
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �5, July 2006

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 15, July 2006

The Emperor has No
Clothes
Last month, ACM Queue published
“The Rise and Fall of CORBA”. It
certainly looks like the article touched
a nerve with many people, and I
received a lot of comments about it.
(The overwhelming majority of com-
ments was very positive). Briefly, the

article examines why CORBA failed to live up to its promises and
concludes that, apart from technical failings, CORBA’s demise was
caused by the process that was used to create it: software consor-
tiums inevitably encourage design-by-committee, incompetence,
political infighting, jostling for position, conflict of interest, distrust
among the participants, and dishonesty. The end result of this
process is something that, at best, is mediocre (and, often, far worse
than that).

The worrying thing in all this is not the trouble with CORBA—
CORBA is merely one victim. What really worries me is that much
of the software industry (vendors and customers alike) insists on
adhering to this process, even though it pretty much guarantees
failure. As an example, Web services, the current silver bullet of
distributed computing, uses a process that is much the same, and
it seems inevitable that the end result will be very similar. Many
readers sent me e-mail about their experiences with other standards
bodies, and indicated that they observed many of the same pro-
cedural problems there. It is obvious that these problems are not
isolated incidents but are endemic to our industry.

We know from bitter experience that too many cooks spoil the
broth: Fred Brooks made that abundantly clear in his excellent
book The Mythical Man Month, first published in 1975. In the 20th
anniversary edition of his book, Fred Brooks wrote: “To my sur-
prise and delight, The Mythical Man-Month continues to be popu-
lar after 20 years.” That is quite a stunning remark: after all, how
many computing books do you know that are still popular 20 years
after they were written? (I can think of only a handful, among them
Donald Knuth’s brilliant series The Art of Computer Program-
ming). In 1999, Ed Yourdon published another book: Death March.
Yourdon’s book is also popular and, significantly, it teaches many
of the same lessons that Fred Brooks taught nearly 25 years earlier.
It now is the year 2006, and both books are just as popular as ever. I
cannot help but conclude that, in more than three decades, the sum
total of what the industry has learned about the process of creating
software is depressingly close to zero.

Wikipedia provides the following explanation for the title of this
editorial:

“Most frequently, the metaphor involves a situation wherein
the overwhelming (usually unempowered) majority of observers
willingly share in a collective ignorance of an obvious fact, despite
individually recognizing the absurdity.”

There is an oxymoron in this explanation: “usually unempow-
ered . . .willingly share . . . despite individually recognizing the
absurdity”. How can people recognize what is happening yet do
nothing about it? “Empowerment” means “to invest with power,
especially legal power or official authority” (dictionary.com).
People do not lose their power or authority by accident: they lose
it by choice, namely when they choose to remain silent in the face
of a ridiculously incongruous process: it is not the situation that is
disempowering—it is the act of remaining silent.

For our industry to be taken seriously, and to be trusted and
respected, we must stop treating customers like guinea pigs and
project strong personal ethics and commitment. As software pro-
fessionals, we must refuse to participate in development processes
that have been known to be ineffective for decades. For the sake
of your professional integrity, and for the sake of our industry,
the next time you see such a process, I encourage you to speak up
instead of joining a column of naked emperors marching toward
their grave…

Michi Henning
Chief Scientist

Issue Features

New Features in Ice 3.1/API Changes in Ice 3.1
These two articles discuss the changes in the Ice 3.� release.

Integrating Ice with a GUI: Part III
The final article in this series presents a technique for updating
the UI outside of the main thread.

Contents
New Features in Ice 3.� .. 2

API Changes in Ice 3.� ... 9

Integrating Ice with a GUI: Part IV �2

FAQ Corner .. 2�

http://www.acmqueue.org
http://www.zeroc.com/riseAndFallOfCorba.html
http://www.amazon.com/gp/product/0201835959/sr=8-1/qid=1150776282/ref=pd_bbs_1/102-7978496-8709736?%5Fencoding=UTF8
http://www.amazon.com/gp/product/0201485419/sr=1-1/qid=1150777109/ref=pd_bbs_1/102-7978496-8709736?%5Fencoding=UTF8&s=books
http://www.amazon.com/gp/product/0201485419/sr=1-1/qid=1150777109/ref=pd_bbs_1/102-7978496-8709736?%5Fencoding=UTF8&s=books
http://www.amazon.com/gp/product/0130146595/sr=1-2/qid=1150777938/ref=sr_1_2/102-7978496-8709736?%5Fencoding=UTF8&s=books
http://www.wikipedia.org
http://www.dictionary.com

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue �5, July 2006 Page 3Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 3Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

New Features in Ice 3.1

With the release of Ice 3.�, we have added quite a number of new
features. This article provides an overview of what has changed in
IceGrid, IceSSL, and the Java language mapping.

IceGrid Improvements in Ice 3.1
With the 3.� release, IceGrid includes a number of improvements
that help you to better utilize and secure deployed resources, and to
more efficiently configure the deployed applications of your grid.
The administrative GUI also provides significant improvements.

Allocation Facility
IceGrid allows you to easily deploy services on your network.
These services can be discovered by clients with the IceGrid::
Query interface or by using well-known proxies. However, one
thing that was lacking in the previous IceGrid release was a way
to coordinate access by clients to services. For example, if a client
used an instance of a service to do some computation, there was no
easy way to prevent other clients from using the same service.

The new IceGrid allocation mechanism addresses this short-
coming. It allows you to easily coordinate access by clients to
Ice objects or servers through the IceGrid::Session interface.
Clients first need to establish a session with the IceGrid registry
to get access to an instance of the IceGrid::Session interface.
This session can either be established directly with the IceGrid
registry through operations on the IceGrid::Registry interface,
or with Glacier2 by configuring the router to use session managers
provided by IceGrid.

The IceGrid::Session interface provides two operations to
allocate objects, allocateObjectById to allocate an object by
identity, and allocateObjectByType to allocate a random ob-
ject of the given type. If no objects are available when one of these
operations is called, the invocation can wait for a configurable
duration. If no objects become available during this duration, the
operation will eventually raise an IceGrid::AllocationTimeo
utException exception. An object allocated by a client cannot be
allocated by other clients until the object is released again. Clients
can explicitly release objects with the releaseObject operation
of the IceGrid::Session interface. Allocated objects are also
released when the client session is destroyed.

Objects can be allocated only if they are declared as allocat-
able in the server deployment descriptor. To declare an allocatable
object, the allocatable XML element must be used. This XML
element supports the same attributes as the object element. For
example:

// IceGrid XML
<server id="TheServer" exe="./server">
 <adapter name="TheAdapter">
 <allocatable identity="Obj-1"
 type="::App::Encoder">
 </adapter>
 </server>

In addition to objects, it is also possible to define servers as allo-
catable. Allocatable servers are useful for security purposes and for
the session activation mode (see below).

Property sets
The preferred way to configure deployed Ice servers is to use Ice
configuration properties. Properties are specified in server de-
scriptors, from which IceGrid generates a configuration file that
contains the properties for each server and passes the configuration
file via the --Ice.Config option on the command line.

With Ice 3.1, IceGrid improves the specification of these proper-
ties in descriptors by providing property sets. You can define a set
of properties at the application or node descriptor level and include
the property set in a server descriptor by using a reference to the
set. You can also specify a property set for a specific server or
service instance. This allows you to easily change the configuration
of a specific server or service template instance without having to
change its template descriptor.

Server Activation
On Unix platforms, it is now possible to set the user account under
which a server will be executed by the IceGrid node. To use this
feature, the IceGrid node must run as root. The user account to use
is specified in the server descriptor with the user attribute. It is
also possible to configure a user account mapper for each node to
map the value of the user attribute to a specific user account on a
specific node. This is useful if a user has different login names on
different machines.

We have also added two additional server activation modes:

• always: A server with this activation mode is activated as
soon as the node is started. The node ensures that the server
is always running. If the server is deactivated, the node will
re-start it. This activation mode is useful for servers that
are always supposed to be running and that cannot use the
on-demand activation mode (such as servers without indirect
adapters).

• session: A server with this activation mode is started on-
demand only if it is allocated by a client. A server is allocated
when a client allocates one of the allocatable objects in the
server. A server that uses the session activation mode cannot
be activated otherwise, for example, by attempts to access a
non-allocatable object. The server is deactivated again once it
is released by the client. This activation mode is useful to run
a server with the access privileges of the invoking client, and

New Features iN ice 3.1

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue �5, July 2006 Page 3Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 3Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

can also be used to restrict access to only the user who owns
the session.

Improved Security
To use the allocation facility, clients must authenticate with the
IceGrid registry. Clients can authenticate using a user name and
password, or via a secure connection (SSL). It is important to keep
in mind that the allocation facility only enables clients to coordi-
nates access to objects or servers, but does not restrict invocations
on objects and servers. (Any client with a proxy of an allocatable
object can invoke on the object, even if that client did not allocate
the object.)

To secure allocated objects or servers, or in other words, to
prevent clients from invoking on objects that they did not allocate,
you can combine IceSSL and the session activation mode to restrict
access to a server to only the client that allocated the server. You
can also use a Glacier2 router to route and filter requests to the de-
ployed servers: an IceGrid session created via a Glacier2 router can
only invoke on objects that were allocated by that same session.

Migration
The schema of the IceGrid registry database in Ice 3.� is incompat-
ible with the IceGrid release in Ice 3.0. To migrate your IceGrid
applications, you need to either re-deploy them or upgrade the
database. We have provided a simple Python script that uses
FreezeScript to upgrade an existing registry database. This script is
named upgradeicegrid.py and is located in the config direc-
tory of your Ice distribution. It takes the following arguments:

• the path of the Ice 3.0.x distribution,
• the path of the Ice 3.� distribution,
• the path of the IceGrid registry database environment to con-

vert; this should be the same path as the path specified by the
IceGrid.Registry.Data property,

• the path of a directory where the converted database environ-
ment will be saved.

For example, you can use the following command to convert the
registry database from the IceGrid simple demo:

/opt/Ice-3.1.0/config/upgradeicegrid.py \
/opt/Ice-3.0.1 /opt/Ice-3.1.0 \
~/Ice-3.0.1-demos/demo/IceGrid/simple/db/registry
~/Ice-3.1.0-demos/demo/IceGrid/simple/db/registry

The default templates from the config/templates.xml
descriptor also changed significantly in Ice 3.1. We have removed
most of the optional settings from the template definitions. To set
specific configuration properties, you can instead specify them in
the server instance property set descriptors.

GUI
The IceGrid GUI in Ice 3.� saw a number of improvements since
version 3.0:

• It is now possible to read application descriptors from files,
and save application descriptors to XML files.

• The state of a live deployment (such as the PID of a running
server) together with actions on such live deployments (such
as starting an idle server) and the editing of application defini-
tion are now shown in separate tabs. .

• It is now possible to list, register and unregister dynamic well-
known objects directly with the GUI. The GUI also allows
you to list and (if desired) unregister dynamically registered
object adapters.

The GUI also supports all of the new IceGrid features, such as
property-sets, allocatable objects, and the new activation modes.

Changes to IceSSL in Ice 3.1
With the 3.� release, Ice includes completely revamped C++ and
Java implementations of IceSSL, our SSL transport plug-in, as well
as a brand-new implementation for C# and Visual Basic in .NET
2.0. Although there are some differences among the platforms,
we made every effort to unify their feature sets and configuration
options in order to streamline the process of incorporating secure
communications into your Ice applications.

General Changes
In previous Ice releases, you were able to configure the plug-in’s
“client” and “server” behavior independently, where the client con-
figuration affected outgoing connections and the server configura-
tion applied only to incoming connections. This separation made it
possible for a single program to use different certificates depending
on whether the program was playing the role of client or server in a
particular situation, in effect giving the program multiple identi-
ties. Upon review, we felt this use case was unlikely to be used in
practice and did not justify the extra complexity: In most cases, a
program has a single identity regardless of the roles it plays, so we
changed IceSSL’s configuration scheme for the 3.1 release accord-
ingly. If your program relies on the ability to configure multiple
identities, you can still do so with Ice 3.� by creating a separate
communicator instance for each identity.

C++ Migration
The C++ plug-in underwent the most dramatic change because we
completely overhauled its configuration scheme. The plug-in no
longer uses an XML file to describe its configuration, but rather
relies solely on regular Ice configuration properties. Although the
XML file provided a degree of flexibility, it was overly complex
and difficult to read. The new plug-in offers equivalent functional-
ity, with the added benefit of eliminating the dependency on an ex-
ternal file. As an example of how easily you can configure IceSSL,

New Features iN ice 3.1

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �5, July 2006 Page 5Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

let’s have a look at the ubiquitous hello demo located in demo/
Ice/hello. The IceSSL properties from the client’s configuration
file are shown below:

C++ configuration
Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=../../../certs
IceSSL.CertAuthFile=cacert.pem
IceSSL.CertFile=c_rsa1024_pub.pem
IceSSL.KeyFile=c_rsa1024_priv.pem

The first item of interest is the value of the Ice.Plugin.IceSSL
property, which has changed in Ice 3.1. This property specifies the
entry point for the plug-in that enables the Ice run time to load it
dynamically from a shared library or DLL. You will need to update
your configuration to use the new entry point.

The remaining properties indicate the names of certificate and
key files, as well as the name of a default directory in which to
find these files. Although IceSSL supports a number of additional
properties, their default values are sufficient for this example, so
we don’t need to define them.

To assist you in migrating an XML file to the new configu-
ration properties, Ice 3.� includes the Python script config/
convertssl.py that accepts the XML filename as an argument
and emits equivalent configuration properties to standard output.
The resulting properties represent a starting point and may require
modification. For example, the script cannot suggest a value for
the IceSSL.DefaultDir property because its equivalent in prior
releases is not specified in the XML file; you will usually need to
add a definition for this property.

Java Migration
The removal of separate client and server configurations, as dis-
cussed earlier, was the most significant change to the properties in
IceSSL for Java, but this release includes other changes as well.
For example, the new property IceSSL.Truststore takes the
place of the old properties IceSSL.Client.Certs and IceSSL.
Server.Certs and specifies the name of a keystore containing
trusted certificates. Additionally, in prior releases, the property
IceSSL.Server.ClientAuth specified how strictly the plug-
in should verify a client’s credentials; the equivalent property in
release 3.� is IceSSL.VerifyPeer.

Another notable addition to this release is a second implemen-
tation of the IceSSL plug-in that requires Java 5. The primary
advantage of this version of the plug-in is support for the thread
pool concurrency model, which scales better than the thread-per-
connection concurrency model required by the plug-in for Java 2.
The plug-ins are identical in all other respects.

As an example of the new property names, the relevant section
from the hello client program’s configuration file is shown below:

Java configuration
Ice.Plugin.IceSSL=IceSSL.PluginFactory
Ice.ThreadPerConnection=1
IceSSL.DefaultDir=../../../certs
IceSSL.Keystore=client.jks
IceSSL.Password=password
IceSSL.Truststore=certs.jks

Note that Ice.ThreadPerConnection is present because this
configuration file is intended to be compatible with the plug-ins
for Java 2 and Java 5. The property IceSSL.DefaultDir is new
in this release and supplies a default directory in which the plug-
in should look for the keystore files identified by the properties
IceSSL.Keystore and IceSSL.Truststore.

.NET Introduction
Microsoft added SSL support in version 2.0 of the .NET Frame-
work, which finally made it possible for us to provide an imple-
mentation of IceSSL for C# and Visual Basic. The plug-in’s
configuration resembles that of its counterparts in Java and C++,
as you can see from the property definitions below taken from the
hello demo’s client configuration file:

C# configuration
Ice.Plugin.IceSSL=icesslcs.dll:IceSSL.
PluginFactory
IceSSL.DefaultDir=../../../certs
IceSSL.ImportCert.LocalMachine.AuthRoot=cacert.pem
IceSSL.CertFile=c_rsa1024.pfx
IceSSL.Password=password
Ice.ThreadPerConnection=1

As in the other language mappings, the IceSSL plug-in is loaded
dynamically; the property Ice.Plugin.IceSSL defines the entry
point, which in this case is comprised of the name of an assembly
and the name of a class.

The plug-in shares other similarities with Java and C++, such as
its support for the IceSSL.DefaultDir property that defines a
default directory in which to look for the files mentioned by other
properties. For example, the IceSSL.CertFile property defines
the name of a file that contains a certificate and its corresponding
private key. If the plug-in fails to open the file using the filename
given by IceSSL.CertFile, it combines that filename with the
value of IceSSL.DefaultDir and tries again.

This plug-in also has the same concurrency model restriction as
the Java 2 implementation in that it requires the thread-per-connec-
tion model. The reason is the same in both cases: neither platform
supports non-blocking SSL sockets, which are necessary for the
thread pool model to function properly.

The most interesting property from the sample configura-
tion shown above is IceSSL.ImportCert. The purpose of this
property is to install a certificate contained in a file into a certifi-
cate store, which is a .NET abstraction representing a collection
of certificates. In fact, there are several default certificate stores,
which you can browse using the Microsoft Management Console’s

New Features iN ice 3.1

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �5, July 2006 Page 5Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

snap-in for certificates. While the .NET Framework is negotiating
a new SSL connection, it verifies the remote peer’s certificate by
checking whether it is signed by a Certificate Authority (CA) that
the local program considers to be a trusted CA, which it indicates
by installing the CA’s certificate in a particular store.

In most situations, there is no need for this property because the
SSL certificates are signed by a well-known CA such as Verisign.
(Alternatively, an organization might use a private CA to create
its certificates.) Either way, the CA certificate is likely to already
reside in the proper store. In the case of the sample programs in-
cluded with Ice, their configurations refer to SSL certificates signed
by an artificial CA created expressly for use in the examples. This
artificial CA’s certificate will not be installed in a proper store,
and we did not want to require you to do so prior to running the
example. As a result, we added IceSSL.ImportCert to make it
more convenient for to try out a demo that uses SSL, but you may
find other uses for this property in your own applications.

Configuring Trusted Peers
While establishing a new connection, the underlying SSL engine
performs a number of steps to verify the certificate chain of the
remote peer. For example, SSL checks that none of the certificates
have expired or been modified, that each certificate in the chain has
been properly signed, and that the chain’s certificate authority is
trusted by the local program. These authentication procedures are
vitally important, but applications may want to enforce additional
restrictions, such as limiting secure connections to a select group of
peers. IceSSL allows you to express such restrictions using the new
IceSSL.TrustOnly class of configuration properties. Consider
the following property definition:

IceSSL.TrustOnly=O=My Company

This configuration causes IceSSL to reject an SSL connection un-
less the peer's certificate identifies it as belonging to the organiza-
tion My Company. The property value uses the syntax for distin-
guished names and can be as specific as you like. Other variations
of the property are available that apply restrictions only to outgo-
ing connections, only to incoming connections, or only to incom-
ing connections to a particular object adapter.

API Changes
The C++ plug-in in prior releases supported a number of Slice
interfaces that allowed an application to interact directly with the
plug-in. We wanted to add this capability to the Java and .NET
plug-ins as well, but the existing Slice interfaces were tied too
closely to the C++ plug-in. Given the platform-specific nature of
SSL-related artifacts such as certificates, we elected to remove
these interfaces altogether and replace them with the native types
described below.

Plugin Interface
In each language mapping, IceSSL defines a native Plugin in-
terface that supports several methods for customizing the plug-in,
including the installation of a callback for performing additional
verification of peer certificates. An application obtains a reference
to the plug-in from the communicator, as shown below in C++:

// C++
CommunicatorPtr comm = // ...
PluginManagerPtr pm =
 comm->getPluginManager();
PluginPtr plugin = pm->getPlugin("IceSSL");
IceSSL::PluginPtr sslPlugin =
 IceSSL::PluginPtr::dynamicCast(plugin);

We designed the IceSSL properties with the goal of satisfying the
configuration requirements of the majority of applications. How-
ever, we realize that some applications will have special needs;
therefore, the Plugin interface in each language mapping also
supports a way to circumvent some of the plug-in’s normal prop-
erty-based configuration. (The amount of customization available
varies by language mapping.)

In C++, using this feature requires intimate knowledge of the
OpenSSL library and should only be considered as a last resort. A
Java application with sophisticated requirements can initialize its
own instance of javax.net.ssl.SSLContext and pass that to
the plug-in, which, for example, might be necessary if the applica-
tion needs to install special provider implementations for keystores
or trust managers. Finally, the .NET plug-in allows an application
to supply its own certificate collection, enabling you to collect
certificate material in an application-specific manner.

Certificate Abstractions
Java and .NET already provide comprehensive abstractions for
X.509 certificates and related types, and IceSSL uses those ab-
stractions in its native interfaces rather than attempting to define
its own. In C++, however, a certificate abstraction was necessary
to shield applications from dealing directly with OpenSSL. The
methods on class IceSSL::Certificate were inspired by Java’s
certificate interface and supply enough functionality to satisfy the
needs of most applications.

Certificate Verifiers
When your needs exceed the capabilities of the IceSSL.
TrustOnly properties, you can configure IceSSL with a custom
certificate verifier callback. IceSSL invokes your callback only if
the SSL engine successfully completes its authentication process
and the connection was not rejected by any IceSSL.TrustOnly
properties, giving you the final decision on whether to allow the
connection to proceed. The callback receives a structure of type
ConnectionInfo that supplies several attributes of the connec-
tion:

New Features iN ice 3.1

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue �5, July 2006 Page 7Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

• a list of certificate objects representing the peer's certificate
chain

• a description of the cipher negotiated for the connections
• local and remote socket information
• a flag indicating whether the connection is incoming or outgo-

ing
• the name of the object adapter that received the connection, if

the connection is incoming.

In most cases, only the certificate chain is used to make the de-
termination, while all other attributes are used for informational
purposes such as logging.

Obtaining Connection Information
One feature that has often been requested is the ability to obtain
information about an SSL connection, and release 3.� includes this
capability in all supported language mappings. Given an instance
of Ice::Connection, which an application can obtain by calling
ice_getConnection on a proxy or by using the con member of
Ice::Current in a servant, the plug-in returns an instance of the
ConnectionInfo structure described in the previous section. The
sample code below demonstrates how to obtain information about
an SSL connection in Java:

// C++
Ice.ObjectPrx proxy = // ...
Ice.Connection conn = proxy.ice_getConnection();
try
{
 IceSSL.ConnectionInfo info =
 IceSSL.Util.getConnectionInfo(conn);
}
catch (IceSSL.ConnectionInvalidException ex)
{
 System.out.println("not an SSL connection!");
}

Certificate Authority Tools
Many applications need the added security offered by certificate-
based authentication but do not necessarily need an elaborate
infrastructure for managing certificates. (This is especially true
during the development phase.) To simplify the process of incor-
porating SSL into your applications, Ice 3.� includes a number of
Python scripts, located in the config/ca subdirectory of your Ice
installation. These scripts wrap low-level OpenSSL commands and
allow you to easily establish a private certificate authority, issue
certificate requests, and generate certificates.

Glacier2 Improvements in Ice 3.1
Ice 3.1 includes a number of significant improvements to the
Glacier2 router in the areas of filtering, authentication, and session
management and prevention of denial of service attacks.

New Authentication Method
The Glacier2::Router interface now supports an additional
operation to create a session: createSessionFromSecureCon
nection. This operation differs from createSession in that it
doesn’t require a user name or password. Instead, the credentials
associated with the SSL connection are used to identify the client,
and the new interface Glacier2::SSLPermissionsVerifier
allows you to authorize sessions created using this new opera-
tion. The router supplies a Glacier2::SSLInfo structure to
your verifier that describes the client’s SSL connection, including
address information and the client’s certificate chain. This infor-
mation is also provided to the session manager through the new
Glacier2::SSLSessionManager interface.

Improved Filtering
Prior versions of Glacier2 allowed you to filter requests based
solely on the category of object identities. The router’s filtering
mechanism has been enhanced in Ice 3.�:

• Address Filters: An address filter specifies the host and port,
or a range of hosts and ports, that router clients are permit-
ted to use. Address filters control the set of back-end hosts
that can be contacted by Glacier2 when forwarding requests
invoked using direct proxies. Typically, a Glacier2 router
should only be allowed to connect to hosts and ports where
Ice servers are running.

• Identity Filters: Whereas a category filter considers only the
category of object identities, an identity filter matches the
entire identity. The router rejects a request unless the target
identity is in the set of allowed identities.

• Adapter Filters: An adapter filter is useful for filtering requests
on indirect proxies by limiting invocations to a set of object
adapter identifiers.

You can configure these filters statically using configuration prop-
erties. Furthermore, the identity and adapter filters can be modified
dynamically as described below.

Denial of Service
To prevent denial-of-service attacks from rogue clients, Glacier2
supports a new configuration property Glacier2.Filter.
ProxySizeMax which limits the memory consumed while manag-
ing proxies supplied by router clients.

Session Control
The create operation of the Glacier2::SessionManager
interface now accepts an additional parameter: the proxy of an Ice
object implementing the Glacier2::SessionControl interface:

New Features iN ice 3.1

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue �5, July 2006 Page 7Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

// Slice
module Glacier2
{

interface SessionControl
{
 StringSet* categories();
 StringSet* adapterIds();
 IdentitySet* identities();
 void destroy();
};

};

The session implementation can now destroy a client’s session by
invoking the destroy operation on the SessionControl object
associated with the session. The SessionControl object also
allows a session manager to modify category, adapter and identity
filters dynamically. Note that the SessionControl object is only
provided if the administrative endpoints of the Glacier2 router
are defined. If these endpoints are not configured, a null proxy is
passed to the session manager create operation.

Migration
As mentioned in the previous section, the signature of the create
operation from the Glacier2::SessionManager now accepts an
additional parameter. You’ll need to change your code accordingly
(you can ignore this additional parameter if you don’t need it).

The Glacier2.AllowCategories property has been deprecated.
You should use the Glacier2.Filter.Category.Accept prop-
erty instead.

Changes to the Java Mapping in Ice 3.1
Ice 3.� includes several changes to the Java language mapping,
including extended syntax for specifying custom type metadata
as well as a new mapping that takes advantage of the language
features introduced in Java 5.

Custom Type Metadata
The Slice-to-Java compiler has for some time allowed you to influ-
ence the code it generates for sequence and dictionary types by
annotating their Slice definitions with custom type metadata. For
example, the metadata in the following Slice definition overrides
the default mapping for the sequence type StringList:

// Slice
["java:type:java.util.LinkedList"]
sequence<string> StringList;

As a result of this annotation, all occurrences of StringList are
represented in the generated code by java.util.LinkedList
instead of the default mapping to a native Java array. This ability to
tailor the Java mapping to meet the needs of your application is a
powerful and convenient feature, and we have enhanced it further
in Ice 3.�.

Java’s collection classes in the java.util package exhibit the
polymorphic design inherent to object-oriented frameworks in that
they use interfaces to define the essential functionality, and con-
crete subclasses to provide various implementations. Unfortunate-
ly, the custom type metadata feature in previous Ice releases did
not allow you to express this relationship because it required that
you specify the name of a concrete collection class. Let us continue
the StringList example by adding an interface:

// Slice
interface Search
{
 bool containsKeywords(StringList keywords);
};

The use of a concrete class causes the generated proxy method for
containsKeywords to have the following signature:

// Java
boolean containsKeywords(
 java.util.LinkedList keywords)

We would actually prefer that the argument to
containsKeywords use the abstract type java.util.List,
which would allow us to pass any subclass of that abstract type
and not just an instance of java.util.LinkedList. We cannot
simply change our metadata to use an abstract type instead because
the Slice compiler must be able to generate code that instantiates a
collection class and therefore requires the name of a concrete class.
In other words, there are some situations where the Slice compiler
must emit code such as this:

// Java
value = new custom-type();

However, these occurrences are relatively rare, so Ice 3.� adds the
ability for you to specify an optional abstract type in your metadata
using the following syntax:

// Slice
java:type:concrete-type[:abstract-type]

We can now rewrite our definition of StringList to use this new
feature:

// Slice
["java:type:java.util.LinkedList:java.util.List"]
 sequence<string> StringList;

In fact, we don't really need to add the abstract type in this case
because the Slice compiler now uses java.util.List as the
default abstract type for any custom sequence type that does not
explicitly define one. In any event, the generated code will use the
abstract type for all occurrences of StringList, except when an
instance of the type must be created.

For Slice dictionary definitions, the compiler uses java.util.
Map as the default abstract type, and continues to use java.util.
HashMap as the default concrete type.

New Features iN ice 3.1

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �5, July 2006 Page 9Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Java 5 Mapping
Ice 3.� for Java adds support for an alternate language mapping
that abandons compatibility with Java 2 in order to make use of the
new language features in Java 5. When activated, the Slice com-
piler maps Slice enum definitions into Java’s enum type and, by
default, maps dictionary definitions to instances of the generic type
java.util.HashMap<KeyType, ValueType>. Slice sequence
types remain unaffected and continue to map to native Java arrays
for performance reasons.

A new global metadata directive enables the Java 5 mapping, as
shown in the following example:

// Slice
[["java:java5"]]
dictionary<string, int> StringMap;

In general, however, we recommend using the new compiler option
--meta instead:

slice2java --meta java:java5 StringMap.ice

We prefer the compiler option for two reasons:

�. If you decide to use the Java 5 mapping, you must use it for
all of your Slice definitions, therefore using the compiler op-
tion is more convenient than modifying every Slice file to add
the proper metadata.

2. If you must also continue to support Java 2 applications with
the same Slice files, it is better to define the Java 5 metadata
externally using the compiler option.

Users of prior Ice releases could use custom type metadata to ac-
complish some of the Java 5 mapping, as shown in the following
example:

// Slice
["java:type:java.util.HashMap<String, Integer>"]
 dictionary<string, int> StringMap;

This particular definition is redundant in the 3.1 release because
the custom type we specified is now the default mapping for a
Slice dictionary. More precisely, java.util.HashMap<K, V> is
the default mapping for a Slice dictionary’s concrete type, while
java.util.Map<K, V> is the default abstract type.

The Java 5 mapping also supports an optional abstract type in
custom type metadata, as described in the previous section. How-
ever, the Java 5 mapping uses java.util.List<T> as the default
abstract type when one is not specified in the custom type metadata
of a Slice sequence. For example, the following definition uses an
instance of a generic type for a sequence:

// Slice
["java:type:java.util.LinkedList<String>"]
 StringList;

All occurrences of StringList in the generated code are repre-
sented by java.util.List<String>, except when an instance
must be created, in which case the compiler uses java.util.
LinkedList<String> instead.

If you used custom type metadata in the past, it is worthwhile to
review your Slice definitions to see if your metadata is still neces-
sary and compatible with the new semantics of the Java 5 mapping.
Furthermore, you may encounter “unchecked” warnings from the
Java compiler after upgrading to Ice 3.� and activating the Java 5
mapping. These warnings are the compiler’s way of notifying you
about situations where you are attempting to convert between an
untyped class such as java.util.List and a generic type in-
stance such as java.util.List<String>. If you are fully com-
mitted to using Java 5, we recommend modifying your applications
to eliminate these warnings.

Distribution Notes
The binary distributions of Ice 3.� include two versions of the Ice
for Java run time. The run time in lib/Ice.jar uses the default
mapping that is compatible with both Java 2 and Java 5. The run
time in lib/java5/Ice.jar uses the Java 5 language mapping
for all of the Slice definitions included with Ice, including those
for services such as IceGrid and Glacier2, and therefore requires a
Java 5 environment.

New Features iN ice 3.1

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �5, July 2006 Page 9Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

API Changes in Ice 3.1

Ice 3.� changes a number of APIs. We have had these changes in
mind for quite some time and allowed them to accumulate in-
stead of making a few changes with each release, to minimize the
number of disruptions for developers. Most of the previous APIs
are still there, so you don’t have to change your code immediately.
We will continue to provide the old APIs for at least another full
release cycle, so you have two major releases before the old APIs
will disappear for good. The changes make the Ice APIs more con-
sistent and less error-prone, so we believe that you will appreciate
this change for the better. This article provides a brief overview of
what has changed.

Communicator Initialization
The communicator initialization (Ice::initialize) used to
come in several flavors to allow you to optionally specify proper-
ties and a logger for a communicator. For example, in C++, the
function prototypes looked as follows:

// C++
CommunicatorPtr initialize(int&, char*[]);
CommunicatorPtr initializeWithProperties(
 int&, char*[], const PropertiesPtr&);
CommunicatorPtr initializeWithLogger(
 int&, char*[], const LoggerPtr&);
CommunicatorPtr
initializeWithPropertiesAndLogger(
 int&, char*[], const PropertiesPtr&,
 const LoggerPtr&);

This is somewhat awkward, not only because the function names
are long, but also because Ice 3.� adds a number of new features
that can only be set when a communicator is initialized. Rather
than continuing to add new initialization functions, we accumu-
lated all these initialization features into a structure that you can
pass to initialize:

// C++
namespace Ice
{
 struct InitializationData
 {
 PropertiesPtr properties;
 LoggerPtr logger;
 StatsPtr stats;
 Context defaultContext;
 // C++ Only
 StringConverterPtr stringConverter;
 // C++ Only
 WstringConverterPtr wstringConverter;
 ThreadNotificationPtr threadHook;
 };
}

For languages other than C++, the structure is a class instead and
lacks the string converter members, which are specific to C++.
As you can see, the structure allows you to specify a number of
settings: property settings for the communicator, as well as a log-
ger, statistics collector, and a default context. We have also added
a new feature, thread hooks, that you can set when you create
a communicator and, for C++, we have added string converters
that allow you to automate conversion of strings between UTF-�
encoding and the native codeset used by your program.

The initialize function now has the following prototypes:

// C++
CommunicatorPtr initialize(
 int&, char*[],
 const InitializationData& =
 InitializationData());
CommunicatorPtr initialize(
 const InitializationData& =
 InitializationData());

These overloads for initialize allow you to pass nothing, or
to pass either an argument vector or an initialization structure (or
both). This simplifies initialization because all the settings for a
communicator are specified in a single argument. Note that if the
argument vector sets properties, and you also specify properties
with the properties member of the InitializationData
structure, the settings in the argument vector override the settings
in the properties member. (The version of initialize without
an argument vector is useful for programs that want to prevent set-
ting of properties on the command line.)

The new Ice API also removes the setLogger and setStats
operations on the communicator. We did this for efficiency reasons:
by only allowing these features to be set once, when a communi-
cator is created, we can cache the values in the Ice run time and
do not need to continuously check whether they might have been
updated at run time.

For languages other than C++, initialize is overloaded
similarly, so you get equivalent functionality. For consistency, the
Ice::Service and Ice::Application classes now also allow
you to optionally pass an InitializationData structure.

Related to communicator initialization are changes in the way
properties are processed. The getDefaultProperties operation
has been removed, and createProperties now allows you to
optionally pass an argument vector and a default property set. This
simplifies the property handling code in applications and makes
it easier to write programs that want to explicitly control property
values.

Please see the Ice manual for more details on initialization and
property handling.

aPi chaNges iN ice 3.1

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue �5, July 2006 Page ��Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Thread Notification Hook
The thread notification hook is a new feature in Ice. It is sup-
ported for all languages and allows you to intercept the creation
and destruction of threads created by the Ice run time. The fea-
ture is useful if you need to use libraries that require you make
thread-specific initialization and finalization calls (such as COM’s
CoInitializeEx and CoUninitialize). In order to receive
notification of thread creation and destruction, you must imple-
ment a callback class and pass an instance of that class in the
threadHook member of the InitializationData structure you
pass to initialize. The callback class looks as follows:

// C++
class ThreadNotification : public IceUtil::Shared
{
public:
 virtual void start() = 0;
 virtual void stop() = 0;
};
typedef IceUtil::Handle<ThreadNotification>
 ThreadNotificationPtr;

Your implementation of this class must derive from
ThreadNotification and implement the start and stop
methods, for example:

class MyHook : public ThreadNotification
{
public:
 void start()
 {
 cout << "start: id = "
 << ThreadControl().id() << endl;
 }
 void stop()
 {
 cout << "stop: id = "
 << ThreadControl().id() << endl;
 }
};

The Ice run time calls the start method as soon as it has cre-
ated a new thread which can call into user code, and the stop
method just before a thread exits. The methods are called within
the context of the just-created or about-to-be-destroyed thread.
To register your callback instance, you pass the corresponding
InitializationData structure to initialize, for example:

// C++
int
main(int argc, char* argv[])
{
 // ...
 InitializationData id;
 id.threadHook = new MyHook;
 communicator = initialize(argc, argv, id);
 // ...
}

For languages other than C++, your callback class must implement
an interface that looks just like the C++ version. Please see the Ice
manual for details.

String Converters for C++
For languages such as Java and C#, Ice transparently works with
characters from non-English alphabets. However, for historical rea-
sons, this is not the case for C++: C++ provides both narrow and
wide strings, and the encoding of these strings is platform-specific.

Ice for C++ 3.� provides a new metadata directive, ["cpp:
type:wstring"], that allows you to selectively map Slice strings
to std::wstring (instead of the default std::string). Natural-
ly, depending on which mapping you decide to use, strings must be
encoded to match what is used by the underlying platform. For ex-
ample, the encoding of narrow strings depends on the locale setting
as well as the context in which a string appears. (Strings that are
used for display purposes are usually encoded as specified by the
locale setting (which might require ISO Latin-�), whereas strings
that are written to files are often encoded in UTF-8.) Similarly, the
encoding of wide strings varies with the platform. (For example,
on Windows, wide strings are encoded in UTF-�6, whereas with
AIX, they are encoded in UTF-�6 in 32-bit mode, and in UTF-32
in 6�-bit mode.)

By default, if you use the mapping to wide strings, the Ice run
time will automatically select an encoding that is appropriate for
your program’s run-time environment. This means that, if you use
wide strings, you typically need not do anything to get the correct
behavior. If you use the mapping to narrow strings, the Ice run time
delivers (and expects) strings in UTF-� encoding by default. If you
use strings for file I/O, this is usually the correct choice. However,
for display purposes, this is guaranteed not to work unless you only
use characters within the ASCII range or your terminal uses UTF-�
encoding.

Ice for C++ 3.� allows you to specify separate string converters
for narrow and wide strings that you can use to change this default
behavior. For example, you could use a wide string converter to
have all wide strings internally use JIS X020� encoding, and you
could use a narrow string converter to have all narrow strings inter-
nally use ISO Latin-1 encoding. You can implement the converters
by implementing a callback interface (similar to the thread notifica-
tion hook) and register it by setting the appropriate members in
the InitializationData structure you pass to initialize.
Once registered, the Ice run time passes all strings through these
converters for encoding and decoding. Please see the Ice manual
for details on how to implement string converters. (Ice 3.� also
includes a demo in demo/Ice/converter that illustrates how to
use this functionality.)

Proxy Methods
Unfortunately, Ice is not entirely immune to software rot, and we
have allowed some naming inconsistencies to creep into the proxy

aPi chaNges iN ice 3.1

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue �5, July 2006 Page ��Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

methods over time. For example, many (but not all) proxy methods
used a get prefix for the accessor methods. This led to inconsis-
tencies such as ice_getIdentity versus ice_communicator.
Similarly, some methods used a new prefix for creation of a
proxy, whereas other did not, for example, ice_newFacet versus
ice_router.

We decided to clean this up and use a consistent naming conven-
tion for proxy methods. The Ice 3.� API consistently uses a get
prefix for accessors, and drops the new prefix for creation methods.
Here are the affected methods:

Old Name New Name
ice_hash ice_getHash

ice_communicator ice_getCommunicator

ice_connection ice_getConnection

ice_newIdentity ice_identity

ice_newContext ice_context

ice_newFacet ice_facet

ice_newAdapterId ice_adapterId

ice_newEndpoints ice_endpoints

ice_
collocationOptimization

ice_
collocationOptimized

In addition several new methods have been added to retrieve data
that was previously inaccessible, such as ice_getLocator.
Please see the Ice manual for full details of these new methods.

Changes in Slice Definitions
Ice 3.1 also changes a few Slice definitions. On the
Communicator interface, we removed removeObjectFactory.
One reason is that the operation is redundant: you can always
achieve the same thing by setting a flag inside the factory to make
it change behavior. Another (and more important) reason is that
removeObjectFactory caused problems with respect to thread-
ing guarantees and exposed the run time to a potential deadlock.
With Ice 3.�, an object factory, once set, remains in effect for the
life time of its communicator.

The Communicator interface also provides two new operations,
stringToIdentity and identityToString. Previously, these
functions were provided as static functions. However, in order to
allow characters from non-English alphabets to be used in object
identities, it must be possible to pass the identities through user-
supplied string converters, which are attached to the communicator.
As a consequence, stringToIdentity and identityToString
also had to move to the Communicator interface. This change is
relevant only for C++. For languages other than C++, the static and
non-static versions of these functions have identical behavior, and
you can use whichever you prefer.

A new operation on the Ice::Communicator interface,
createObjectAdapterWithRouter replaces addRouter and
removeRouter, which we removed. The reason for this change is

that changing routers dynamically can cause internal problems in
the Ice run time and has dubious semantics. With the new API, the
same router for an object adapter remains set for the life time of
the adapter.

With previous Ice versions, it was impossible to re-cre-
ate an object adapter. As of Ice 3.�, you can create an object
adapter with the same name as a previous adapter once the call to
waitForDectivate on the previous adapter has completed.

The Ice::Current structure now has a new requestId
member. For twoway requests, the requestId provides the ID of
the incoming request; for oneway requests, the ID is zero; for col-
located requests, the ID is −1.

The addProxy operation on the Ice::Router interface has
been replaced by addProxies. The new operation returns any
proxies that are discarded by the router. (This change will not af-
fect you unless you have created a router implementation of your
own.)

The getServerState, getServerPid, enableServer,
isServerEnabled, startServer, stopServer,
patchServer, sendSignal, writeMessage operations from
the IceGrid::Admin interface can now raise IceGrid::
DeploymentException if the server can’t be deployed on the
node. This might happen for example if the server is set to be
executed under a given user account and the user doesn’t have any
account on the node.

The stopServer operation from the IceGrid::Admin inter-
face can now raise IceGrid::ServerStopException if the
server is already deactivated or can’t be deactivated.

The getAdapterEndpoints operation from the IceGrid::
Admin interface was replaced with the getAdapterInfo opera-
tion.

The IceGrid::Session interface was replaced with the
IceGrid::AdminSession interface. The new IceGrid::
Session interface is now for use by IceGrid clients to allocate
objects. The IceGrid::AdminSession interface is used by ad-
ministrative clients, such as the IceGridGUI, to manage the registry
database and monitor the registry and nodes.

Finally, the entry points for the IceSSL and IceStorm service
plug-ins have been renamed from create to createIceSSL and
createIceStorm, respectively. This change avoids a name clash
if both plug-ins are linked into the same application.

aPi chaNges iN ice 3.1

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue �5, July 2006 Page �3Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �3Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Integrating Ice with a GUI: Part IV
Matthew Newhook, Senior Software Engineer

Introduction
The previous articles in this series on using Ice in a graphical ap-
plication showed how to send oneway and asynchronous invoca-
tions without the risk of blocking the calling thread. In this article,
I’ll demonstrate the proper way to handle incoming invocations by
implementing a shared todo list—similar to the todo list contained
in the Google desktop sidebar. The sample application uses the
Qt GUI toolkit, but the techniques explored in this article apply
equally well to other GUI frameworks.

Interface
First let’s design the Slice interface. We can model each element
in the todo list as a textual description with a corresponding flag to
indicate whether the task has been completed:

// Slice
struct TodoItem
{
 int id;
 string desc;
 bool done;
};

As you can see, I’ve also added an id field to uniquely identify
each item in the list. The need for this field will become apparent
when you consider the interface that we’ll use to manage the todo
list:

// Slice
sequence<TodoItem> TodoItemSeq;

exception ItemNotExistException
{
};

interface Todo
{
 void add(string desc);
 void remove(int id)
 throws ItemNotExistException;
 void change(TodoItem item)
 throws ItemNotExistException;
 TodoItemSeq list();
};

This interface contains the typical CRUD methods: create, retrieve,
update, and delete. Without the id field, we could not implement
change correctly, since we might not be able to locate the desired
item using only its description. For example, suppose the server re-
ceives two change invocations concurrently; the second of the two
updates would fail if the first one changes the item’s description.

At this point we need to address an important question: How do
clients keep their shared view of the todo list synchronized with
each other? There are two common methods of synchronization,
manual and automatic. Using manual synchronization, the user is
responsible for pressing a refresh button to retrieve the latest data
from the server. Automatic synchronization, on the other hand,
does not require user intervention. Automatic synchronization is
much more user friendly, but harder to implement. However, that’s
why we’re here: to solve the hard problems and keep our users
happy!

We can use one of two strategies to implement automatic
synchronization: polling or pushing. Polling requires the client to
contact the server at regular intervals to obtain updates and apply
them to the client-side view of the data. Pushing means the server
sends updates to the client as they occur. Of the two, pushing is
generally considered the better choice because it is more efficient
than polling, so we’ll implement the push technique.

We’ll add a new interface that the server calls whenever changes
are made to the content of the todo list.

// Slice
interface TodoObserver
{
 void update(TodoItem item);
 void add(TodoItem item);
 void remove(int id);
};

interface Todo
{
 // ...
 void attach(TodoObserver* observer);
 void detach(TodoObserver* observer);
};

Consider how an application might (incorrectly) use the observer
interface:

// C++
TodoItemSeq items = _todo->list();
// put items in list dialog
_todo->attach(new TodoObserverI);
// at this point list is updated

This application can lose synchronization if the list is updated after
the call to list but before the call to attach. We can avoid this
situation by registering the observer before calling list:

// C++
_todo->attach(new TodoObserverI);
// at this point list is updated
TodoItemSeq items = _todo->list();
// put items in list dialog

Unfortunately, this code also has a problem. It is possible for
updates to arrive after the call to attach but before processing the
result of the call to list. Therefore the updates are lost, meaning
that the todo list is wrong.

iNtegratiNg ice with a gui

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue �5, July 2006 Page �3Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �3Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

The correct solution is to supply the initial list to the observer
when first attached, as shown in the revised interface definition
below:

// Slice
interface TodoObserver
{
 void initialize(TodoItemSeq items);
 void update(TodoItem item);
 void add(TodoItem item);
 void remove(int id);
};

When Todo::attach is called, the observer is added to the list
of observers and TodoObserver::initialize is immediately
called with the current dataset. The server must guarantee that
initialize is called before update, add, or remove is called on
the observer. After this change, the GUI client has no further use
for the Todo::list operation.

Threading Basics
Before diving into the implementation, we should review some ba-
sics about the threading models with which Ice and Qt (and indeed
many GUI toolkits) operate. Before you sit down to code your
application, you should carefully study the documentation of your
GUI toolkit to be sure you understand its threading requirements
and restrictions.

The typical Qt application that uses Ice has three sets of threads
that interest us: the main thread, the client-side thread pool, and the
server-side thread pool.

The main thread is the thread that executes main.
QCoreApplication::exec must always be called by this thread,
which is also known as the GUI thread since it is the only thread
that can perform GUI-related operations. Qt, like many other
toolkits, requires all invocations on GUI widgets to be done in the
GUI thread.

The Ice run time uses the client-side thread pool to manage outgo-
ing connections (including processing requests received over a
bi-directional connection) and to execute AMI callbacks. The
server-side thread pool is used to manage incoming connections
and to dispatch incoming requests.

To better understand the various threading models, we’ll take a
look at some code examples.

// C++
class TodoDlg : public QDialog
{
public:
 TodoDlg(/*...*/);
private slot:
 void remove();
private:
 const TodoPrx _todo;
};

TodoDlg::TodoDlg (/*...*/)
{
 //…
 QPushButton* button = new QPushButton(
 "remove", this);
 connect(button, SIGNAL(clicked()),
 this, SLOT(remove());
}

void
TodoDlg::remove()
{
 int id = // ... retrieve id
 _todo->remove(id);
}

In this example, the application invokes the remove operation
from the remove slot. Since this slot is connected to the clicked
signal of a push button, it will always be called by Qt in the GUI
thread. As we have discussed in previous articles, invoking a
remote operation from the GUI thread is a bad idea because the
thread is blocked for the entire duration of the call to the server.
Here is a better approach:

// C++
class AMI_Todo_removeI : public AMI_Todo_remove
{
public:
 virtual void
 ice_response();
 virtual void
 ice_exception(const Exception& e);
};

void
TodoDlg::remove()
{
 _todo->remove_async(new AMI_Todo_removeI, id);
}

Now we don’t block the GUI thread at all, assuming that we’re us-
ing the Ice router technique from my previous article. The calls to
ice_response or ice_exception are made by the Ice run time
in a thread from the client-side thread pool, therefore you may not
make any direct invocations on a GUI widget from these callbacks.

Now let’s consider the observer implementation:

// C++
class TodoObserverI : public TodoObserver
{
public:
 virtual void
 update(const TodoItem&, const Current&);
 virtual void
 add(const TodoItem&, const Current&);
 virtual void
 remove(Int, const Current&);
};

iNtegratiNg ice with a gui

http://www.zeroc.com/newsletter/issue14.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue �5, July 2006 Page �5Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �5Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

TodoDlg::TodoDlg(/*...*/)
{
 ObjectAdapterPtr adapter =
 communicator->createObjectAdapter(
 "observer");
 _todo->observe(
 TodoObserverPrx::uncheckedCast(
 adapter->addWithUUID(new TodoObserverI)));
}

The Ice run time delivers invocations on the TodoObserverI ser-
vant from a thread in the server-side thread pool. Once again, these
methods must not make any direct invocations on a GUI widget.

In summary, under no circumstances should you block the GUI
thread. This means no twoway invocations! If you do, the appli-
cation might become unresponsive and users will get frustrated
and annoyed. This issue was the subject of extensive scrutiny in
previous articles, so it is not explored in further detail. The client
presented in this article uses an Ice router to allow transparent,
non-blocking remote invocations from the GUI thread.

Inter-thread Communication
To notify a GUI widget that an event has occurred, such as an
incoming request or a reply to an outgoing request, we need the
cooperation of the GUI toolkit. This section describes a number
of techniques for ensuring that only the GUI thread performs the
required actions.

Signals/Slots
In Qt, we generally use a signal to notify a GUI widget about an
event. The signal is then connected to a slot, which is called by the
Qt run time when the signal is emitted. Prior to Qt �.0, this mecha-
nism could not be used between threads—that is, emitting a signal
outside the GUI thread was illegal, and the results of doing so were
not defined. As of Qt 4.0, the guys at Trolltech added a mechanism
that allows signals and slots to cross thread boundaries: queued
connections between signals and slots. In contrast with a direct
connection, where emitting a signal causes the connected slots to
be called immediately, a queued connection sends the signal to
the connected slots from the thread in which the connected object
lives.

Queued signals enable us to notify a widget that an event has oc-
curred using the familiar signal/slot mechanism! Let’s run through
an example of using queued signals to handle errors from calling
Todo::remove in an asynchronous callback. First, the AMI call-
back object must inherit from QObject, otherwise it cannot emit
a signal. Furthermore, due to a restriction in the Qt meta-object
compiler (moc), QObject must appear as the first base class.

// C++
class AMI_Todo_removeI :
 public QObject, public AMI_Todo_remove
{
 Q_OBJECT

public:
 virtual void
 ice_response();
 virtual void
 ice_exception(const Exception& e);
 // ...
};

Next we need to add a suitable signal to the AMI callback. It would
be ideal to pass the error as an argument to the signal, but what
form should the argument take? How about Ice::Exception? Qt
makes a copy of the arguments to a queued signal, therefore it’s not
possible to use Ice::Exception directly—the argument would
be sliced, since the actual exception is an instance of a derived
class. To avoid slicing, the argument must be passed by reference
or by pointer. In general, passing by reference is not possible for
queued events. How about passing by pointer?

// C++
signals:
 void error(Exception*);

This signal is called as shown below:

// C++
void
AMI_Todo_removeI::ice_exception(
 const Exception& e)
{
 emit error(e.ice_clone());
}

Who would be responsible for freeing the memory? How about the
recipient of the signal?

// C++
void
TodoDlg::error(Exception* e)
{
 // Do something with e
 delete e;
}

What if there is more than one recipient of this signal? Indeed,
what if there is no recipient? Clearly, this approach does not work.
A better solution is to create a reference-counted holder object for
the exception, and emit that instead.

// C++
class ExceptionHolder : public Shared
{
public:
 ExceptionHolder(const Exception& e)
 {
 exception = e.ice_clone();
 }
 ~ExceptionHolder()
 {
 delete exception;
 }

iNtegratiNg ice with a gui

Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue �5, July 2006 Page �5Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �5Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

 const Exception* exception;

private:
 ExceptionHolder(const ExceptionHolder&);
};
typedef Handle<ExceptionHolder>
ExceptionHolderPtr;

Next change the signal as follows:

// C++
signals:
 void error(ExceptionHolderPtr);

The AMI callback can now emit the signal as follows:

// C++
void
AMI_Todo_removeI::ice_exception(
 const Exception& e)
{
 emit error(new ExceptionHolder(e));
}

For the todo dialog, a corresponding slot must be added.

class TodoDlg : public QDialog
{
 // ...
private slots:
 void error(ExceptionHolderPtr);
};

Before we can send a signal containing the
ExceptionHolderPtr type, we must register it with the Qt meta-
object system. If we forget this step, Qt won’t know how to copy
the type, and we’ll get an error when trying to emit the signal. The
registration step is shown below:

TodoDlg::TodoDlg(/*...*/)
{
 qRegisterMetaType<ExceptionHolderPtr>(
 "ExceptionHolderPtr");
 // ...
}

By connecting the error signal to the appropriate slot on the dia-
log, then we can send an asynchronous invocation of remove:

void
TodoDlg::remove()
{
 AMI_Todo_removeIPtr cb = new AMI_Todo_removeI;
 connect(
 cb.get(), SIGNAL(error(ExceptionHolderPtr)),
 this, SLOT(error(ExceptionHolderPtr)));
 _todo->remove_async(cb, id);
}

Since the use of queued events requires Qt 4.x, I’ll briefly discuss
some analogous approaches that are used with other GUI toolkits.

All GUI toolkits that I know of utilize some sort of event queue to
process UI notifications. Each of these methods uses the same idea,
namely, posting an event to the GUI event queue which then noti-
fies the todo dialog that an error has occurred.

Older Versions of Qt
With older versions of Qt, a custom event can be used to notify the
dialog that an error has occurred in a thread-safe manner. The first
step is to create a custom event type:

// C++
class ErrorEvent : public QCustomEvent
{
public:
 ErrorEvent(const Exception& e)
 : QCustomEvent(QEvent::User) :
 ex(e.ice_clone())
 {
 }

 std::auto_ptr<Exception> ex;
};

The custom event is sent from the AMI callback:

// C++
void
AMI_Todo_removeI::ice_exception(
 const Exception& e)
{
 qApp->postEvent(
 _todoDialog, new ErrorEvent(e));
}

Finally, the dialog class needs a customEvent handler:

// C++
class TodoDialog : public QDialog
{
// …
protected:
 virtual void customEvent(QCustomEvent*);
};

void
HelloDialog::customEvent(QCustomEvent* e)
{
 ErrorEvent* error =
 dynamic_cast<ErrorEvent*>(e);
 if(error)
 {
 //...
 }
}

Microsoft Foundation Classes
With MFC, you can use a custom message to notify the dialog
about an error. In particular, the AMI callback posts a user event to
the dialog window:

iNtegratiNg ice with a gui

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue �5, July 2006 Page 17Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 17Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

// C++
void
AMI_Todo_removeI::ice_exception(
 const Exception& e)
{
 ::PostMessage(_todoDialoghWnd, WM_USER,
 (WPARAM)0, (LPARAM)e.ice_clone());
}

The dialog class needs a message handler for the WM_USER mes-
sage:

// C++
BEGIN_MESSAGE_MAP(CTodoDlg, CDialog)
// …
 ON_MESSAGE(WM_USER, OnError)
END_MESSAGE_MAP()

Finally, the OnError method is called when an error occurs:

// C+
void
CTodoDlg::OnError(WPARAM wParam, LPARAM lParam)
{
 Exception* e = dynamic_cast<Exception*>(
 lParam);
 // ...
}

The Ice distribution contains a complete example of using MFC in
the directory demo/Ice/MFC.

Java Foundation Classes
In JFC, the simplest approach is to use SwingUtilities.
invokeLater, which executes the provided Runnable argument
in the proper thread:

// Java
void ice_exception(Ice.UserException e)
{
 SwingUtilities.invokeLater(new Runnable()
 {
 public void run()
 {
 _todoDialog.error(e);
 }
 });
}

Implementation
The server implementation is straightforward, so the remainder of
this article discusses client-side implementation issues. You can
find the source code for the server in the archive that accompanies
this article. Let’s start with the TodoObserver implementation.
What should the observer do? Each invocation on the servant is
made by the Ice run time from a thread in the server-side thread
pool. If a bidirectional connection is used, the invocation would
be made by a thread in the client-side thread pool. In either case,

the invocation does not occur in the GUI thread, therefore a direct
invocation must not be made on any GUI widget. For example, the
following code is incorrect:

// C++
class TodoObserverI : public TodoObserver
{
public:

 virtual void initialize(
 const TodoItemSeq& data,
 const Current&)
 {
 _todo->initialized(data);
 }
 // ...
};

class TodoDlg : ...
{
public:
 void
 initialized(const TodoItemSeq& data)
 {
 // ... add each item to the list widget
 }
 // ...
};

Instead we’ll use queued signals—the signal emitted by the servant
is queued automatically by Qt to any recipient that was not created
in the current thread of control. Since the todo dialog is one such
recipient, the emitted signal is received in the GUI thread. The
implementation is quite simple:

// C++
class TodoObserverI :
 public QObject, public TodoObserver
{
 Q_OBJECT

public:

 virtual void
 initialize(
 const TodoItemSeq& data, const Current&)
 {
 emit initialized(data);
 }
 virtual void
 update(const TodoItem& item, const Current&)
 {
 emit updated(item);
 }
 virtual void
 add(const TodoItem& item, const Current&)
 {
 emit added(item);
 }

iNtegratiNg ice with a gui

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue �5, July 2006 Page 17Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 17Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

 virtual void
 remove(Int id, const ::Current&)
 {
 emit updated(id);
 }

signals:

 void initialized(TodoItemSeq);
 void added(TodoItem);
 void updated(TodoItem);
 void removed(int);
};
typedef IceUtil::Handle<TodoObserverI>
TodoObserverIPtr;

In the constructor of the todo dialog widget, each of these signals
is connected to a slot:

class TodoDlg : public QDialog
{
 Q_OBJECT

public:

 TodoDlg(
 const TodoPrx&,
 const ObjectAdapterPtr&,
 QWidget *parent = 0);

private slots:
 void error(ExceptionHolderPtr);
 void initialized(TodoItemSeq);
 void added(TodoItem);
 void updated(TodoItem);
 void removed(int);
 //...
};

TodoDlg::TodoDlg(
 const TodoPrx& todo,
 const ObjectAdapterPtr& adapter,
 QWidget *parent) :
 QDialog(parent), //...
{
 // ...
 qRegisterMetaType<TodoItem>("TodoItem");
 qRegisterMetaType<TodoItemSeq>("TodoItemSeq");

 TodoObserverIPtr observerI =
 new TodoObserverI;
 connect(observerI.get(),
 SIGNAL(initialized(TodoItemSeq)),
 this, SLOT(initialized(TodoItemSeq)));
 connect(observerI.get(),
 SIGNAL(added(TodoItem)),
 this, SLOT(added(TodoItem)));
 connect(observerI.get(),
 SIGNAL(updated(TodoItem)),
 this, SLOT(updated(TodoItem)));
 connect(observerI.get(),
 SIGNAL(removed(int)),

 this, SLOT(removed(int)));

 TodoObserverPrx observer =
 TodoObserverPrx::uncheckedCast(
 adapter->addWithUUID(observerI));

 AMI_Todo_observeIPtr cb =
 new AMI_Todo_observeI;
 connect(cb.get(),
 SIGNAL(error(ExceptionHolderPtr)),
 this, SLOT(error(ExceptionHolderPtr)));
 _todo->observe_async(cb, observer);
}

Once again, the meta-type information for the TodoItem and
TodoItemSeq must be registered with Qt so that the signal/slot
queuing system can correctly copy the types.

Note that the observer is attached in the constructor by an asyn-
chronous call. What would happen if an exception were thrown
in the constructor after the observer was attached? What happens
if the AMI callback emits an error signal, or the observer servant
receives a callback from the todo list server? Wouldn’t the sig-
nals still be connected to slots in the now-destroyed application
widget? In short, the answer is no. When the application widget is
destroyed, all connected slots are automatically disconnected in a
thread-safe manner.

The implementation of error is shown below:

// C++
void
TodoDlg::error(ExceptionHolderPtr ex)
{
 try
 {
 throw *ex->exception;
 }
 catch(const ItemNotExistException&)
 {
 QMessageBox::information(0,
 "item does not exist",
 "That item has already been removed.");
 }
 catch(const Exception& e)
 {
 ostringstream os;
 os << e;
 QMessageBox::warning(0, "Error",
 os.str().c_str());
 reject();
 }
}

This method is called if any remote invocation fails. An occurrence
of ItemNotExistException results from a conflict with another
user of the todo server. For example, if two users concurrently
delete a record, one of the users will receive this exception. The
client presents ItemNotExistException as an informational
message box; any other exception is considered fatal and aborts the
dialog.

iNtegratiNg ice with a gui

Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue �5, July 2006 Page 19Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 19Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Let’s now look at a screen shot of the completed todo applica-
tion to give you a better idea of how it’s supposed to look:

Each TodoItem is a row in a QListWidgetItem in a
QListWidget. I recommend that you consult the Qt documenta-
tion on these classes before continuing. The top row contains a
special QListWidgetItem that is used to enter new items in the
todo list. To delete an item, the user selects the row and presses
the Delete key. To edit an item, the user selects a row twice. To edit
the top row it is only necessary to select it once. Pressing Escape
aborts the edit. Pressing Enter or moving to another row completes
the edit.

The classes AddNewListWidgetItem and
TodoListWidgetItem represent the two different types of rows
in the QListWidget. Furthermore, the QListWidget class is sub-
classed by TodoListWidget because some extra functionality is
added that can only be achieved by sub-classing.

// C++
class TodoDlg : public QDialog
{
 Q_OBJECT

public:

 TodoDlg(
 const TodoPrx&,
 const ObjectAdapterPtr&,
 QWidget *parent = 0);

 virtual void keyPressEvent(QKeyEvent*);

private slots:

 void itemPressed(QListWidgetItem*);

 void currentItemChanged(QListWidgetItem*,
 QListWidgetItem*);
 void editSubmit();
 void editRevert();
 // …

private:

 const TodoPrx _todo;
 QListWidget* _list;
 QListWidgetItem* _prev;
};

The class overrides keyPressEvent in order to handle the
deletion of items. The itemPressed slot is called by the Qt run
time when a row is selected, which initiates editing of a row. The
editSubmit and editRevert slots are called when editing is
completed and aborted, respectively. The member variable _prev
keeps track of the last selected item to determine whether editing
should commence. The remainder of the constructor is presented
below:

// C++
TodoDlg::TodoDlg(
 const TodoPrx& todo,
 const ObjectAdapterPtr& adapter,
 QWidget *parent) :
 QDialog(parent),
 _todo(todo),
 _prev(0)
{
 _list = new TodoListWidget(this);
 _list->setSelectionMode(
 QAbstractItemView::SingleSelection);
 _list->setEditTriggers(
 QAbstractItemView::DoubleClicked|
 QAbstractItemView::SelectedClicked);

 connect(_list,
 SIGNAL(itemPressed(QListWidgetItem*)),
 this,SLOT(itemPressed(QListWidgetItem*)));
 connect(_list,
 SIGNAL(currentItemChanged(
 QListWidgetItem*, QListWidgetItem*)),
 this,
 SLOT(currentItemChanged(
 QListWidgetItem*, QListWidgetItem*)));
 connect(_list, SIGNAL(editSubmit()),
 this, SLOT(editSubmit()));
 connect(_list, SIGNAL(editRevert()),
 this, SLOT(editRevert()));

 new AddNewListWidgetItem(_list);

 QVBoxLayout *mainLayout = new QVBoxLayout;
 mainLayout->addWidget(_list);
 setLayout(mainLayout);

 setWindowTitle("Todo List");

 setFocusPolicy(Qt::StrongFocus);

iNtegratiNg ice with a gui

Figure 1: Todo List

Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue �5, July 2006 Page 19Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 19Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

 setFocus();
 // ...
 AMI_Todo_observeIPtr cb =
 new AMI_Todo_observeI;
 connect(cb.get(),
 SIGNAL(error(ExceptionHolderPtr)),
 this, SLOT(error(ExceptionHolderPtr)));
 _todo->observe_async(cb, observer);
}

The last statement registers the observer. Eventually the server
invokes initialize on the observer, and as a result the
initialized slot is called on the todo dialog:

// C++
void
TodoDlg::initialized(TodoItemSeq data)
{
 TodoItemSeq::const_iterator p;
 for(p = data.begin(); p != data.end(); ++p)
 {
 new TodoListWidgetItem(_list, *p);
 }
}

The implementation of added is very similar to initialized:

void
TodoDlg::added(TodoItem item)
{
 new TodoListWidgetItem(_list, item);
}

Each item in the todo list is represented by a
TodoListWidgetItem. Before we move on to the implementa-
tions of updated and removed, let’s examine the class definition
for TodoItemWidgetItem:

// C++
class TodoListWidgetItem : public QListWidgetItem
{
public:

 TodoListWidgetItem(
 QListWidget*, const TodoItem&);

 const TodoItem& getItem();
 bool syncWithModel();
 void syncWithItem(const TodoItem&);
 // ...

private:
 TodoItem _item;
};

The syncWithModel method copies the data from the list widget
into the contained item data. The method returns true if the item
data actually changed, and false otherwise. The syncWithItem
method copies new item data into the model.

With that out of the way, we can look at the implementation of
updated and removed:

void
TodoDlg::updated(TodoItem item)
{
 for(int i = 1; i < _list->count(); ++i)
 {
 TodoListWidgetItem* lw =
 dynamic_cast<TodoListWidgetItem*>(
 _list->item(i));
 if(lw == 0)
 {
 continue;
 }
 if(item.id == lw->getItem().id)
 {
 lw->syncWithItem(item);
 }
 }
}

void
TodoDlg::removed(int id)
{
 for(int i = 1; i < _list->count(); ++i)
 {
 TodoListWidgetItem* lw =
 dynamic_cast<TodoListWidgetItem*>(
 _list->item(i));
 if(lw == 0)
 {
 continue;
 }
 if(id == lw->getItem().id)
 {
 _list->takeItem(i);
 delete lw;
 if(_prev == lw)
 {
 _prev = 0;
 }
 break;
 }
 }
}

The next method of interest is the slot editSubmit, which is
called after a list row has been edited. An invocation on this slot
means one of two things has happened: a new item has been added
(the user edited the top row), or an existing item has been updated.

iNtegratiNg ice with a gui

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue �5, July 2006 Page 2�Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

// C++
void
TodoDlg::editSubmit()
{
 QListWidgetItem* item = _list->currentItem();
 if(_list->currentRow() == 0)
 {
 AddNewListWidgetItem* addNew =
 dynamic_cast<AddNewListWidgetItem*>(
 item);
 assert(addNew != 0);
 string txt = addNew->text().toStdString();
 if(txt != "Add New Item" && txt != "")
 {
 AMI_Todo_addIPtr cb =
 new AMI_Todo_addI;
 connect(cb.get(),
 SIGNAL(error(ExceptionHolderPtr)),
 this,
 SLOT(error(ExceptionHolderPtr)));
 _todo->add_async(cb, txt);
 }
 addNew->setText("Add New Item");
 }
}

If the top row is currently selected, the user is adding a new item.
No action is taken if the row text is empty or it matches the default
value. Otherwise, we call add asynchronously with the new item
text. Finally, we reset the text on the row item to the default value.

Note that the method does not actually add the new item to the
list; that action occurs as a result of the observer operation added.
This process can cause the user interface to appear unresponsive if
the link to the server is slow. However, applying updates immedi-
ately and then attempting to synchronize when the observer event
arrives can be quite tricky, so I generally prefer to use the simple
approach unless it really makes the user experience uncomfortable.

The remainder of the editSubmit method deals with the
changing of a row:

// C++
void
TodoDlg::editSubmit()
{
 // ...
 else
 {
 TodoListWidgetItem* todoItem =
 dynamic_cast<TodoListWidgetItem*>(
 item);
 assert(todoItem != 0);
 if(todoItem->syncWithModel())
 {
 AMI_Todo_changeIPtr cb =
 new AMI_Todo_changeI;
 connect(cb.get(),
 SIGNAL(error(ExceptionHolderPtr)),
 this,
 SLOT(error(ExceptionHolderPtr)));

 _todo->change_async(
 cb, todoItem->item);
 }
 }
}

The method calls syncWithModel to synchronize the TodoItem
with the model data. If the method returns true, then change is
called asynchronously to reflect this change on the server side.

The keyPressEvent method deals with the removal of an item:

void
TodoDlg::keyPressEvent(QKeyEvent* e)
{
 if(e->key() == Qt::Key_Delete &&
 _item->currentRow() != 0)
 {
 TodoListWidgetItem* lw =
 dynamic_cast<TodoListWidgetItem*>(
 _list->currentItem());
 assert(lw != 0);
 AMI_Todo_removeIPtr cb =
 new AMI_Todo_removeI;
 connect(cb.get(),
 SIGNAL(error(ExceptionHolderPtr)),
 this,
 SLOT(error(ExceptionHolderPtr)));
 _todo->remove_async(cb, lw->getItem().id);
 }
}

If the user pressed Delete and the currently selected row isn’t
the top row, then remove is called on the server. Once again this
results in a callback on the observer, which removes the row from
the list.

The remainder of the implementation is not presented. I encour-
age you to review the full source accompanying the article and post
any questions you may have on the ZeroC forums.

Conclusion
This article concludes my series on using Ice in a graphical ap-
plication. If you are unclear on any of the topics I have covered in
these articles or would like more in-depth treatment of a subject,
please let me know!

iNtegratiNg ice with a gui

http://www.zeroc.com/vbulletin

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue �5, July 2006 Page 2�Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner

In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: Why does my Ice for Java application run out of
memory when sending a large string?

The memory utilization of the Java Virtual Machine (JVM) is
affected by several factors. As the Ice run time prepares to send a
protocol message, it constructs a temporary buffer to hold the en-
coded form of the input parameters. With respect to memory usage,
the encoding process is roughly equivalent to making a copy of the
parameters; as your parameters grow larger, so does the buffer that
Ice needs to encode them.

String parameters are especially problematic in Java, for two
reasons. First, the immutable nature of Java’s string type forces the
Ice run time to allocate more memory and make more copies than
should really be necessary. Second, there is a mismatch between
Java’s native string representation and the Ice encoding of a string:
Java strings are composed of �6-bit Unicode characters, whereas
Ice encodes strings using an �-bit format (UTF-�). This discrep-
ancy means the Ice run time must always perform a conversion,
which requires additional memory allocation.

As a result, applications that send very large strings can easily
exceed the JVM’s default maximum heap size. If increasing the
JVM’s heap limit is not an option, there are some alternative strate-
gies you should consider.

The technique we usually recommend is breaking a large dataset
into chunks rather than sending it all at once, as explained in this
FAQ. Although it’s typically used in file transfer applications, the
chunking technique is equally useful for transmitting a large string.

Another solution is to send the data as a sequence of strings
rather than a single string. For example, each element of the se-
quence could represent a line of the string data. As with the chunk-
ing approach, the goal is to reduce the maximum length of the
strings that the Ice run time must process. You can even combine
the chunking and sequence techniques for a further reduction in
memory consumption.

Q: Why do I have to allocate C++ Slice classes and
servant classes on the heap?

The Ice C++ mapping extensively uses reference counting to free
you from the burden of managing memory: Once you have as-
signed a newly-allocated class instance to a Ptr variable, you no
longer have to worry about memory leaks. Even in the presence of
exceptions, it is guaranteed that the memory for the instance will
be deallocated correctly. (Thanks to the Ice garbage collector, this
is true even in the presence of cyclic references among instances.)

Internally, Ice uses the same Ptr reference counting mechanism
that it provides to developers, and for the same reasons. (Despite
the legendary programming skills of ZeroC’s staff, in truth, we are
no better at manually managing memory than anyone else…) The
reference counting is also visible in the Ice APIs. For example, the
addWithUUID operation on the ObjectAdapter has the follow-
ing signature:

// C++
ObjectPrx addWithUUID(const ObjectPtr&);

Note that the parameter type is const ObjectPtr&, that is, the
operation expects a smart pointer to a class instance that is refer-
ence counted. This is a Good Thing™ because it allows you to
write the following:

// C++
adapter->addWithUUID(new MyClassI);

This works because ObjectPtr has a constructor that accepts an
Object* so, at the point of call, the compiler constructs a tempo-
rary ObjectPtr that it passes to addWithUUID. The creation of
the temporary raises the reference count of the instance to �. Inter-
nally, the object adapter assigns the passed ObjectPtr to another
ObjectPtr in its ASM (Active Servant Map), which raises the
reference count to 2; once addWithUUID completes, the compiler
destroys the temporary ObjectPtr it created earlier, which lowers
the reference count of the instance down to �. This turns out to be
very useful because the reference counting guarantees that the in-
stance will not be destroyed until precisely the right time, namely,
only after its ASM entry has been removed, and only after all op-
erations that are executing inside the instance have completed. (See
“The Samsara of Objects” in Issue �� of Connections for how to
use this feature to implement thread-safe life cycle operations.)

However, this same mechanism can bite you if you allocate class
instances on the stack or in static variables. For example:

// C++
MyClassI mc;
adapter->addWithUUID(&mc); // Looming disaster!

The problem here is that, eventually, once the reference count of
the instance drops to zero, the instance will call delete this.
However, that is most likely going to be the last you see of your

FaQ corNer

http://www.zeroc.com/vbulletin/
http://www.zeroc.com/faq/fileTransfer.html
http://www.zeroc.com/newsletter/issue14.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 22 Issue �5, July 2006 Page PBIssue �5, July 2006 Connections
ZeroC’s Newsletter for the Ice Community

process: Calling delete on a stack-allocated instance is likely to
incur the wrath of the operating system, which, if you are lucky,
will unceremoniously kill the process and nicely commemorate the
event with a tomb stone in the form of a core dump. (A stack trace
from the core dump will show some error in the internals of the
heap.) If you are unlucky, your program may go off and do com-
pletely unexpected and strange things because passing a pointer to
delete that did not come from new causes “undefined behavior”
(which is C++ standard legalese for “absolutely anything might
happen”).

The moral of this story is pure and simple: do not allocate Slice
class instances or servant class instances on the stack or in static
variables, not ever. It simply does not work, period.

So, can you protect yourself from this mistake? The answer is
yes, you can, by using a little-known feature of C++: If a class has
a protected destructor, instances of the class must be allocated on
the heap; attempts to allocate an instance on the stack or in a static
variable cause a compile-time error. So, if you have a destructor in
your class, simply make it protected. If you don’t have a destructor
already, simply add an empty protected destructor:

// C++
class MyClassI : public MyClass
{
public:
 // . . .
protected:
 virtual ~MyClass() {}
};

That simple change now makes it impossible to incorrectly allocate
a class instance:

// C++
// Compile-time error
MyClassI mc;
// We don’t get this far.
adapter->addWithUUID(&mc);

As an added benefit, making the destructor protected also prevents
incorrect deletion of a class instance:

// C++
MyClassI* p = new MyClassI;
// ...
delete p; // Compile-time error

Again, this is a Good Thing™: With the Ice C++ mapping, you are
not meant to delete things by hand—deleting things is the job of
Ptr variables, which are much better at it than programmers.

Ideally, the Slice compiler would protect you from incorrect
allocation but, unfortunately, it cannot do that: The rules of C++
require the protected destructor to be present in the most-derived
instance. (Adding a protected destructor to the MyClass base
does not help because what is instantiated is the derived class
MyClassI.) However, MyClassI is written by you, not by the
compiler, so you have to add the protected destructor yourself.

(With the next major release of Ice, the compiler will add a protect-
ed destructor to non-abstract Slice classes. However, for abstract
Slice classes (that is, Slice classes with operations) and for servant
classes, you still have to do this yourself.)

 So, you can either adhere to the firm rule of “only allocate in-
stances on the heap” or, if you believe that an ounce of prevention
is better than a pound of cure, you can habitually add a protected
destructor to all your Slice classes and servant classes. It only
takes a few seconds, and the cost in terms of memory footprint and
performance is zero.

FaQ corNer

	New Features in Ice 3.1
	API Changes in Ice 3.1
	Integrating Ice with a GUI: Part IV
	FAQ Corner

