice_response

reply

Ice Client
Runtime

AMD_Object
ice_invoke

Call

execute

<<create>>

reply

ice_response

<<create>>

ice_invoke_async

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue �4, May 2006 Page 5Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Now that we’ve seen how the various objects interact, we’ll begin
our implementation with the Blobject servant. In addition to ice_
invoke_async, which adds a new call to the queue, we also need
a method (add) for registering a new target proxy. The resulting
class definition is shown below:

// C++
class BlobjectAsyncI : public BlobjectAsync,
 public Mutex
{
public:

 BlobjectAsyncI();

 virtual void
 ice_invoke_async(
 const AMD_Object_ice_invokePtr&,
 const vector<Byte>&,
 const Current&)
 void add(const ObjectPrx&);
 void destroy();

private:

 const CallQueuePtr _queue;
 map<Identity, ObjectPrx> _objects;
};

The constructor initializes and starts the call queue:

// C++
BlobjectAsyncI::BlobjectAsyncI() :
 _queue(new CallQueue)
{
 _queue->start();
}

The add method records a proxy in the _objects table:

// C++
void
BlobjectAsyncI::add(const ObjectPrx& proxy)
{
 Lock lock(*this);
 _objects.insert(make_pair(
 proxy->ice_getIdentity(),
 proxy->ice_newFacet("")->ice_twoway()));
}

The table key is the object identity, and the value is the proxy.
The servant ensures that the proxy has no facet, and has seman-
tics before adding it to the table. Without this step, an attempt to
make an asynchronous invocation using the proxy might fail with
OnlyException.

 We’ve also defined a destroy method, which destroys the
queue and joins with the queue’s worker thread:

// C++
void
BlobjectAsyncI::destroy()
{

 Lock lock(*this);

 _queue->destroy();
 _queue->getThreadControl().join();
}

The request is intercepted by ice_invoke_async, whose imple-
mentation is straightforward:

// C++
void
BlobjectAsyncI::ice_invoke_async(
 const AMD_Object_ice_invokePtr& amdCallback,
 const vector<Byte>& inParams,
 const Current& curr)
{
 ObjectPrx proxy;
 {
 Lock lock(*this);
 map<Identity, ObjectPrx>::iterator p =
 _objects.find(curr.id);
 if(p != objects.end())
 {
 proxy = p->second;
 }
 }
 assert(proxy);
 _queue->add(new BlobjectCall(
 proxy, amdCallback, inParams, curr));
}

The method looks up the target proxy using the object identity pro-
vided by the Current argument, then enqueues a new call object
to hold the request information.

Next we’ll examine the implementation of BlobjectCall. The
constructor is trivial and is omitted for the sake of brevity. More
interesting is the execute method:

// C++
void
BlobjectCall::execute()
{
 ObjectPrx proxy = _proxy;
 if(!_curr.facet.empty())
 {
 proxy = proxy->ice_newFacet(_curr.facet);
 }
 proxy->ice_invoke_async(
 new AsyncCallback(_amdCallback),
 _curr.operation, _curr.mode, _inParams,
 _curr.ctx);
}

The method first obtains a proxy with the correct facet con-
figuration, if necessary. Next, it sends the request asynchro-
nously by calling ice_invoke_async on the target proxy. The
_amdCallback member is supplied to the AsyncCallback class
so that the reply can be sent back to the application. The imple-
mentation of the AMI callback simply relays the results to the
AMD callback:

IntegratIng Ice wIth a gUI

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue �4, May 2006 Page 5Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

// C++
class AsyncCallback : public AMI_Object_ice_invoke
{
public:

 AsyncCallback(
 const AMD_Object_ice_invokePtr& cb) :
 _cb(cb)
 {
 }

 virtual void
 ice_response(bool ok,
 const vector<Byte>& results)
 {
 _cb->ice_response(ok, results);
 }

 virtual void
 ice_exception(const Exception& ex)
 {
 _cb->ice_exception(ex);
 }

private:

 const AMD_Object_ice_invokePtr _cb;
};

All of these internals now need to be exposed to the application.
We’ll wrap this up in a class called SafeProxy:

// C++
class SafeProxy : public Shared
{
public:

 SafeProxy(const CommunicatorPtr&);

 ObjectPrx add(const ObjectPrx&);
 void destroy();

private:

 const ObjectAdapterPtr _adapter;
 const BlobjectAsyncIPtr _blobject;
};

The constructor creates a special object adapter for use by the
Blobject servant:

// C++
SafeProxy::SafeProxy(
 const CommunicatorPtr& communicator) :
 _adapter(communicator->
 createObjectAdapterWithEndpoints(
 "forward", "tcp -h 127.0.0.1")),
 _blobject(new BlobjectAsyncI)
{
 _adapter->activate();
}

The object adapter uses the loopback interface (by specifying
-h 127.0.0.1), which prevents connections from other hosts.
However, there is still a potential security problem: an application
running on the same machine could connect to this object adapter
and inject requests into the call queue. If this is a problem for your
application, the configuration could be altered to use SSL.

Next, we’ll look at the add method:

// C++
ObjectPrx
SafeProxy::add(const ObjectPrx& proxy)
{
 _blobject->add(proxy);
 return adapter->add(_blobject,
 proxy->ice_getIdentity())->
 ice_collocationOptimization(false);
}

 The proxy is registered with the Blobject servant, and then the
new Ice object is added to the adapter’s active servant map. ice_
collocationOptimization must be called since collocation
optimization doesn’t work with Blobject invocations.

Finally, the destroy method initiates the destruction of the
Blobject servant:

// C++
void
SafeProxy::destroy()
{
 _blobject->destroy();
}

To put our plan into action, the application must call
SafeProxy::add to obtain an interposed proxy. When that proxy
is used for an invocation, the request is captured and queued by the
Blobject servant. For example:

// C++
HelloPrx hello = …;
hello = HelloPrx::uncheckedCast(
 safeProxy->add(hello)->ice_oneway());
hello->sayHello();

The call to sayHello (or sayHello_async) will never block the
calling thread as long as we use a oneway or asynchronous invoca-
tion. If you use a synchronous invocation, the calling thread will
block while awaiting the reply – even if there are no return or out
parameters. The example below illustrates this situation:

// C++
HelloPrx hello = …;
hello = HelloPrx::uncheckedCast(safeProxy-
>add(hello)->ice_());
hello->sayHello(); // Blocked until completion!

A downside to this technique is that it requires the application to
manually call SafeProxy:add for each proxy. This requirement
isn’t much of a burden if the application uses just a few proxies
– especially if they are known in advance. However, for applica-

IntegratIng Ice wIth a gUI

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue �4, May 2006 Page 7Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

tions that deal with a lot of proxies, this could become very tedious
and lead to subtle issues that are difficult to diagnose and debug.

The Router Interface
Luckily, there is another implementation strategy that is completely
transparent to the application. This solution utilizes the Ice::
Router interface to eliminate the need for the application to ex-
plicitly register each proxy before using it.

If you have used Glacier2 in your applications, you will have
encountered the router interface – although you may not have fully
understood its purpose. Briefly, the router interface is used to re-
direct requests to another proxy. Once a proxy is configured with a
router, the proxy’s original endpoint is ignored, and all invocations
made using that proxy are sent instead to the endpoint of the router.
The router is responsible for forwarding the requests in an imple-
mentation-defined manner; Glacier2 is one example of a router
implementation.

Although a router is typically a separate process, as is the case
with Glacier2, there is nothing that prevents us from using a router
in the same process. We’ll take advantage of this fact and imple-
ment a router that adds requests to the call queue without blocking
the calling thread.

The Ice run time supports the notion of a default router, which
you can establish using the configuration property Ice.Default.
Router or by calling setDefaultRouter, as shown below:

// C++
RouterPrx router = …;
communicator->setDefaultRouter(router);
ObjectPrx routedProxy =
 communicator->stringToProxy(...);

Defining the router in this fashion has a global effect: all proxies
created subsequently are routed proxies by default. It is also pos-
sible to configure individual proxies with a router:

// C++
ObjectPrx obj = …:
RouterPrx router = …;
ObjectPrx routedProxy =
 obj->ice_router(router);

Any invocation on routedProxy is redirected to the router instead
of being sent to the proxy’s endpoint. Let us examine the Ice::
Router interface in more detail:

// Slice
interface Router
{
 nonmutating Object* getClientProxy();
 nonmutating Object* getServerProxy();
 idempotent void addProxy(Object* proxy);
};

The Ice run time calls the addProxy operation during a proxy’s
initial invocation to register that proxy with its configured router.

See Figure 2 for an interaction diagram.

Figure 2: Calling addProxy during initial invocation
RouterI

sayHello

Ice RuntimeHelloPrx

sayHello

addProxy

Notice that the addProxy operation does not return a proxy. This
differs from SafeProxy::add, where we needed to return a dif-
ferent proxy for the application to use in order to redirect invoca-
tions to our Blobject servant. Using the router interface instead, the
Ice run time handles the forwarding details for us without forcing
the application to jump through any hoops. Before it can forward a
request, the Ice run time must call the getClientProxy opera-
tion to obtain the router’s client-side proxy; all client invocations
are sent to this proxy. The run time simply changes the identity of
the client proxy before making the invocation. See Figure 3 for an
interaction diagram of this process.

The getServerProxy operation is used by routed object
adapters to set the endpoints of the proxies created by this adapter.
For more details see the Ice manual. Since this application doesn’t
create any routed object adapters we don’t need to implement this
method.

 The router interface is very similar to the SafeProxy class. The
key difference is that the Ice run time already provides transparent
support for routers; once the default router is established for the
communicator, the application no longer needs to take any special
actions to make use of the router.

Now that we’ve briefly reviewed the semantics of the router
interface, let’s take a look at one possible implementation:

// C++
class RouterI : public Router
{
public:

 RouterI(const CommunicatorPtr&);

 virtual ObjectPrx getClientProxy(
 const Current&) const;
 virtual ObjectPrx getServerProxy(

IntegratIng Ice wIth a gUI

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue �4, May 2006 Page 7Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

tions that deal with a lot of proxies, this could become very tedious
and lead to subtle issues that are difficult to diagnose and debug.

The Router Interface
Luckily, there is another implementation strategy that is completely
transparent to the application. This solution utilizes the Ice::
Router interface to eliminate the need for the application to ex-
plicitly register each proxy before using it.

If you have used Glacier2 in your applications, you will have
encountered the router interface – although you may not have fully
understood its purpose. Briefly, the router interface is used to re-
direct requests to another proxy. Once a proxy is configured with a
router, the proxy’s original endpoint is ignored, and all invocations
made using that proxy are sent instead to the endpoint of the router.
The router is responsible for forwarding the requests in an imple-
mentation-defined manner; Glacier2 is one example of a router
implementation.

Although a router is typically a separate process, as is the case
with Glacier2, there is nothing that prevents us from using a router
in the same process. We’ll take advantage of this fact and imple-
ment a router that adds requests to the call queue without blocking
the calling thread.

The Ice run time supports the notion of a default router, which
you can establish using the configuration property Ice.Default.
Router or by calling setDefaultRouter, as shown below:

// C++
RouterPrx router = …;
communicator->setDefaultRouter(router);
ObjectPrx routedProxy =
 communicator->stringToProxy(...);

Defining the router in this fashion has a global effect: all proxies
created subsequently are routed proxies by default. It is also pos-
sible to configure individual proxies with a router:

// C++
ObjectPrx obj = …:
RouterPrx router = …;
ObjectPrx routedProxy =
 obj->ice_router(router);

Any invocation on routedProxy is redirected to the router instead
of being sent to the proxy’s endpoint. Let us examine the Ice::
Router interface in more detail:

// Slice
interface Router
{
 nonmutating Object* getClientProxy();
 nonmutating Object* getServerProxy();
 idempotent void addProxy(Object* proxy);
};

The Ice run time calls the addProxy operation during a proxy’s
initial invocation to register that proxy with its configured router.

See Figure 2 for an interaction diagram.

Figure 2: Calling addProxy during initial invocation
RouterI

sayHello

Ice RuntimeHelloPrx

sayHello

addProxy

Notice that the addProxy operation does not return a proxy. This
differs from SafeProxy::add, where we needed to return a dif-
ferent proxy for the application to use in order to redirect invoca-
tions to our Blobject servant. Using the router interface instead, the
Ice run time handles the forwarding details for us without forcing
the application to jump through any hoops. Before it can forward a
request, the Ice run time must call the getClientProxy opera-
tion to obtain the router’s client-side proxy; all client invocations
are sent to this proxy. The run time simply changes the identity of
the client proxy before making the invocation. See Figure 3 for an
interaction diagram of this process.

The getServerProxy operation is used by routed object
adapters to set the endpoints of the proxies created by this adapter.
For more details see the Ice manual. Since this application doesn’t
create any routed object adapters we don’t need to implement this
method.

 The router interface is very similar to the SafeProxy class. The
key difference is that the Ice run time already provides transparent
support for routers; once the default router is established for the
communicator, the application no longer needs to take any special
actions to make use of the router.

Now that we’ve briefly reviewed the semantics of the router
interface, let’s take a look at one possible implementation:

// C++
class RouterI : public Router
{
public:

 RouterI(const CommunicatorPtr&);

 virtual ObjectPrx getClientProxy(
 const Current&) const;
 virtual ObjectPrx getServerProxy(

 const Current&) const;
 virtual void addProxy(
 const ObjectPrx&, const Current&);

 void destroy();

private:

 const ObjectAdapterPtr _adapter;
 const BlobjectAsyncIPtr _blobject;
 ObjectPrx _blobjectProxy;
};

The constructor performs all of the initialization work:

// C++
RouterI::RouterI(const CommunicatorPtr&
communicator) :
 _adapter(communicator->
 createObjectAdapterWithEndpoints(
 "forward", "tcp -h 127.0.0.1")),
 _blobject(new BlobjectAsyncI)
{
 _blobjectProxy = _adapter->addWithUUID(
 _blobject)->ice_collocationOptimization(
 false);

 RouterPrx proxy = RouterPrx::uncheckedCast(
 _adapter->addWithUUID(this)->
 ice_collocationOptimization(false));
 communicator->setDefaultRouter(proxy);
 _adapter->activate();
}

The constructor creates the object adapter and initializes a proxy
that refers to the Blobject. As I mentioned earlier, the Blobject
interface does not support collocation optimization, so this must
be disabled in the proxy. Next, the constructor creates a proxy for
the router and establishes it as the communicator's default router;
any proxies created after this point
will use this router. (Due to a bug
in the Ice 3.0.� run time, the router
proxy also must not use collocation
optimization.)

The remainder of the imple-
mentation is trivial. Note that it
is not necessary to implement the
getServerProxy method as previ-
ously mentioned

// C++
ObjectPrx
RouterI::getClientProxy(const Current&) const
{
 return _blobjectProxy;
}

ObjectPrx
RouterI::getServerProxy(const Current&) const
{
 assert(false); // Not implemented.
 return 0;
}

void
RouterI::addProxy(const ObjectPrx& proxy,
 const Current&)
{
 _blobject->add(proxy);
 _adapter->add(_blobject,
 proxy->ice_getIdentity());
}

void
RouterI::destroy()
{
 _blobject->destroy();
}

A further optimization can be applied: instead of adding each Ice
object to the adapter's active servant map, we could use a servant
locator. A servant locator is a callback interface that the adapter
uses to locate servants that it can't find in its active servant map.
Please consult the Ice manual for more information on this.

Using a servant locator, we can avoid adding the _blobject to
the adapter’s active servant map, and instead have the servant loca-
tor return _blobject for each request:

IntegratIng Ice wIth a gUI

Figure 3: Use of getClientProxy by the Ice runtime

HelloPrx RouterI

sayHello

Ice Runtime BlobjectAsyncI

sayHello

getClientProxy

ice_invoke_async

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue �4, May 2006 Page 9Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

// C++
class ServantLocatorI : public ServantLocator
{
public:

 ServantLocatorI(
 const BlobjectAsyncIPtr& blobject) :
 _blobject(blobject)
 {
 }

 virtual ObjectPtr
 locate(const Current&, LocalObjectPtr&)
 {
 return _blobject;
 }

 virtual void
 finished(const Current&, const ObjectPtr&,
 const LocalObjectPtr&)
 {
 }

 virtual void
 deactivate(const string&)
 {
 }

private:

 const BlobjectAsyncIPtr _blobject;
};

To install the servant locator, we need to change our router’s con-
structor:

// C++
RouterI::RouterI(const CommunicatorPtr&
communicator) :
 _adapter(communicator->
 createObjectAdapterWithEndpoints(
 "forward", "tcp -h 127.0.0.1")),
 _blobject(new BlobjectAsyncI)
{
 _adapter->addServantLocator(
 new ServantLocatorI(_blobject, "");
 //...

 The implementation of addProxy can be simplified to the follow-
ing:

// C++
void
RouterI::addProxy(const ObjectPrx& proxy,
 const Current&)
{
 _blobject->add(proxy);
}

One further change must be made that may not be immediately
obvious. The current implementation of BlobjectAsyncI::add
is repeated below:

// C++
void
BlobjectAsyncI::add(const ObjectPrx& proxy)
{
 Lock lock(*this);
 _objects.insert(make_pair(
 proxy->ice_getIdentity(),
 proxy->ice_newFacet("")->ice_twoway()));
));
}

Consider what would happen if the worker thread sent the invo-
cation using this proxy: the Ice run time will examine the proxy,
discover that it is configured with a router, and then forward the re-
quest to the router again! An infinite loop is clearly not our intent.
To correct this problem, the router must be cleared from the proxy
when adding it to the table:

// C++
void
BlobjectAsyncI::add(const ObjectPrx& proxy)
{
 Lock lock(*this);
 _objects.insert(make_pair(
 proxy->ice_getIdentity(),
 proxy->ice_newFacet("")->ice_twoway()->
 ice_router(0)));
}

If you want your application to use this technique in conjunction
with Glacier2, you would call ice_router and pass the proxy for
the Glacier2 router instead of a null proxy as we have done here.
In this way, the worker thread’s invocation would be forwarded
automatically to Glacier2.

Oneway Invocations
How about oneway invocations? The code above always sends all
requests as twoway invocations, but let’s consider what happens if
the application uses a oneway proxy as shown below:

// C++
HelloPrx hello = …;
hello = HelloPrx::uncheckedCast(
 hello->ice_oneway());
hello->sayHello();

The invocation of sayHello is sent as a oneway request to the
Blobject servant, and then is forwarded as a twoway request to the
actual target proxy. What if you really want the request to be sent
as a oneway to the target proxy? Unfortunately, at the time of writ-
ing there is no way for a receiver to determine how a request was
invoked, so some other method must be used.

IntegratIng Ice wIth a gUI

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue �4, May 2006 Page 9Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Glacier2 addresses this limitation by looking for special direc-
tives in the request context. In particular, the value associated
with the context key _fwd determines how Glacier2 forwards the
request. For example, if the value is o, the request is forwarded as
a oneway request. It would be quite simple to modify our router
implementation to use the same scheme:

// C++
void
BlobjectCall::execute()
{
 ObjectPrx proxy = _proxy;
 if(!_curr.facet.empty())
 {
 proxy = proxy->ice_newFacet(_curr.facet);
 }
 Context::const_iterator p =
 _curr.ctx.find("_fwd");
 if(p != _curr.ctx.end() && p->second == "o")
 {
 proxy = proxy->ice_oneway();
 try
 {
 vector<Byte> out;
 bool ok = proxy->ice_invoke(
 _curr.operation, _curr.mode,
 _inParams, out, _curr.ctx);
 _amdCallback->ice_response(ok, out);
 }
 catch(const Exception& e)
 {
 _amdCallback->ice_exception(e);
 }
 }
 else
 {
 proxy->ice_invoke_async(
 new AsyncCallback(_amdCallback),
 _curr.operation, _curr.mode,
 _inParams, _curr.ctx);
 }
}

If you wanted to use multiple request queues, as shown in the
previous article, then another possible implementation would be as
follows:

// C++
void
BlobjectAsyncI::ice_invoke_async(
 const AMD_Object_ice_invokePtr& amdCallback,
 const vector<Byte>& inParams,
 const Current& curr)
{
 ObjectPrx proxy = ...;
 Context::const_iterator p =
 _curr.ctx.find("_fwd");
 if(p != _curr.ctx.end() &&
 p->second == "o")
 {
 CallPtr call =
 new BlobjectOnewayCall(
 proxy, amdCallback,
 inParams, curr);
 _onewayQueue->add(call);
 }
 else
 {
 CallPtr call = new BlobjectCall(
 proxy, amdCallback, inParams,
 curr);
 _queue->add(call);
 }
}

Conclusion
I hope you’ll find this technique useful. It does have an additional
cost, since all request data is first sent over the loop-back interface
and then copied into memory. This means that each invocation will
have slightly higher latency, and will consume more memory in the
client. However, it also means that the application’s source code
can be simpler and more concise, since it is no longer necessary to
create lots of small call classes in order to send invocations without
the fear of blocking.

The next article in this series will show you how to correctly
handle return values from method invocations, as well as server-
side invocations into a UI application.

IntegratIng Ice wIth a gUI

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue �4, May 2006 Page ��Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

The Samsara of Objects: Life Cycle
Operations

Michi Henning, Chief Scientist

In The Grim Reaper (Issue 3 of Connections), I discussed how to
use sessions to get rid of objects in a server if clients neglect to de-
stroy the objects for some reason. That article tacitly assumed that
the creation and destruction of Ice objects is already taken care of
by the server. However, such life cycle operations tend to be fairly
complex to implement, especially in the presence of threads. In
this article, we will have a closer look at what actions a server must
take to correctly create and destroy objects.

Creating Objects
The generic pattern for creating an Ice object is to provide a fac-
tory operation. For the purposes of this article, suppose that we are
maintaining a collection of Person objects:

// Slice
interface Person
{
 nonmutating string name();
 nonmutating string getAddress();
 void setAddress(string addr);
};

Clearly, in a real application, these Person objects would be more
complex and encapsulate a lot more state than just a person’s name
and address but, for this discussion, even such simple persons are
sufficient to give us quite a bit to think about. The implementation
of the person servant is very simple. (The methods are inline only
to save space.)

// C++
class PersonI : public Person
{
public:

 PersonI(const string& name,
 const string& addr) :
 _name(name), _addr(addr)
 {
 }

 virtual string
 name(const Current&) const
 {
 return _name
 }

 virtual string
 getAddress(const Current&) const
 {
 return _addr;
 }

 virtual void
 setAddress(const string& addr,
 const Current&)
 {
 _addr = addr;
 }

private:
 string _name;
 string _addr;
};

For now, let us assume that no two persons can have the same
name, so the name of a person object also acts as the object iden-
tity. (As we will see later, this might well be a bad idea; please bear
with me regardless—it is instructive to consider the implications
of this decision.) In order for clients to be able to create Person
objects, we must provide a factory operation. The usual approach
is to have the factory operation accept whatever state is necessary
to initialize the object as parameters, and to return the proxy for the
new object:

// Slice
exception PersonExists {};

interface PersonFactory
{
 Person* create(string name, string addr)
 throws PersonExists;
};

The job of create is to create a new person object, using the
person’s name as the object identity. Note that one immediate
consequence of the decision to use a person’s name as the object
identity is that it introduces a potential error condition: a client
might attempt to create a person with the same name as an already
existing person, so the create operation must deal with this and
throw a PersonExists exception in that case.

Also note that create has an addr parameter, so the state for
the new person object can be initialized completely by create.
As a general rule, factory operations should always initialize all
of the state of the objects they create. You should avoid designs
that create partially initialized objects that must be further initial-
ized by making more calls. Not only is doing so less efficient,
but it also creates a less robust design: if a programmer forgets to
fully initialize an object and uses it, bad things tend to happen. By
writing your factory operations such that they guarantee complete
initialization of new objects, you eliminate this potential error at
compile time.

By convention, factory operations return the proxy to the newly
created object. However, this is by convention only. For example,
the create operation could have void return type; in that case,
clients could locate the Person object they have created by calling
the find operation. Alternatively, you could define “bulk” factory
operations that can create several objects in a single operation and
return a proxy sequence to the created objects. Exactly how the
factory operation works is entirely up to you—as far as the Ice run

LIfe cycLe OperatIOns

http://www.zeroc.com/newsletter/issue3.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue �4, May 2006 Page ��Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

time is concerned, there is nothing special about a factory opera-
tion at all: a factory operation is like any other operation; it just so
happens that the operation creates a new Ice object as a side effect
of being called.

Here is a first cut at a class definition for the factory:

// C++
class PersonFactoryI : public PersonFactory
{
public:
 PersonFactoryI();
 virtual PersonPrx create(
 const string&, const string&,
 const Current&);
};
typedef Handle<PersonFactoryI>
 PersonFactoryIPtr;

Note that the factory is a singleton object, that is, only one instance
of it ever exists in the server. As shown, the code does nothing to
enforce this, but you can easily add code to the constructor that
counts the number of factory instances and asserts or throws an
exception if an attempt is made to instantiate a second instance.

Now let’s see how we would implement the create operation.
Here is a very simple version:

// C++
PersonPrx
PersonFactoryI::create(
 const string& name, const string& addr,
 const Current& c)
{
 try
 {
 return PersonPrx::uncheckedCast(
 c.adapter->add(
 new PersonI(name, addr),
 stringToIdentity(name)));
 {
 catch(const AlreadyRegisteredException&)
 {
 throw PersonExists();
 }
}

The create function instantiates a new PersonI servant, adds the
servant to the active servant map (ASM), and returns the proxy to
the newly created Ice object. As far as the Ice run time is con-
cerned, adding the servant to the ASM is what creates a new Ice
object: as soon as a new entry appears in the ASM, client requests
for the corresponding object identity will be dispatched to the
servant that is registered for that identity in the ASM.

Note that, even though no locking is involved, this code is
thread-safe. The add operation behaves atomically, that is, if two
clients attempt to concurrently create the same person, so two
threads are active in the body of create, exactly one of the two
threads will succeed in adding the servant to the ASM; the other

thread will receive an AlreadyRegisteredException. On the
other hand, if two clients attempt to concurrently create two dif-
ferent persons, they can proceed in parallel without danger of cor-
rupting program state. (Internally, in the implementation of add,
the two threads are serialized by the Ice run time while they access
the ASM.) The constructor of the PersonI servant does nothing,
so no lock is required inside that constructor either. However, for
a more complex PersonI implementation, the constructor might
update a shared data structure, in which case we would have to add
appropriate locking to protect that data structure.

Also note that the preceding code does not contain a memory
leak. It is fine to pass the pointer returned by new directly to
add because the formal parameter type of add is const Ice::
ObjectPtr&, and ObjectPtr has a constructor that accepts an
Object*. This means that the ASM stores a smart pointer to the
servant. Because servants are reference counted, the code contains
no memory leak; the servant will be deallocated once its ASM
entry is removed.

Destroying Objects
Now that we can create Person objects, let us consider how to
destroy them again. Here is one possible approach, namely, adding
a destroy operation to the PersonFactory:

// Slice
exception PersonExists {};
exception PersonNotExists {};

sequence<Person*> PersonSeq;

interface PersonFactory
{
 Person* create(string name, string addr)
 throws PersonExists;
 void destroy(Person* p)
 throws PersonNotExists; // Bad idea!
};

At first glance, this looks reasonable. Seeing that clients go to the
Person factory to create a person, it seems only logical that they
go back to the same factory to destroy that person: after all, the
factory knows how to create persons, so surely it also knows how
to destroy them again.

Unfortunately, this is generally a bad idea. For one, it is pos-
sible that a client may attempt to destroy a person that was already
destroyed earlier. Our Slice definition has to explicitly cater for
this possibility with a PersonNotExists exception, which makes
the interface just that little bit more complex. Second, and more
importantly, with this design, to destroy a person, a client must not
only know which person to destroy, but must also know which fac-
tory created that person. This may not sound like a big deal—how-
ever, in large and complex systems with dozens of factories (and
possibly multiple person factories in different servers), this rapidly
becomes a problem: for each object, the application code somehow
has to keep track of which factory created that object; if any part of

LIfe cycLe OperatIOns

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue �4, May 2006 Page �3Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �3Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

the code ever loses track of where an object originally came from,
it can no longer destroy that object. Of course, we could mitigate
the problem by adding an operation to the Person interface that
returns a proxy to the PersonFactory that created the person.
Clients could then ask a person for the factory proxy so they could
then call the destroy operation on the factory. But that would
make the Slice definitions yet more complex and really is just a
band-aid on a fundamentally flawed design. A much better choice
is to add the destroy operation to the Person interface instead:

// Slice
interface Person
{
 // ...
 void destroy();
};

With this approach, there is no need for clients to somehow keep
track of which factory created what person. Instead, given a proxy
to a Person object, a client simply invokes the destroy operation
on the object and the person obligingly commits suicide. In addi-
tion, there is no need to define an additional PersonNotExists
exception: if the person was previously destroyed by another
client, any call to destroy raises ObjectNotExistException
(which exists precisely to indicate this condition).

So, how can we implement destroy? As far as the Ice run
time is concerned, what destroys an Ice object is the act of re-
moving the object’s ASM entry. Doing this breaks the link
between the object identity and the servant, and any incoming
requests for that object once the ASM entry is removed raise
ObjectNotExistException. Removing the ASM entry for a
servant will cause the servant to be destroyed once the last opera-
tion that is still executing inside the servant completes. This hap-
pens because servants are reference counted by the Ice run time. As
long as a servant has an ASM entry, its reference count is one (as-
suming that your program does not hold any other smart pointers
to the servant elsewhere). In addition, the Ice run time increments
the servant’s reference count by one for each currently executing
operation. This means that, if you remove the ASM entry for a ser-
vant while operations are executing inside the servant, the servant’s
reference count drops by one, but does not reach zero immediately.
Instead, as each executing operation completes, the Ice run time
decrements the servant’s reference count until the count finally
reaches zero, namely, when the last executing operation completes.
At that point, the run time invokes the servant’s destructor. This
leads to an implementation of destroy as follows:

// C++
void
PersonI::destroy(const Current& c)
{
 try
 {
 c.adapter->remove(c.id);
 }
 catch(const NotRegisteredException&)
 {

 throw ObjectNotExistException(
 __FILE__, __LINE__);
 }
}

Note the try–catch block around the call to remove. Catching
and handling NotRegisteredException is necessary if
two clients concurrently invoke destroy on the same object.
In that case, only one thread will succeed in removing the
ASM entry for the servant, and the other thread will receive a
NotRegisteredException. If we did not catch and handle
that exception, the Ice run time would translate it into an
UnknownLocalException and the client that invoked the
destroy operation would conclude that something is internally
broken in the server. By handling the exception, we ensure that the
client gets ObjectNotExistException, as it should.

Because smart pointers nicely ensure that a servant is destroyed
only once it becomes idle (that is, once the last executing invo-
cation drains out of the servant), we need not do anything else
in destroy. (Of course, this assumes that no other part of the
program holds a smart pointer to the same servant, which would
prevent the servant’s reference count from reaching zero.)

It is important to be aware of the distinction between an Ice
object and its servant: the Ice object is an abstraction and, as far as
the run time is concerned, existence of an Ice object constitutes the
ability to successfully dispatch a request to the servant: if an ASM
entry exists, the Ice object exists.1 On the other hand, the servant is
simply the physical manifestation of the abstract Ice object, and the
servant can exist in isolation of its Ice object. The life cycles of Ice
objects and servants are completely separate.

Cleaning Up Servant State
As shown, our destroy operation does exactly the right thing
because the PersonI destructor only performs trivial actions. (The
implicit destructor simply invokes the destructors of the _name
and _addr members.) However, in a realistic application, clean-
ing up servant state is often not that simple. In particular, clean-up
can involve complex actions, such as committing a transaction,
updating the file system, or making a remote call on another object.
For example, our PersonI servants could be implemented by stor-
ing their state in a file; when a PersonI servant is destroyed, the
destructor could close an fstream for that file:

// C++
PersonI::~PersonI()
{
 _myStream.close(); // Bad idea
}

�. I’m ignoring servant locators here. However, that does not
substantially alter the discussion: if you use a servant locator, the
existence of the Ice object is determined by whether the servant
locator’s locate operation returns a servant or not, that is, the
servant locator effectively replaces the ASM.

LIfe cycLe OperatIOns

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue �4, May 2006 Page �3Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �3Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

The problem with this clean-up code is that it can fail, for example,
if the file system is full and buffered data cannot be written to the
file. Such clean-up failure is a general issue for non-trivial ser-
vants: for example, a transaction can fail to commit, an update to
a file system or database can fail, and a remote call can fail if the
network goes down.

If we attempt to clean up such servant state from within the
servant’s destructor and something goes wrong, we have a serious
problem: we cannot inform the client of the error because, as far
as the client is concerned, the destroy call completed just fine.
The client will therefore assume that the servant was correctly
destroyed. However, the system is now in an inconsistent state: the
Ice object for the person has been destroyed (because its ASM en-
try was removed), but the person’s state still exists (possibly with
incorrect values). This can cause errors later.

Another reason for avoiding state clean-up in C++ destructors
is that destructors cannot throw exceptions: if they do, and do so
in the process of being called during unwinding of the stack due
to some other exception, the program goes directly to terminate
and does not pass “Go”. (There are a few exotic cases in which it
is possible to throw from a destructor and get away with it but, in
general, it is an excellent idea to maintain the no-throw guarantee
for destructors.) So, if anything goes wrong during destruction,
we are in a tight spot: we are forced to swallow any exception that
might be encountered by the destructor, and the best we can do is
log the error, but not report it to the client.

Finally, using destructors to clean up servant state does not port
well to languages such as Java and C#. For these languages, similar
considerations apply to error reporting from a finalizer and, with
Java, finalizers may not run at all. So, in general, I recommend that
you perform any clean-up actions in the body of destroy instead
of delaying clean-up until the servant’s destructor runs. Note
that the foregoing does not mean that you cannot reclaim servant
resources in destructors; after all that is what destructors are for.
But it does mean that you should not try to reclaim resources from
a destructor if the attempt can fail (such as deleting records in an
external system as opposed to, for example, deallocating memory).

Life Cycle and Collection Operations
At the moment, our factory is what is known as a pure factory:
it only provides a create operation. However, it is common for
factories to double up as collection managers and to provide find
and list operations:

// Slice
exception PersonExists {};

sequence<Person*> PersonSeq;

interface PersonFactory
{
 Person* create(string name)
 throws PersonExists;

 nonmutating Person* find(string name);
 nonmutating PersonSeq list();
};

find returns a proxy for the person with the specified name, and
a null proxy if no such person exists. list returns a sequence that
contains the proxies of all existing persons.

The implementation of find is very simple:

// C++
PersonPrx
PersonFactoryI::find(const string& name,
 const Current& c)
{
 PersonPrx p;
 Identity id =
 stringToIdentity(name);
 if(c.adapter->find(id))
 {
 p = PersonPrx::uncheckedCast(
 c.adapter->createProxy(id));
 }
 return p;
}

The object adapter’s find operation returns the smart pointer to
the servant if a corresponding entry exists in the ASM, and a null
pointer otherwise. Again, there are no threading issues in this code
because the Ice run time ensures that ASM accesses are inter-
locked. If another client concurrently invokes create or destroy
while find is running, the right thing happens automatically: find
reports the current state of affairs without race conditions.

Cyclic Dependencies
When it comes to implementing list, we hit a snag: list needs
to iterate over the collection of persons and return the proxy for
each person, but the object adapter does not provide any iterator
for ASM entries. There is a good reason for this: during iteration,
the ASM would have to be locked to protect it against concurrent
modification, but locking the ASM would prevent call dispatch and
possibly create deadlocks. Therefore, we cannot use the ASM for
iteration and must maintain our own list of existing persons and
use it to implement the list operation:

// C++
class PersonFactoryI : public PersonFactory
{
public:
 // ...
 void _remove(const string&
 const ObjectAdapterPtr&);
private:
 Mutex _lcMutex;
 set<string> _persons;
};

The factory maintains a set of strings that stores the name of each
person. The implementation of list iterates over the _persons

LIfe cycLe OperatIOns

Connections
ZeroC’s Newsletter for the Ice Community

Page �4 Issue �4, May 2006 Page �5Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �5Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

set to create a proxy for each person, and create and destroy
update the set of names appropriately. However, before we launch
into the implementation, we need to think about concurrency. For
example, it is possible for one client to call create or destroy
while list is running. Clearly, we must interlock create,
destroy, and list—if we do not, and two threads concurrently
modify the _persons set, or a thread modifes the set while list
iterates over it, we run the risk of a crash because STL contain-
ers are not thread-safe. We can deal with this issue by adding a
member variable _lcMutex (life cycle mutex) to the factory. This
mutex can be locked by create, destroy, and list to prevent
concurrent access to the set of persons.

We also have another issue with destroy: when a person is
destroyed, we must remove the corresponding entry from the facto-
ry’s set of persons, so destroy must somehow inform the factory
when a person disappears. This is the purpose of the _remove
method: it removes the specified name from the _persons set
and removes the servant’s ASM entry under protection of the _
lcMutex lock. Of course, for destroy to be able to call _remove,
it must hold a smart pointer to the factory. Seeing that the factory
is a singleton, we can do this by adding a static _factory member
to our PersonI class:

// C++
class PersonI : public Person
{
public:
 // ...
 static PersonFactoryIPtr _factory;
private:
 string _name;
 string _addr;
};

The code in main then creates the factory and initializes the static
member variable, for example:

// C++
PersonI::_factory = new PersonFactoryI();
// Add factory to ASM and activate object
// adapter...

All this is fine as far as it goes, but it leaves a bad taste in our
mouth because it sets up a cyclic dependency: the factory class
knows about the person class, and the person class knows about the
factory so it can call _remove. In general, such cyclic dependen-
cies are a bad idea: if nothing else, they make a design harder to
understand (and are possibly an indication of sloppiness).

We could remove the cyclic dependency by moving the person
set and its associated mutex into a separate class instance that
is referenced from both PersonFactoryI and PersonI. That
would get rid of the cyclic dependency as far as the C++ type
system is concerned but, as we will see later, it would not really
help because the factory and the servants turn out to be mutually
dependent regardless. So, for the moment, I will stay with this
design, simply so we can look at the threading issues around life

cycle and collection manager operations. Once we have covered
the basic ideas, I will present an alternative design that solves the
cyclic dependency problem much more elegantly.

Implementation
With the design as it stands, list can be implemented as follows:

// C++
PersonSeq
PersonFactoryI::list(const Current& c) const
{
 Mutex::Lock lock(_lcMutex);

 PersonSeq ps;
 set<string>::const_iterator i;
 for(i = _persons.begin(); i != _persons.end();
 ++i)
 {
 ps.push_back(PersonPrx::uncheckedCast(
 c.adapter->createProxy(
 stringToIdentity(*i))));
 }
 return ps;
}

Note that list acquires a lock on the life cycle mutex, to prevent
concurrent modification by create and destroy. In turn, our
create implementation now also locks the life cycle mutex:

// C++
PersonPrx
PersonFactoryI::create(const string& name,
 const string& addr,
 const Current& c)
{
 Mutex::Lock lock(_lcMutex);
 PersonPrx p;
 try
 {
 p = PersonPrx::uncheckedCast(
 c.adapter->add(
 new PersonI(name, addr),
 stringToIdentity(name)));
 }
 catch(const AlreadyRegisteredException&)
 {
 throw PersonExists();
 }
 _persons.insert(name);
 return p;
}

This implementation is safe in the face of concurrent execution of
list: only one of create and list can access the person set at a
time, so there are no race conditions.

The implementation of destroy similarly acquires the life cycle
mutex, by calling _remove on the factory:

LIfe cycLe OperatIOns

Connections
ZeroC’s Newsletter for the Ice Community

Page �4 Issue �4, May 2006 Page �5Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �5Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

// C++
void
PersonI::destroy(const Current& c)
{
 _factory->_remove(_name, c.adapter);
}

The _remove implementation locks _lcMutex, removes the ASM
entry, and deletes the person’s name from the _persons set:

void
PersonFactoryI::_remove(
 const string& name,
 const ObjectAdapterPtr& a)
{
 Mutex::Lock lock(_lcMutex);
 try
 {
 a->remove(stringToIdentity(name));
 }
 catch(const NotRegisteredException&)
 {
 throw ObjectNotExistException(
 __FILE__, __LINE__);
 }
 _persons.erase(name);
}

With this implementation, create, list, and destroy are cor-
rectly interlocked. Only one of the three operations can proceed
at a time, so we can be sure not to corrupt the _persons set with
concurrent updates.

Life Cycle and Normal Operations
So far, we have mostly ignored the implementation of the
name, getAddress, and setAddress operations. Obviously,
getAddress and setAddress must be interlocked against con-
current access, otherwise one client could modify the address while
another client is reading it. To deal with this, we can add a mutex
_m to PersonI:

// C++
class PersonI : public Person
{
public:
 // ...
private:
 string _name;
 string _addr;
 Mutex _m;
};

string
PersonI::getAddress(const Current&) const
{
 Mutex::Lock lock(_m);
 return _addr;
}

void
PersonI::setAddress(const string& addr,
 const Current&)
{
 Mutex::Lock lock(_m);
 _addr = addr;
}

This looks good but, as you might have expected, the presence of
destroy throws a spanner into the works: as shown, this code
suffers from a rare, but real, race condition. Consider the situ-
ation where a client calls destroy at the same time as another
client calls setAddress. The two calls are dispatched in separate
threads and can therefore proceed concurrently.

The following sequence of events can occur:

�. The thread dispatching the setAddress call locates the ser-
vant, enters the operation implementation, and is suspended
by the scheduler immediately on entry, before it executes any
of the statements in the body of the operation.

2. The thread dispatching the destroy call locates the servant,
enters destroy, acquires the life cycle lock, successfully
removes the servant from the person set and the ASM, and
returns.

3. The thread calling setAddress is scheduled again, acquires
the lock, and now operates on a conceptually already-de-
stroyed Ice object.

The problem here is that a thread can enter the servant and be
suspended before it gets a chance to acquire a lock. With the code
as it stands, this is not a problem: setAddress will simply update
the address of a servant that no longer has an ASM entry. In other
words, the Ice object is already destroyed—it’s just that the servant
is still hanging around because there are still operations executing
inside it. Any updates to that servant will succeed (even though
they are useless because the servant’s destructor will run as soon as
the last operation leaves the servant).

While this race condition does not affect our implementation, it
does affect more complex applications, particularly if the applica-
tion modifies external state, such as a file system or database. For
example, setAddress could modify a file in the file system; in
that case, destroy would delete that file and probably close a
file descriptor. If we were to allow setAddress to execute after
destroy has already done its job, we would likely encounter prob-
lems: either setAddress would not find the file where it expects
it to be or try and to use the closed file descriptor and return with
an error or, worse, setAddress could end up re-creating the file in
the process of updating the already destroyed person’s address. (Of
course, we can handle this error condition but, for systems with
more complex servant implementations, dealing with such errors
can be more difficult.)

This scenario illustrates a general issue for applications that
allow clients to destroy objects: we must consider, for each
operation on a servant, whether concurrent destruction of that

LIfe cycLe OperatIOns

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue �4, May 2006 Page �7Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �7Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

servant can cause the operation to fail or to corrupt system state.
If so, we must make sure that operations such as setAddress
notice when the object has been destroyed previously and throw
an ObjectNotExistException. We can do this by adding
a _destroyed member to the PersonI servant. This mem-
ber is initialized to false by the constructor and set to true by
destroy. On entry to every operation (including destroy),
we lock the mutex, test the _destroyed flag, and throw
ObjectNotExistException if the flag is set:

// C++
class PersonI : public Person
{
public:
 // ...
private:
 string _name;
 string _addr;
 bool _destroyed;
 Mutex _m;
};

PersonI::PersonI(const string& name
 const string& addr) :
 name(_name), _addr(addr), _destroyed(false)
{
}

string
PersonI::name(const Current&) const
{
 Mutex::Lock lock(_m);
 if(_destroyed)
 {
 throw ObjectNotExistException(
 __FILE__, __LINE__);
 }
 return _name;
}

string
PersonI::getAddress(const Current&) const
{
 Mutex::Lock lock(_m);
 if(_destroyed)
 {
 throw ObjectNotExistException(
 __FILE__, __LINE__);
 }
 return _addr;
}

void
PersonI::setAddress(const string& addr, const
Current&)
{
 Mutex::Lock lock(_m);
 if(_destroyed)
 {
 throw ObjectNotExistException(

 __FILE__, __LINE__);
 }
 _addr = addr;
}

void
PersonI::destroy(const Current& c)
{
 Mutex::Lock lock(_m); // Dubious!
 if(_destroyed)
 {
 throw ObjectNotExistException(
 __FILE__, __LINE__);
 }
 _destroyed = true;
 _factory->_remove(_name, c.adapter);
}

If you are concerned about the repeated code to test the
_destroyed flag and throw ObjectNotExistException on
entry to each operation, you can bundle that code into a member
function or base class to make it reusable. (I’ll leave this an exer-
cise.)

With this implementation, if an operation is dispatched, but sus-
pended before its body executes and, meanwhile, destroy runs to
completion, it becomes impossible for an operation to operate on
the state of a “zombie” servant: the test on entry to each operation
ensures that any operation that runs after destroy is immediately
“thrown out.”

Also note the “dubious” comment in destroy: the operation
first acquires the mutex _m and, while holding that mutex, calls
_remove, which attempts to lock the life cycle lock. This is not
wrong as such but, as we will see in a moment, it can easily lead to
deadlock if the application is modified later.

Removing Cyclic Dependencies
Earlier, I said that factoring the person set and its mutex into a sep-
arate class instance would not really solve the cyclic dependency
problem (at least not in general). To see why, suppose that we want
to expand our factory with a new getDetails operation:

// Slice
struct PersonDetails
{
 Person* proxy;
 string name;
 string address;
};
sequence<PersonDetails> PersonDetailsSeq;

interface PersonFactory
{
 // ...
 PersonDetailsSeq getDetails();
};

LIfe cycLe OperatIOns

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue �4, May 2006 Page �7Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �7Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

This kind of operation is common in collection managers: in-
stead of returning a simple list of proxies, getDetails returns a
sequence of structures, each of which contains not only the object’s
proxy, but also some of the state of the corresponding object. The
motivation for this is performance: with a plain list of proxies, the
client, once it has obtained the list, is likely to immediately follow
up with one or more remote calls to the objects in the list in order
to retrieve their state, which is inefficient.

To implement getDetails, we need to iterate over the set of
persons and invoke the name and getAddress operation on each
person to retrieve the state that is to go into each PersonDetails
structure. But that turns out to be rather dangerous because the fol-
lowing sequence of events is possible:

• Client A calls getDetails.
• The implementation of getDetails must lock the life cycle

mutex to ensure that the set of persons cannot change while it
iterates over the set.

• Client B calls destroy on an object.
• The implementation of destroy locks the object’s mutex _m,

sets the _destroyed flag, and then calls _remove, which
attempts to lock _lcMutex. In turn, _lcMutex is already
locked by getDetails, so _remove blocks until _lcMutex
is unlocked.

• If getDetails now invokes the getAddress operation
on the same object, getAddress will attempt to lock that
object’s mutex _m.

At this point, everything stops, because each operation holds a lock
on a mutex while it tries to acquire another mutex that is already
locked by the other operation.

There are two basic ways to address this problem:

• Change the locking such that the deadlock becomes impos-
sible.

• Abandon the idea of calling back from servants into the col-
lection manager, and use a reaping strategy instead.

Deadlock-Free Lock Acquisition
The first option is fairly easy to implement for our example: in
destroy, we set the _destroyed flag while _m is locked, and
then unlock _m again before calling back into the factory:

void
PersonI::destroy(const Current& c)
{
 {
 Mutex::Lock lock(_m);
 if(_destroyed)
 {
 throw ObjectNotExistException(
 __FILE__, __LINE__);
 }
 _destroyed = true;

 }
 _factory->_remove(_name, c.adapter);
}

This fixes the problem because destroy releases _m before
acquiring _lcMutex, so any operation invocations made by
getDetails do not deadlock on _m. But there is a more serious
issue with this approach: for a more complex application, rear-
ranging locking in this fashion may be quite difficult. If callbacks
involve several objects and do complex things, it can be next to
impossible to prove that the code is free of deadlocks. This is
particularly true if the code uses condition variables and suspends
threads until a condition becomes true. (You may want to check out
Bernard Normier’s articles in Issue 4 and Issue 5 of Connections,
which examine strategies for dealing with deadlocks in detail.)

At the core of the problem is that concurrency can create circular
locking dependencies: an operation on the factory can require the
same locks as a concurrent call to destroy. This is one reason
why threaded code is harder to write than sequential code—the
semantic interactions among operations require locks, but depen-
dencies among the various locks are not immediately obvious. In
effect, locks set up an entirely separate and largely invisible set of
dependencies: it was easy to spot the mutual dependency between
PersonFactoryI and PersonI because the dependency was
manifest in the type system; in contrast, it was much harder to
spot the lurking deadlock in the implementation of destroy. And,
worse, the deadlock may never be found in testing and only show
up only once the application is deployed.

Servant Reaping
Rather than going to great lengths to ensure that no deadlocks are
possible in the face of concurrent execution of normal operations,
collection manager operations, and destroy, it is often better to
change to a reaping strategy: instead of updating the factory’s set
of persons immediately, destroy marks a servant as destroyed
and removes its ASM entry, and the factory deals with updating the
set of servants at a more convenient time. Here is an outline of this
approach:

• destroy marks the servant as destroyed and removes the
ASM entry as usual, but does not call back into the factory to
update the set of persons.

• Every time create or list are called, the factory scans
the set of servants and removes any servants that have been
destroyed.

 This makes for a much cleaner design: it avoids both the cyclic
type dependency and the cyclic locking dependency.

To implement reaping, we need to change the definition of
PersonI. It no longer has a static smart pointer to the factory but
now provides a member function _isZombie that allows the fac-
tory to check the _destroyed flag of a servant:

LIfe cycLe OperatIOns

http://www.zeroc.com/newsletter/issue4.pdf
http://www.zeroc.com/newsletter/issue5.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �8 Issue �4, May 2006 Page �9Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �9Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

// C++
class PersonI : public Person
{
public:
 PersonI(const string&,
 const string&);
 virtual string name(
 const Current&) const;
 virtual string getAddress(
 const Current&) const;
 virtual void setAddress(
 const string&, const Current&);
 virtual void destroy(const Current&);
 bool _isZombie() const;

private:
 string _name;
 string _addr;
 Mutex _m;
 bool _destroyed;
};
typedef Handle<PersonI> PersonIPtr;

The implementation of _isZombie is trivial: it returns the
_destroyed flag under protection of the lock:

// C++
bool
PersonI::_isZombie() const
{
 Mutex::Lock lock(_m);
 return _destroyed;
}

The implementation of destroy no longer calls back into the
factory to update the person set. Instead, it simply sets the _
destroyed flag and removes the servant’s ASM entry:

void
PersonI::destroy(const Current& c)
{
 Mutex::Lock lock(_m);
 if(_destroyed)
 {
 throw ObjectNotExistException(
 __FILE__, __LINE__);
 }
 _destroyed = true;
 c.adapter->remove(c.id);
}

The PersonFactoryI class now stores a map of name–servant
pairs instead of a set of names:

// C++
class PersonFactoryI : public PersonFactory
{
public:
 // Constructor and Slice operations here...

private:
 typedef map<string, PersonIPtr> PMap;

 mutable Pmap _persons;
 Mutex _lcMutex;
};

The implementation of create illustrates how reaping works. As
for the previous implementation, create first instantiates a servant
and attempts to adds it to the ASM. But, before adding the servant
to the _persons map, it scans the map for zombies and removes
them:

// C++
PersonPrx
PersonFactoryI::create(const string& name,
 const string& addr,
 const Current& c)
{
 Mutex::Lock lock(_lcMutex);
 PersonPrx p;
 PersonIPtr servant;
 try
 {
 servant = new PersonI(name, addr);
 p = PersonPrx::uncheckedCast(
 c.adapter->add(
 servant, stringToIdentity(name)));
 }
 catch(const AlreadyRegisteredException&)
 {
 throw PersonExists();
 }
 PMap::iterator i = _persons.begin();
 while(i != _persons.end())
 {
 if(i->second->_isZombie())
 {
 _persons.erase(i++);
 }
 else
 {
 ++i;
 }
 }
 _persons[name] = servant;
 return p;
}

The implementation of list similarly scans the map for zombie
servants. Because list needs to iterate over the map anyway,
reaping incurs essentially no extra cost:

PersonSeq
PersonFactoryI::list(const Current& c) const
{
 Mutex::Lock lock(_lcMutex);
 PersonSeq ps;
 PMap::iterator i = _persons.begin();
 while(i != _persons.end())
 {
 if(i->second->_isZombie())
 {
 _persons.erase(i++);

LIfe cycLe OperatIOns

Connections
ZeroC’s Newsletter for the Ice Community

Page �8 Issue �4, May 2006 Page �9Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �9Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

 }
 else
 {
 ps.push_back(PersonPrx::uncheckedCast(
 c.adapter->createProxy(
 stringToIdentity(i->first))));
 ++i;
 }
 }
 return ps;
}

With this approach, we have a much cleaner design: there is no cy-
clic dependency (either explicit, in the type system, or implicit, as
a locking dependency) between the factory and the servants. More-
over, the implementation is easier to understand, once you get used
to the idea of reaping: there is no need to follow complex callbacks
and to carefully analyze the order of lock acquisition. In general,
for all but the most trivial applications, reaping is therefore a better
approach than calling back from the servants into the factory.

Alternative Reaping Implementations
One thing you might be concerned about is that, with reaping,
the cost of create has increased from O(log n) to O(n) because
create now iterates over the map of persons and locks and
unlocks every servant in the map. Generally, this is not an issue
because life cycle operations are called infrequently compared to
normal operations. You will notice this additional cost only if you
have a very large number of servants (in the tens of thousands at
least) and life cycle operations are called very frequently.

If you find that create is a bottleneck (by profiling the applica-
tion, not by guessing!), you can change to a more efficient imple-
mentation by adding zombie servants to a separate set. In that case,
reaping iterates over the zombie set instead of the main map and
removes each servant that is in the zombie set from the main map.
With this change, create is still an O(n) operation, but the cost
is reduced to being proportional to the number of zombie servants,
instead of the total number of servants. In addition, we can lock
and unlock just once, instead doing it n times.

You may also be concerned about the number of zombie ser-
vants that can accumulate in the server if create is not called for
some time. Again, for most applications, this is not a problem: the
servants occupy memory, but no other resources because destroy
can still clean up scarce resources, such as network connections
and file descriptors. If you really need to prevent accumulation of
zombie servants (again, determined by profiling, not by guessing!),
you can reap from a background thread that runs periodically, or
you can count the number of zombies and trigger a reaping pass
once that number exceeds some threshold.

Life Cycle and Parallelism
When we look at the degree of concurrency that is supported by
our application, we find:

• All operations on the factory are serialized, so only one of
create, list, and find can execute at a time.

• Concurrent operation invocations on the same servant are
serialized, but concurrent operation invocations on different
servants can proceed in parallel.

For the vast majority of applications, this is entirely adequate: life
cycle operations are rare compared to normal operations, as are
concurrent invocations on the same servant. However, for some
applications, serializing list and find can be a problem, particu-
larly if they are implemented by iterating over a large number of
records in a collection of files or a database. In that case, the opera-
tion might take quite a while to complete. Moreover, list and
find do not actually change any application-visible state so, on the
face of it, there is no reason to prevent clients from executing these
operations concurrently.

If you find that you need the extra concurrency, you can inter-
lock create, list, and find by using a read–write recursive
mutex. Such a mutex provides separate operations for acquiring a
read lock and a write lock. Multiple readers can concurrently hold
a read lock, but a write lock requires exclusive access: the write
lock is granted to exactly one writer only once there are no readers
or writers holding the lock. If a writer is waiting to get a write lock,
readers attempting to get a read lock are delayed, that is, writers
are given preference and get hold of the write lock as soon as the
last current reader releases its lock.

Ice provides a read–write recursive mutex with the IceUtil::
RWRecMutex class. We can gain increased parallelism by changing
the type of _lcMutex to RWRecMutex. create then acquires a
write lock on this mutex, and list and find acquire a read lock.
This allows calls to list and find to proceed concurrently, but
create can run only while no calls to list and find, and no
other calls to create are in progress:

// C++
class PersonFactoryI : public PersonFactory
{
public:
 // ...

private:
 // ...
 RWRecMutex _lcMutex;
};

PersonPrx
PersonFactoryI::create(const string& name,
 const Current& c)
{
 RWRecMutex::WLock lock(_lcMutex);// Write lock
 // ...
}

LIfe cycLe OperatIOns

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue �4, May 2006 Page 2�Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

PersonSeq
PersonFactoryI::list(const Current& c) const
{
 RWRecMutex::RLock lock(_lcMutex); // Read lock
 // ...
}

PersonPrx
PersonFactoryI::find(const string& name,
 const Current& c) const
{
 RWRecMutex::RLock lock(_lcMutex); // Read lock
 // ...
}

Note that this change also requires us to drop reaping in list and
to only reap in create because reaping modifies the factory’s
state, but list acquires a read lock, not a write lock.

Similarly, you can use a read–write mutex for normal servant
operations. For example, getAddress can acquire a read lock
and setAddress can acquire a write lock, so concurrent calls to
getAddress can proceed in parallel.

Be aware that providing such increased concurrency is worth it
only if clients indeed call operations concurrently and, moreover,
the operations are long-running. If either of these conditions does
not hold, you are better off just sticking with the simple solution I
presented earlier, namely, to strictly serialize operations on the fac-
tory and each servant. (It is easy to fall into the trap of premature
optimization, especially with threaded programs. I urge you not to
optimize unless you have performed an analysis to show that the
optimization will actually optimize something.)

What’s in a Name?
Earlier, I mentioned that using a person’s name as the object
identity might be a bad idea. Why is this? To understand the issue,
consider the following scenario:

• Client A creates a new person with name Fred.
• Client A passes the proxy for the Fred person as a parameter

of a remote call to another part of the system, say, server B.
• Server B remembers Fred’s proxy.
• Client A decides that person Fred is no longer needed and

invokes Fred’s destroy operation.
• Some time later, client C creates a new person object whose

name also happens to be Fred.
• Server B decides that it needs to get the address of the Fred

person it was originally passed by client A and invokes the
getAddress operation on its remembered proxy.

At this point, things are likely to go horribly wrong: server B
thinks that it is obtaining the address of the original Fred person.
However, that Fred person no longer exists: the Fred person that
does exist is a completely different person (presumably with a
completely different address).

What is happening here is that Fred has been reincarnated
because the same object identity was used for two different Ice
objects. While such object reincarnation might have a certain Hin-
duist appeal, it is generally a bad thing. In particular, consider the
following two interfaces:

// Slice
interface Process
{
 void launch(); // Start process
 // ...
};

interface NuclearBomb
{
 void launch(); // Kill a lot of people
 // ...
};

Replaying the above scenario, if client A creates a Process object
called “Little Boy” and destroys that object again, and client C
creates a NuclearBomb called “Little Boy”, when server B calls
launch, it will launch a nuclear bomb instead of a process.2 Ad-
mittedly, this example is contrived, but it illustrates an important
point: when the Ice run time dispatches a request, exactly three
items determine where the request ends up being processed:

• the endpoint at which the server listens for incoming requests
• the identity of the Ice object that is the target of the request
• the name of the operation that is to be invoked on the Ice

object

It follows that, if object identities are insufficiently unique, it is
possible for a request to be processed by an entirely unexpected Ice
object, provided that object supports an operation with the same
name, and that the parameters passed to one operation happen to
decode correctly when interpreted as the parameters to the other
operation. (This is rare, but not impossible, depending on the type
and number of parameters.)

The crucial question is, what do we mean by “insufficiently
unique”? As far as call dispatch is concerned, identities must be
unique only per object adapter. This is because the ASM does not
allow you to add two entries with the same object identity; by
enforcing this, the ASM ensures that each object identity maps to
exactly one servant. (Note that the converse, namely, that servants
in ASM entries must be unique, is not the case: the ASM allows
you to map different object identities to the same servant, which is
useful if you want to implement stateless façade objects—see the
Ice manual for more information on façade servants.) So, as far as
the run time is concerned, it is perfectly OK for you to reuse object
identities for different Ice objects.

2. This tacitly assumes that Process and NuclearBomb are
implemented by the same object adapter, so requests for either
interface end up being sent to the same endpoint.

LIfe cycLe OperatIOns

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue �4, May 2006 Page 2�Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

So, why does the run time not prevent you from reusing identi-
ties? After all, that would avoid the problem entirely. The answer
is that doing so would require the run time to remember every
object identity that has ever been used—clearly, that is impos-
sible because the run time would have to remember an unbounded
amount of state. Ice deals with the problem by declaring it an SEP
(Somebody Else’s Problem).3 In this particular case, that somebody
else is you, the application developer. The Ice object model simply
assumes that all object identities are globally unique in space and
time, but it cannot enforce that assumption; the run time relies on
you, the developer, to make object identities “sufficiently unique”.

So, how should you deal with the problem? One option is to
simply ignore it and do nothing. This sounds facetious, but isn’t.
For many applications, due to the way they are structured, the
problem never arises: application-specific constraints automatically
ensure that object identities are never reused. For example, if you
use a social security number as a person’s identity, the problem
cannot arise because the social security number of a deceased per-
son is not given to another person (or so one would hope…).

Another option is to allow identity reuse and to write your appli-
cation components such that they can deal with reused object iden-
tities: if nothing bad happens when an identity is reused, there is no
problem. (This will be the case if you know that the life cycles of
two different objects with the same identity can never overlap.)

However, even if identity reuse does not pose a problem for your
application, you should still give consideration to using globally
unique identities for at least some of your objects. One reason for
this is IceGrid: IceGrid supports well-known proxies. In stringified
form, a well-known proxy looks like this:

Fred

Note that this proxy does not contain an endpoint or adapter name.
The only thing it contains is an object identity. When a client uses
such a proxy to invoke an operation, the Ice run time consults
IceGrid behind the scenes to ask it where the server for this object
can be found. In other words, servers can advertise the identities
of specific objects with IceGrid and hand out proxies that only
contain an object identity to clients. IceGrid maps well-known
proxies to proxies with endpoints and returns a direct proxy (which
contains the server’s endpoints) to the client-side run time when
a client invokes on a well-known proxy. The advantage of using
well-known proxies is that they simplify client configuration. Also,
because well-known (and indirect) proxies do not contain endpoint
information, you can move a server to a different machine without
invalidating the proxies that were given to clients.

3. With apologies to Douglas Adams, who created the SEP in Life,
the Universe, and Everything.

For well-known proxies to work, they must be unique within an
IceGrid domain, that is, none of the well-known objects of all serv-
ers that use a particular IceGrid registry can have the same identity.
Of course, this requirement is a lot more stringent than uniqueness
only within a single object adapter within a single server.

If you intend to use well-known proxies, your object identities
must be unique within the IceGrid domain. Similarly, if you intend
to support object migration (that is, moving a number of object
implementations from one server to another to rebalance load),
object identities must be unique across the source and target server.
So, at least for your well-known objects (typically, a handful of key
objects that clients need for bootstrapping), you should consider
using globally unique identities. Fortunately, Ice makes this easy.
You can generate an object identity that is a universally unique
identifier (UUID) by calling addWithUUID on the object adapter,
instead of calling add and supplying your own object identity

UUIDs are guaranteed to be unique forever,4 so it becomes im-
possible to intentionally or accidentally reuse an object identity.

Now, before you go and rush off and change all your object
identities to UUIDs, keep in mind that they do add a little bit of
overhead. For one, UUIDs occupy 36 bytes, so they can be larger
than an Ice object’s “natural” identity. Second, if you want to
store object state in a database, you must add an extra field to your
database table to store the UUID. However, this is rarely an issue,
unless objects contain only a very small amount of state. (You
might also want to check out Matthew Newhook’s article A Per-
sistent Chat Server in Issue 7 of Connections, which also discusses
UUIDs and persistence.)

In general, I recommend that, if an Ice object naturally contains
a unique item of state (such as a social security number), you
should use that item as the object identity. On the other hand, if the
natural object identity is insufficiently unique, you can use a UUID
as the object identity. (This is particularly useful for anonymous
transient objects, such as session objects, that may not have a
natural identity.)

For well-known objects, you can either use a UUID, or establish
uniqueness by convention. For example, you could use a domain
name and department prefix (or any other suitable administra-
tive convention) to create identities for well-known objects, such
as com.AcmeCorp.ProjectX.Testing.Fred. This has the
advantage of providing human-readable unique identities, which
makes configuration a little easier. (UUIDs look something like
746ccfc0-7907-4002-92df-0be5b72b4abb and are therefore not all
that user-friendly.)

4. Well, depending on the implementation, not quite guaranteed,
but generating the same UUID twice is so unlikely that there is no
point in worrying about it.

LIfe cycLe OperatIOns

http://www.zeroc.com/newsletter/issue7.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 22 Issue �4, May 2006 Page 23Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 23Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Recap
Having read through the preceding text, you may be surprised at
how difficult it is to provide life cycle operations for such a simple
application. Supporting create is usually straightforward and
does not add much complexity, but supporting destroy requires
careful thought because the actions of destroy can interfere with
the semantics of other operations; if we want to provide concurrent
access for clients, the implementation requires some care. (Inci-
dentally, this is a common theme in distributed computing: tearing
things down cleanly is usually a lot harder than setting them up;
most programmers are quite spoiled by the ability to simply call
exit and have the operating system worry about how to clean up
the mess.) In general, you should give the reaping approach serious
consideration: it is less likely to cause deadlock, easier to under-
stand, avoids circular dependencies, and applies more generally
than the callback approach.

I hope you will find this article useful the next time you contem-
plate the wheel of life and death of your objects. As usual, you can
download the source code for this article from our web site. Feel
free to use the code as is or to modify it to suit your requirements.
Please contact me in ZeroC’s forum if you would like to further
discuss object life cycle.

LIfe cycLe OperatIOns

http://www.zeroc.com/newsletter/issue14/lifecycle.zip
http://www.zeroc.com/vbulletin

Connections
ZeroC’s Newsletter for the Ice Community

Page 22 Issue �4, May 2006 Page 23Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 23Issue �4, May 2006 Connections
ZeroC’s Newsletter for the Ice Community

faQ cOrner

FAQ Corner

In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: How do I use ACE and Ice together?

When you try to use ACE and Ice in the same C++ program, you
might encounter a compilation error similar to this one:

C:\Ice\include\Ice/Application.h(33) : error
C2487: ‘ace_os_main_i’ : member of dll interface
class may not be declared with dll interface

The problem is caused by a macro that ACE uses to redefine main:

define main \
ace_os_main_i (int, char *[]); //...

As you might expect, this macro causes conflicts with member
functions named main, such as Ice::Application::main.

You can work around this problem by rearranging your header
files: first include all necessary Ice header files, then include the
ACE header files.

Q: How can I increase the maximum number of
threads my C++ application can create?

A program that creates many threads is generally restrained by
the availability of virtual memory because the operating system
allocates a stack for each new thread. The default size of this stack
varies by operating system; on Windows and Linux, the default
size is 1MB. This value is typically sufficient for most needs, but
we clearly cannot expect it to be appropriate for every application.
If a 32-bit program is creating hundreds or thousands of threads,
it’s going to hit the virtual memory limit quite soon if it accepts the
default stack size.

The thread’s stack is consumed by local variables, nested func-
tion calls, and recursion, therefore selecting a smaller stack size
should only be done with careful consideration (and a lot of test-
ing!). You, as the developer, are the best judge of a suitable size for
the stack.

 If you decide to change the stack size, you have several options.
For example, many linkers allow you to specify a different default

stack size, which affects every thread the program creates. You can
also change the size more selectively by specifying it individually
for each thread. The IceUtil::Thread class allows you to sup-
ply a different size for the stack when calling the start method,
as shown below:

IceUtil::ThreadPtr t = ...
t->start(32 * 1024); // 32K stack

In Ice applications, the Ice run time uses configuration properties
to determine the stack size of the threads it creates. For example,
the default client and server thread pools use the properties Ice.
ThreadPool.Client.StackSize and Ice.ThreadPool.
Server.StackSize, respectively. If you’ve configured an object
adapter MyAdapter with its own thread pool, the stack size config-
uration property is named MyAdapter.ThreadPool.StackSize.

When using the thread-per-connection concurrency mod-
el, in which the Ice run time creates a new thread for each
connection, the relevant configuration property is Ice.
ThreadPerConnection.StackSize. This property can be espe-
cially important when configuring a Glacier2 router that handles a
large number of connections.

Finally, it’s important to understand that it is rarely advanta-
geous to create lots of threads. For compute-bound applications,
it’s best to limit the number of threads to the number of physical
processors in the host machine; adding any more threads only
increases context switches and reduces performance. Additional
threads can improve responsiveness when threads can become
blocked while waiting for the operating system to complete a task,
such as a network or file operation. However, having an abundance
of threads is not like having an abundance of beer: if performance
is good with ten threads, it will not be as good with one thousand
threads, as all of those threads are competing for processor time
and will drag your system’s performance to its knees.

http://www.zeroc.com/vbulletin/
http://www.cs.wustl.edu/~schmidt/ACE.html

	Integrating Ice with a GUI: Part III
	The Samsara of Objects: Life Cycle Operations
	FAQ Corner

