
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �7, September 2006

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 17, September 2006

Tower of Babel
Recently, a close friend of mine (who 
is also a programmer) mentioned that 
“there are far too many programming 
languages”. If found myself agreeing 
with him. There are literally thousands 
of programming languages. In fact, we 
have more programming languages 
than human ones. The Encyclopedia 
of Computer Languages currently lists 

8,5�2 programming languages. For comparison, Ethnologue re-
cords 6,9�2 human languages. (Of these, only 2�5 languages have 
more than one million speakers, and about 2,000 have fewer than 
�,000 speakers.)

It seems obvious that most of the 8,5�2 programming languages 
are unnecessary, in the sense that they do not provide functionality 
that is not also available in other languages. (And, in contrast to hu-
man languages, it is hard to argue that a programming language has 
intrinsic cultural value). One could even argue that we need only 
one programming language because, ultimately, all programming 
languages are Turing-complete, and therefore equivalent.

The equivalence of programming languages struck me recently 
while I was translating code from C# to Visual Basic. .NET pro-
vides some rather nice language integration features. For example, 
you can derive a VB class from a base class that is implemented 
in C# or Managed C++. To make this possible, .NET’s Common 
Language Infrastructure (CLI) imposes a Common Type System 
(CTS) on all languages that produce managed code. In practice, 
this means that these languages must agree on a common set of 
built-in types, must agree on a common object model, must agree 
on a common syntax for identifiers, and must agree on a whole host 
of other things. While this enables seamless language integration, 
it also creates languages that are all based on a lowest common de-
nominator. The choice of programming language becomes almost 
arbitrary: whether you write something in C#, VB, or Managed 
C++ is largely a matter of choosing which syntax you like best. Of 
course, this begs the question: why is it that we have two or three 
programming languages when a single one would do?

Another (and more pertinent) question is “Why do we have C#?” 
After all, Java was around quite some time before C# and, for all 
intents and purposes, C# is almost indistinguishable from Java. Of 
course, the answer can be found in history: Microsoft wanted to 
modify Java to conform to the CLI, and Sun disagreed with that. 
And the industry was bestowed with a new programming language 
that it needed about as much as it needed a hole in the head. As 
a result, dozens of tool providers created hundreds of compilers, 
debuggers, IDEs, syntax-directed editors, browsers, and other tools 

for C#; thousands of programmers had to learn C#; dozens of au-
thors wrote books about C#; hundreds of magazines and web sites 
published thousands of articles about C#; thousands of developers 
spent tens of thousands of hours attending training courses on C#; 
and thousands of programmers rewrote millions of lines of code in 
C#. The total cost of all this to the industry (and, ultimately, to con-
sumers) is easily in the multi-hundred million dollar range. All this 
for a new programming language that added essentially nothing...

Another (and more contentious) question is “How many pro-
gramming languages do we really need?” Being fully aware of 
the thin ice (pun intended) I am skating on, I believe that, for 
general-purpose commercial programming, we need only four 
(yes, four) languages. Here they are: we need one low-level and 
efficient system programming language that is close to the actual 
hardware: C++; we need one general-purpose application develop-
ment language that is type-safe and can run in managed execution 
environments: Java, C#, Eiffel, or similar; we need one general-
purpose scripting language for ad-hoc development, prototyping, 
and knocking up small(-ish) tools: Perl, Python, Ruby, or similar; 
and we need a database query language: SQL. That’s it: four lan-
guages can cover something like 95% of all commercial software 
development.

Of course, I’m being facetious here; there is ample justification 
for other languages such as Scheme, Prolog, Mathematica, VHDL, 
assembly language, and so on. But I’m worried by the height of 
this tower of Babel: 8,5�2 stories are far too many for comfort; I’d 
be happier with a baker’s dozen or so. Ice currently supports C++, 
Java, C#, VB, Python, PHP, and—soon to come—Ruby. A rather 
modest tower by comparison, but one that is roomy enough for the 
majority of software developers. Oh yes, one more thing… Did I 
mention that variety is the spice of life? Enjoy, and bon appétit!

 
Michi Henning 
Chief Scientist

Issue Features

IceGrid Security
Matthew Newhook describes in detail how to secure IceGrid.

Contents
IceGrid Security  .............................................................. 2

FAQ Corner  .................................................................. �8

http://hopl.murdoch.edu.au/
http://hopl.murdoch.edu.au/
http://www.ethnologue.com
http://en.wikipedia.org/wiki/Turing_complete
http://news.com.com/Sun,+Microsoft+settle+Java+suit/2100-1001_3-251401.html


Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue �7, September 2006 Page �Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

IceGrid Security
Matthew Newhook, Senior Software Engineer

Introduction
In the previous article, we created an MP� encoder that uses the 
IceGrid session allocation mechanism to control client access to 
the encoding resources. In this article, I will show how we can 
secure the grid against unauthorized access. There are quite a few 
ways to secure the grid; two common configurations are Glacier2 
in conjunction with a firewall, and SSL. This article demonstrates 
both.

There are two separate (but related) concerns we need to discuss 
to secure the grid. The first is how to authenticate end-users, that is, 
clients that use the grid, and the second is how to protect the grid 
from unauthorized access.

We can authenticate clients either via a user name and password, 
or via the credentials associated with a connection. User name 
and password authentication requires an implementation of the 
Glacier2::PermissionsVerifier interface, such as the file-
based permissions verifier provided by IceGrid and Glacier2, or a 
custom implementation of your own. Authentication via credentials 
requires a secure connection. Specifically, it relies on the X509 cer-
tificate chain associated with an SSL connection. For this method 
of authentication, you need to provide an implementation of the 
Glacier2::SSLPermissionsVerifier interface. (Note that, 
to implement this interface, your code must link with the Glacier2 
libraries, but need not use a Glacier2 router.)

Either method of authentication requires a secure connection to 
avoid eavesdropping attacks because, without SSL, the user name 
and password would be sent over the network in plain text. In addi-
tion, the client should always authenticate the server-side through 
a certificate. Without such authentication, the client cannot know 
whether it is talking to the correct server and, with user name and 
password authentication, could easily be duped into providing its 
credentials to an attacker. Note that eavesdropping is not a problem 
for authentication via connection credentials because the certifi-
cate’s private key is not sent over the wire (unlike the password in 
case of user name and password authentication).

The second concern is how to protect the grid itself, that is, how 
to prevent unauthorized users from accessing grid resources. For 
example, if a client somehow got hold of a proxy to a grid resource 
(perhaps an application saved a previously-allocated proxy), the 
grid must prevent the client from accessing this resource. Protect-
ing the grid requires using Glacier2 or SSL (or potentially both).

The most common type of deployment for an organization that 
wants to allow access to grid resources from outside the corporate 
network is to use a firewall in conjunction with Glacier2. The core 

strategy is to firewall the entire server back end and allow client 
access only via Glacier2. All clients are required to authenticate 
with Glacier2 before accessing grid resources, and direct access 
to the server back end is restricted to system administrators only. 
(Whether you need any further protection for the server back end 
depends on your installation.)

You can also secure a grid with SSL only. However, doing this 
is far more complex because it requires a thorough understanding 
of the relationships between the various IceGrid components. I will 
describe these relationships in detail and show how to configure 
IceGrid to restrict communications to only those components that 
need it. This type of fully-restricted installation is more onerous 
to administer and, for reasons I will explain later, does not support 
user name and password authentication, so the more common ap-
proach is to use Glacier2 and a firewall.

The IceSSL Plug-in
Before we further discuss how to protect IceGrid, we should 
review the IceSSL plug-in. The plug-in provides two separate but 
equally important functions:

• Encryption. This protects communications from eavesdrop-
ping. (However, depending on how the plug-in is configured, 
communications may still be subject to man-in-the-middle 
attacks. In particular, anonymous Diffie-Hellman suffers from 
this vulnerability—see http://en.wikipedia.org/wiki/Diffie-
Hellman for details.)

• Authentication. This establishes the digital identity of one or 
both of the communicating parties. 

X509 Certificates
The IceSSL plug-in establishes the digital identity of a party using 
an X509 digital certificate. An X509 certificate consists of two 
parts: the certificate itself, and the certificate’s private key. Trust 
comes from the fact that a party cannot claim to be the owner of 
a certificate without its private key. The private key must be kept 
secret by its owner because anyone who gains access to the private 
key can impersonate the true owner. The private key is typically 
stored in encrypted form so it cannot be used without knowledge 
of a password.

Certificates are generally composed into a sequence called a 
chain, with each certificate signed by the next certificate in the 
chain. The signing is done in a secure manner—it is not possible 
to sign a certificate without the private key of the certificate of the 
signer (and that private key is, of course, kept secure). Typically, 
certificates consist of a two-element chain. The beginning (or root) 
of the chain is known as a certificate authority (CA). A CA that 
signs a certificate vouches for the owner of the certificate: if you 
trust a CA to do its job correctly then, given a certificate signed by 
the CA, you can be sure that the owner of that certificate is who he 
or she claims to be.

IceGrId SecurIty

http://en.wikipedia.org/wiki/Diffie-Hellman
http://en.wikipedia.org/wiki/Diffie-Hellman


Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue �7, September 2006 Page �Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Exactly what information is contained within an X509 certifi-
cate? Let us take a look at the header of an X509 certificate:

$ head -35 registry_cert.pem  
Certificate: 
    Data: 
        Version: 3 (0x2) 
        Serial Number: 1 (0x1) 
        Signature Algorithm: md5WithRSAEncryption 
        Issuer: CN=Grid CA, O=GridCA-may.local/ema 
ilAddress=matthew@zeroc.com 
        Validity 
            Not Before: Aug 10 02:30:32 2006 GMT 
            Not After : Aug  9 02:30:32 2011 GMT 
        Subject: CN=IceGrid Registry, O=GridCA-may 
.local 
        Subject Public Key Info: 
            Public Key Algorithm: rsaEncryption 
            RSA Public Key: (1024 bit) 
               .... 
        X509v3 extensions: 
            X509v3 Basic Constraints:  
                CA:FALSE 
            X509v3 Subject Key Identifier:  
                B3:DA:86:CA:A2:AD:BF:5E:54:
CF:26:01:B1:97:4B:55:35:11:14:A7 
            X509v3 Authority Key Identifier:  
                keyid:CD:1B:63:47:17:BF:D8:67:88:5 
D:D6:CA:FA:2A:8F:50:FE:02:80:8C 
                DirName:/CN=Grid CA/O=GridCA-may.l 
ocal/emailAddress=matthew@zeroc.com 
                serial:D3:3A:85:B6:37:33:02:AF 
 
    Signature Algorithm: md5WithRSAEncryption

As you can see, there is quite a bit of information here. If you want 
the full details, you can read the X509 certificate specification, 
however, the most important things in this certificate are the 
distinguished name, or DN, of the issuer of the certificate (our CA, 
in this case), and the DN of the certificate. The other items are 
important, but are checked automatically by the SSL toolkit, and so 
usually do not need to be examined by your application code.

What exactly is a DN? A DN is a name that uniquely identi-
fies an entry. It consists of a number of attribute=value pairs 
separated by commas. Each pair is called a relative distinguished 
name, or RDN. The order of RDNs is significant because each DN 
represents a path from a root directory to the level where the entry 
resides. Let’s look at the DN of the certificate:

CN=IceGrid Registry, O=GridCA-may.local

This DN has two RDNs. CN, which is the common name, and O, 
which is used to represent the organization. They have the values 
IceGrid Registry and GridCA-may.local, respectively.

There are many commercial CA’s that you can use. However, 
Ice provides a CA implementation that is geared towards use with 
IceGrid. This implementation is a wrapper around functionality 
already offered by OpenSSL.

To use the Ice CA, you need to follow these steps:

• Initialize the CA with the initca.py script. This creates a 
root CA certificate.

• Create certificate requests with the req.py script. You can 
use these for the IceGrid registry, IceGrid nodes, Ice servers, 
and individual users.

• Sign the certificate requests with the sign.py script to turn 
them into signed certificates.

• If you want to use the certificates with Java or C#, use the 
import.py script to perform the necessary conversions be-
tween the C++ PEM format and the C# and Java formats.

See the Ice manual for more information on these scripts.

Authorization
Authentication is essential for authorization. Authentication is the 
act of establishing the digital identity of the parties, whereas autho-
rization is the act of determining exactly what activities the parties 
may participate in. The SSL plug-in provides a number of separate 
mechanisms for authorization. By default, the SSL plug-in allows 
unlimited communications for any party that provides a certificate 
satisfying the following constraints:

• The root CA certificate is self-signed and among the applica-
tion’s trusted CA certificates. 

• All other certificates in the chain are signed by the one im-
mediately preceding it. (By default, the certificate chain must 
have length of 2).

• None of the certificates have expired. 

It is possible to further restrict the accepted set of certificates by 
using the TrustOnly series of properties. These properties con-
figure a set of filters that are applied to the distinguished name of a 
peer’s certificate in order to determine whether to accept a connec-
tion. (You can also implement custom policies by implementing 
the IceSSL::CertificateVerifier interface—see the Ice 
manual for more information).

The TrustOnly properties allow you to easily configure both 
the client and the server roles to only trust a limited set of DNs:

• IceSSL.TrustOnly. This property limits both client and 
server communications to those peers that match the property 
value.

• IceSSL.TrustOnly.Client. This property limits cli-
ent-side connections to only those endpoints that match the 
property value.

• IceSSL.TrustOnly.Server. This property limits all server 
endpoints to accept connections only from those peers that 
match the property value.

• IceSSL.TrustOnly.Server.<AdapterName>. This prop-
erty limits the named object adapter to accept connections 
only from those peers that match the property value. 

IceGrId SecurIty

http://www.ietf.org/rfc/rfc2459.txt
http://www.openssl.org/
http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf


Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �7, September 2006 Page 5Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

The property value is a list of RDNs that must be matched with-
out consideration of order. Alternative matches are separated 
with a ‘;’ character. For example, to match the DN shown above 
(CN=IceGrid Registry, O=GridCA-may.local), the follow-
ing would work:

CN=IceGrid Registry

As would this:

O=GridCA-may.local, CN=IceGrid Registry

Since, for this article, we control the only CA, we need only 
specify the common name (CN RDN attribute) for matches. If you 
use a third-party CA, you will likely have to match on all of its DN 
elements to ensure that you do not get an accidental match. (This is 
certainly safest and, unless the CA is strictly controlled, this is the 
recommended approach.)

Securing Administrative Access
An important topic that we must address is administration of 
the IceGrid registry. It is very important to protect access to the 
registry because its deployment mechanism can be used to launch 
arbitrary executables on the grid. There are currently two tools that 
you can use to administer the registry: the icegridadmin com-
mand-line tool, and the Java-based IceGrid GUI. At present, these 
tools use two different authentication methods.

The icegridadmin tool accesses the registry via the Admin 
endpoint(s). You can secure these endpoints by enabling only SSL 
(but not TCP), and by configuring the trust rules to only trust a 
given set of user certificates.

The IceGrid GUI uses a different authentication mechanism. 
It first establishes an administrative session via the IceGrid::
Registry interface:

// Slice 
module IceGrid 
{ 
 
interface Registry 
{ 
 // ... 
 AdminSession* 
 createAdminSession( 
  string userId, string password) 
  throws PermissionDeniedException; 
 AdminSession* 
 createAdminSessionFromSecureConnection() 
  throws PermissionDeniedException; 
}; 
 
};

As for client sessions, there are two alternative methods to create 
an administrative session: by providing a user name and password, 
or by using the credentials associated with a secure connection. 
Because administrative access is potentially dangerous, you should 
never permit it over an insecure connection. Unfortunately, as 
we just saw, the IceGrid GUI uses the registry’s client endpoints, 
which are the same endpoints that are used by clients to create cli-
ent sessions. This means if you want to use TCP for client sessions 
and SSL for administrative sessions, you have a potential security 
hole because an administrator could accidentally use the TCP end-
point and send user name and password over an insecure connec-
tion. To prevent this potential problem, you must require adminis-
trative sessions to be authenticated only via a secure connection. 
(A future release of IceGrid will rectify this shortcoming.)

Administrative session creation uses its own set of permission 
verifiers. For user name and password authentication, IceGrid 
uses the permission verifier defined by the property IceGrid.
Registry.AdminPermissionsVerifier whereas, for secure 
connection authentication, IceGrid uses the SSL permissions veri-
fier defined by the property IceGrid.Registry.AdminSSLPerm
issionsVerifier. To permit authentication only via secure con-
nections, you must set only the AdminSSLPermissionsVerif
ier property, but not the AdminPermissionsVerifier property.

SSL Permissions Verifier
We’ll look at how to configure the IceGrid registry to permit 
administrative access with the GUI only via a secure endpoint. The 
following is a brief summary of what you must do:

• Implement the Glacier2::SSLPermissionsVerifier 
interface and configure a proxy to an instance of this interface 
by setting the IceGrid.Registry.AdminSSLPermission
sVerifier property in the IceGrid registry configuration file.

• Generate a certificate each for the registry and the permissions 
verifier, and at least one certificate for the administrative user.

• Import the administrative certificate into a Java key store, us-
ing the import.py script.

IceGrId SecurIty

Figure 1: Registry Endpoints for the icegridadmin 
and GUI tools

Registry

Client Admin

Admin
Tool

Admin
GUI



Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �7, September 2006 Page 5Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Let’s look at the Slice definition of the 
SSLPermissionsVerifier interface:

// Slice 
module Glacier2 
{ 
 
struct SSLInfo 
{ 
 string remoteHost; 
 int remotePort; 
 string localHost; 
 int localPort; 
 string cipher; 
 StringSeq certs; 
}; 
 
interface SSLPermissionsVerifier 
{ 
 nonmutating bool 
 authorize(SSLInfo info, out string reason); 
}; 
 
};

Your implementation of this object must examine the information 
in the SSLInfo object to determine whether or not to trust the 
peer. In theory, it can use all of the information in this structure 
to determine whether or not to authorize access. However, the 
most important piece of information is the certificate chain. When 
IceGrid calls your authorize method, the IceSSL plug-in has 
already validated the chain to make sure that certificates have not 
expired, are properly signed, and so on, so your application code 
does not need to repeat this process.

Up to this point, I have only discussed direct authentication with 
the IceGrid registry. However, the IceGrid GUI and IceGrid are 
also capable of authenticating via a Glacier2 router. The configura-
tion is very similar, except that you must configure the verifiers on 

the Glacier2 router instead of the registry, so I will not cover this 
configuration in detail (see Figure 2 and Figure 3). I will provide 
more information on Glacier2 and IceGrid configuration later in 
this article.

The contents of a certificate chain are a sequence of Privacy 
Enhanced Mail (PEM) encoded certificates. In C++, the decode 
method of the IceSSL::Certificate class creates a certificate 
from its PEM encoding. (See the Ice manual for details on how 
to this with C# and Java.) Once you have decoded the certificate, 
you typically examine its DN to decide whether or not to authorize 
the user. For example, you might look up the DN in a database or 
an LDAP server—your implementation is free to use whatever is 
appropriate.

 Our example implementation is very simple: it compares the 
certificate DN with a specific required DN:

// C++ 
class SSLPermissionsVerifierI : 
 public Glacier2::SSLPermissionsVerifier 
{ 
public: 
 SSLPermissionsVerifierI() : 
  _dn("emailAddress=matthew@zeroc.com," 
   "O=GridCA-may.local,CN=IceGrid Admin") 
 { 
 } 
 virtual bool 
 authorize(const Glacier2::SSLInfo& info, 
     string&, const Current&) const 
 { 
  if(info.certs.size() > 1) 
  { 
   IceSSL::CertificatePtr cert = 
    IceSSL::Certificate::decode( 
     info.certs[0]); 
   if(_dn == cert->getSubjectDN()) 

IceGrId SecurIty

Figure 2: Direct Authentication with the Registry

create
Session

IceGrid Registry

Client Permissions
Verifier

Session

authorize

<<create>>

reply

Registry

Figure 3: Authentication with the Registry via 
Glacier2

IceGrid Registry

Client Glacier2
Router

Permissions
Verifier

Session
Manager

createSession

authorize

createSession
<<create>>

reply

reply

Session

http://www.zeroc.com/Ice-Manual.pdf
mailto:emailAddress%3Dmatthew@zeroc.com,O%3DGridCA-may.local,CN%3DIceGrid Admin
mailto:emailAddress%3Dmatthew@zeroc.com,O%3DGridCA-may.local,CN%3DIceGrid Admin


Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue �7, September 2006 Page 7Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

   { 
    return true; 
   } 
  } 
  return false; 
 } 
private: 
 const DistinguishedName _dn; 
};

Note that this code uses the IceSSL DistinguishedName class 
to compare the DNs, instead of using a straight string compari-
son. The DistinguishedName class takes care of many details 
that you would otherwise have to handle correctly when com-
paring DNs, such as character escapes, white space rules, and 
so on. (If you are interested in these rules, you can read RFC 
225�—Lightweight Directory Access Protocol (v�): UTF-8 String 
Representation of Distinguished Names.) The Ice manual provides 
more detail on the DistinguishedName class.

Where do we host our permissions verifier object? For now, to 
simplify the configuration, we will host the object in a stand-alone 
server. I will explain shortly how to use IceGrid to deploy that 
server. The implementation of the server is as follows:

// C++ 
class PermissionsVerifierServer : public 
Application 
{ 
public: 
 
    virtual int run(int, char*[]) 
    { 
  ObjectAdapterPtr adapter = 
   communicator()->createObjectAdapter( 
    "PermissionsVerifier"); 
  adapter->add(new SSLPermissionsVerifierI, 
   communicator()->stringToIdentity( 
    "AdminSSLPermissionsVerifier")); 
  adapter->activate(); 
  communicator()->waitForShutdown(); 
  return EXIT_SUCCESS; 
    } 
}; 
 
int 
main(int argc, char* argv[]) 
{ 
 PermissionsVerifierServer app; 
 return app.main(argc, argv, 
  "config.verifier"); 
}

What about the configuration for this verifier? Does it need to be 
protected? The answer depends on the IceGrid configuration. As-
suming that the verifier is not protected by a firewall, we must pro-
tect it ourselves using SSL. Before we can protect anything though, 
we need to generate some certificates. (The demo distribution that 
accompanies this article contains all the necessary certificates, 
together with a log of exactly how they were generated.)

To generate certificates, you must first initialize your certificate 
authority:

$ initca.py  
This script will initialize your organization's 
Certificate Authority (CA). 
The CA database will be created in /Users/
matthew/.iceca/ca 
The subject name for your CA will be  
CN=Grid CA ,  O=GridCA-may.local 
Do you want to keep this as the CA subject name? 
(y/n) [y]y 
Enter the email address of the CA: matthew@zeroc.c 
om 
Generating configuration files...  ca.cnf  sign.
cnf req.cnf ok 
Generating a 2048 bit RSA private key 
......+++ 
.................................+++ 
writing new private key to '/Users/matthew/.iceca/
ca/db/ca_key.pem' 
Enter PEM pass phrase: 
Verifying - Enter PEM pass phrase: 
----- 
 
The CA is initialized. 
 
You need to distribute the following files to all 
machines that can 
request certificates: 
 
/Users/matthew/.iceca/req.cnf 
/Users/matthew/.iceca/ca_cert.pem 
 
These files should be placed in the user's home di 
rectory in 
~/.iceca. On Windows, place these files in <ice-in 
stall>/config.

You need to copy the file ~/.iceca/ca_cert.pem into the demo 
source directory, so that the CA certificate is accessible to the grid.

Next we’ll create the registry certificate:

$ req.py --registry 
Generating a 1024 bit RSA private key 
...........++++++ 
......................++++++ 
writing new private key to 'registry_key.pem' 
Enter PEM pass phrase: 
Verifying - Enter PEM pass phrase: 
----- 
 
Created key: registry_key.pem 
Created certificate request: registry_req.pem 
 
The certificate request must be signed by the CA. 
Send the certificate 
request file to the CA at the following email addr 
ess: 
matthew@zeroc.com

IceGrId SecurIty

http://www.faqs.org/rfcs/rfc2253.html
http://www.faqs.org/rfcs/rfc2253.html
http://www.faqs.org/rfcs/rfc2253.html
http://www.zeroc.com/newsletter/issue17/IceGridSecurity.zip


Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue �7, September 2006 Page 7Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

After you have created the certificate request, it must be signed by 
the CA.  For this demo we can sign the request immediately since 
we are the CA:

$ sign.py --in registry_req.pem --out registry_cer 
t.pem 
Using configuration from /Users/matthew/.iceca/ca/
sign.cnf 
Enter pass phrase for /Users/matthew/.iceca/ca/db/
ca_key.pem: 
Check that the request matches the signature 
Signature ok 
The Subject's Distinguished Name is as follows 
organizationName      :PRINTABLE:'GridCA-may.
local' 
commonName            :PRINTABLE:'IceGrid 
Registry' 
Certificate is to be certified until Aug  1 
03:34:30 2011 GMT (1825 days) 
Sign the certificate? [y/n]:y   
 
 
1 out of 1 certificate requests certified, commit? 
[y/n]y 
Write out database with 1 new entries 
Data Base Updated

Now we’ll change the IceGrid configuration to use these certifi-
cates with the SSL plug-in. The first step is to add the SSL base 
configuration information to the IceGrid registry. The certificates 
are assumed to live in the directory certs.

# IceGrid Registry Configuration 
Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.CertAuthFile=ca_cert.pem 
IceSSL.CertFile=registry_cert.pem 
IceSSL.KeyFile=registry_key.pem 
IceSSL.DefaultDir=certs

Next, generate a new server certificate (use the -server option to 
req.py) for the verifier (use the name SSL Verifier). This cer-
tificate must be stored in verifier_cert.pem and verifier_
key.pem. Then add the SSL settings to the permissions verifier 
application configuration:

# Permissions Verifier Configuration 
PermissionsVerifier.Endpoints=ssl -p 11112 
Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.CertAuthFile=ca_cert.pem 
IceSSL.CertFile=verifier_cert.pem 
IceSSL.KeyFile=verifier_key.pem 
IceSSL.DefaultDir=certs

You must provide a proxy to this verifier object in the registry's 
configuration:

# IceGrid Registry Configuration 
IceGrid.Registry.AdminSSLPermissionsVerifier=Admin
SSLPermissionsVerifier:ssl -p 11112

You must configure the SSL verifier application to trust only the 
IceGrid registry—with this configuration, the application will not 
communicate with any server or client that does not have the given 
common name.

# SSL Verifier configuration 
IceSSL.TrustOnly=CN="IceGrid Registry"

You may also want to add a trust rule to the IceGrid registry to the 
client-side trust only set, as follows:

# IceGrid Registry Configuration 
IceSSL.TrustOnly.Client=CN="Ice Server SSL Verifie 
r"

Next, create a certificate for the IceGrid GUI administrative 
user with the –user option to req.py.  The user name must be 
“IceGrid Admin” and the e-mail address must be matthew@
zeroc.com. (Of course, in reality you would generate whatever 
makes sense for your environment, but for the purposes of this 
demo we need a well-defined common name and e-mail address). 
This generates a DN that matches the string we provided above. 
The certificate must be stored in admin_cert.pem and admin_
key.pem.

Since the IceGrid GUI is a Java application, the certificates must 
be converted to a form suitable for Java. Fortunately, the simple 
CA included with Ice contains just such a script—import.py. 
This script imports a certificate into a Java key store.

$ import.py --java admincert admin_cert.pem admin_
key.pem adminstore.jks 
Enter private key passphrase: 
Enter keystore password: 
converting to pkcs12 format...  ok 
importing into the keystore... ok

Now you need to create a configuration file for the IceGrid GUI. 
The configuration file must load the SSL plug-in. (If you do not 
do this, the GUI will get an EndpointParseException when it 
attempts to connect to the registry.)

# IceGrid GUI Configuration File 
Ice.Plugin.IceSSL=IceSSL.PluginFactory

In addition, the GUI should have a trust rule so that it only trusts 
the IceGrid registry. That way, administrators can be sure that they 
are connecting to the correct registry.

# IceGrid GUI Configuration File 
IceSSL.TrustOnly=CN="IceGrid Registry"

Now, start the GUI with this configuration file.

$ java -jar /opt/Ice-3.1.0/lib/IceGridGUI.jar --Ic 
e.Config=config.gui

After selecting “login”, you will be presented with a dialog as 
shown in Figure �.

IceGrId SecurIty



Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue �7, September 2006 Page 9Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

You must follow these steps:

• Check “Use SSL for authentication”.
• Change “IceGrid Instance Name” to EncoderIceGrid.
• Enter ssl –p 12100 for the “IceGrid Registry Endpoints”. 

(Obviously, if you are administering remotely, you must add 
the host on which the registry runs with –h hostname.)

• Select the “Advanced” tab in “SSL Configuration”.
• Select the adminstore.jks key store.
• Select admincert in the drop-down list. This is necessary as 

the key store created by the import.py script contains two 
certificates, the admin certificate and the CA certificate.

The configuration should look something like Figure 5:

Press OK, and you will be logged into the registry via a secure 
connection.

SSL
In this configuration, we will secure the entire grid using SSL only, 
without the help of a firewall or Glacier2. This configuration fully 
protects the IceGrid registry and nodes, as well as access to the Ice-
Grid resources by clients. Clients have direct access to all internal 
resources. I want to emphasize here that this is one possible setup 
for IceGrid with SSL protection—you do not have to do it in this 
way. For example, you might want to firewall off portions of the 
network to have a safer, simpler, or less attack-prone setup.

First, a brief summary of the steps you must take to secure the 
grid using SSL only. This summary assumes that you have a work-
ing deployed grid application, and now you want to protect it using 
SSL using one certificate for all nodes, and one certificate for all 
grid services.

• Generate certificates for the registry, nodes, grid services, 
servers, SSL permissions verifier, and administrators, plus a 
certificate for each grid user.

• Write an implementation of the Glacier2::
SSLPermissionsVerifier. Configure SSL endpoints for 
the server, and define the trust relationships so that only the 
registry can connect to that server. 

• Configure SSL endpoints on the registry and each of the nodes 
in the grid. (Do not configure TCP endpoints). Configure the 
trust rules between the registry and the nodes. 

• Configure SSL endpoints for each grid service in the deploy-
ment, and any servers used by the grid services. (Once again, 
no TCP endpoints are permitted.) Define the correct trust 
rules.

• Configure each allocatable grid service to use session 
activation.

• Configure SSL for the client-side application, and configure 
the trust rules appropriately.

Now we will examine the various components that we have in the 
deployment and the relationships that they will establish with their 
peers.

IceGrId SecurIty

Figure 4: IceGrid GUI Login Dialog

Figure 5: IceGrid GUI Login Configuration



Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue �7, September 2006 Page 9Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

IceGrid Components
Firstly, let’s look at the most complex component, the IceGrid 
registry.

The ovals represent the available endpoints in the IceGrid registry. 
We’ll go through each in turn:

• Client. This endpoint supports the IceGrid::Query, 
IceGrid::Locator, and IceGrid::Registry interfaces. 
It must be accessible to any application that uses IceGrid. This 
endpoint is also used by the IceGrid GUI application.

• Server. Only servers that host indirect object adapters use this 
endpoint.

• Internal. Only IceGrid nodes use this endpoint.
• Admin. The icegridadmin command-line tool uses this 

endpoint. Additionally it is used by Glacier2 to create 
sessions. 

Next we look at the components with which the IceGrid registry 
communicates.

The IceGrid registry communicates directly with each IceGrid 
node, with any configured permission verifier objects, and with 
itself. Next, the IceGrid node:

Each IceGrid node accepts connections from the registry and sends 
update information to the registry. Each node also communicates 
with the servers it spawns.

Next, we examine a grid service. This is the meat of your ap-
plication—the services that the grid provides to its clients. We will 
first examine a generic service, and then look specifically at the 
encoder factory service.

Here we have an Ice grid service. The IceGrid node must be able 
to talk to the process object in the spawned server so it can tell it 
when to shut down. (Technically, the node connects to the endpoint 
hosted by the object adapter that hosts the process object—see the 
Ice manual for more information). Each indirect object adapter 
registers its endpoints with the IceGrid registry during activation. 
(This is the case for any IceGrid service.) To determine the remain-
der of the relationships you need to examine exactly how your ser-
vice is used. For example, services will allow uni- or bidirectional 
communication with IceGrid clients and, often, some IceGrid ser-
vices will use (or will be used) by other IceGrid services or servers 

IceGrId SecurIty

Figure 7: IceGrid Registry

Node

Permission
Verifier

Registry

Figure 6: IceGrid Registry

Registry

Client AdminInternalServer

Nodes
Icegrid
admin/

Glacier2
Servers

Clients/
Admin
GUI

Figure 8: IceGrid Node

Node

Spawned
Servers

Registry

Figure 9: IceGrid Service

Node Registry

Server

Clients

Other
Services

http://www.zeroc.com/Ice-Manual.pdf


Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue �7, September 2006 Page ��Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

on the network. You need to examine your application in detail to 
work out what these relationships are.

For a concrete example, let us look at the encoder factory 
service.

Since the encoder factory is hosted inside an IceBox container, the 
deployed server actually has two components that must be suit-
ably configured. Firstly, we have the IceBox service container. The 
IceBox container must accept connections from the IceGrid node. 
Furthermore, the service communicates with the IceGrid registry 
in order to register its Process object. Secondly, we have the en-
coder factory IceBox service. That services communicates with the 
IceGrid registry and must accept connections from clients. 

Certificates
Now that we know the relationships between the various services, 
we can think about how to protect them. Here are the certificates 
we need to generate:

• One certificate for the IceGrid registry.
• One certificate for all of the IceGrid nodes. (Note that we 

could generate a separate certificate for each node, but that 
would require a restart of the IceGrid registry whenever we 
add a new node.)

• One certificate for all IceGrid services. This is quite coarse-
grained because it does not allow us to distinguish among 
the different IceGrid servers available in the grid. A more 
fine-grained approach would generate a separate certificate 
for each service but that is more complex, of course: for every 
service we add, we would need to edit the registry configura-
tion, as well as update the node configuration on each node 
on which the server is deployed to describe the relationships 
between the servers in the server’s configuration files.

• One certificate for all of the admin users. (Of course, it is also 
possible to have a separate certificate for each admin user, at 
the cost of more complex configuration.)

• One certificate for each user of the encoding service.

We’ll create certificates with the Ice simple CA package. I assume 
that you have initialized the CA, and that the registry is configured 
as described previously. (In the examples that follow, each of the 
certificates must be signed. However, I have not shown the signing 
step since it is identical to what I showed earlier.)

First, we create the node certificate. The node name should be 
All—this will result in the common name IceGrid Node All. 
The node certificate and private key must be placed into files called 
node_cert.pem and node_key.pem.

$ req.py --node 
Enter the node name: All 
Generating a 1024 bit RSA private key 
................++++++ 
..................++++++ 
writing new private key to 'node_key.pem' 
Enter PEM pass phrase: 
Verifying - Enter PEM pass phrase: 
----- 
 
Created key: node_key.pem 
Created certificate request: node_req.pem 
 
The certificate request must be signed by the CA. 
Send the certificate 
request file to the CA at the following email add 
ress: 
matthew@zeroc.com

Next, we generate the server certificate. In contrast to the registry 
and node certificates, server certificates must generally not be pass-
word protected. If a server’s certificate were password protected, 
the IceGrid node could not start the server (because it would need 
the password to do that). The alternative, namely setting IceSSL.
Password, would mean embedding the password in plain text in 
the deployment file. I believe that it is better to use no password, 
and instead protect the certificate’s private key via appropriate op-
erating system permissions. The server name should be All, which 
will result in the common name Ice Server All. The certifi-
cates must be placed into files called gridserver_cert.pem and 
gridserver_key.pem.

$ req.py --server --no-password 
Enter the server name: All 
Generating a 1024 bit RSA private key 
.......++++++ 
.........++++++ 
writing new private key to 'server_key.pem' 
----- 
 
Created key: server_key.pem 
Created certificate request: server_req.pem 
 
The certificate request must be signed by the CA. 
Send the certificate 
request file to the CA at the following email add 
ress: 
matthew@zeroc.com

IceGrId SecurIty

Figure 10: Encoder Factory Service

IceBox Container

Encoder
Service

Node

Registry

Client



Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue �7, September 2006 Page ��Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

In addition, you should re-generate the SSL permission verifier 
certificate without password protection (since IceGrid will manage 
this service). Next, you need to generate a user certificate for use 
by the encoder client. For example:

$ req.py --user 
Enter the user's full name: Matthew Newhook 
Enter the user's email address: matthew@zeroc.com 
Generating a 1024 bit RSA private key 
...++++++ 
..++++++ 
writing new private key to 'user_key.pem' 
Enter PEM pass phrase: 
Verifying - Enter PEM pass phrase: 
----- 
 
Created key: user_key.pem 
Created certificate request: user_req.pem 
 
The certificate request must be signed by the CA. 
Send the certificate 
request file to the CA at the following email add 
ress: 
matthew@zeroc.com

Trust Relationships
For outgoing connections, the registry must trust only the IceGrid 
node. For implementation reasons, the registry also connects to 
itself and therefore must trust itself. We can configure this as fol-
lows:

# IceGrid registry configuration  
IceSSL.TrustOnly.Client=CN="IceGrid Registry";CN=" 
IceGrid Node All"

As previously described, the registry has four sets of endpoints. 
The client endpoints do not have any configured trust rules—ac-
cess to this endpoint is permitted only for those clients who are 
authenticated by one of the configured permissions verifiers. We’ll 
run through the remainder in turn. The admin endpoints can only 
be accessed by the admin user—in this case that is the user with 
the CN IceGrid Admin.

# IceGrid registry configuration 
IceSSL.TrustOnly.Server.IceGrid.Registry.Admin=CN= 
"IceGrid Admin"

The server endpoints must be accessible to IceGrid services:

# IceGrid registry configuration 
IceSSL.TrustOnly.Server.IceGrid.Registry.Server=CN 
="Ice Server All"

Finally, the internal endpoints must accessible to nodes and the 
registry itself:

# IceGrid registry configuration 
IceSSL.TrustOnly.Server.IceGrid.Registry.Internal= 
CN="IceGrid Node All";CN="IceGrid Registry"

The endpoints must be configured to only use SSL, as follows:

# IceGrid registry configuration 
IceGrid.Registry.Client.Endpoints=ssl -p 12000 
IceGrid.Registry.Server.Endpoints=ssl 
IceGrid.Registry.Internal.Endpoints=ssl 
IceGrid.Registry.Admin.Endpoints=ssl

Next, we look at the IceGrid node configuration. Again, we need to 
add the base SSL configuration information:

# IceGrid node configuration 
Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.CertAuthFile=ca_cert.pem 
IceSSL.CertFile=node_cert.pem 
IceSSL.KeyFile=node_key.pem 
IceSSL.DefaultDir=certs

We also need to describe the trust relationships. On the client 
side, the node talks with the IceGrid registry and spawned IceGrid 
services:

# IceGrid node configuration 
IceSSL.TrustOnly.Client=CN="Ice Server All";CN="Ic 
eGrid Registry"

Since the IceGrid node only has one object adapter, we can use the 
TrustOnly.Server property to specify the trust relationship (in-
stead of the more specific property that specifies the object adapter 
name). The node only accepts connections from the IceGrid 
registry:

# IceGrid node configuration 
IceSSL.TrustOnly.Server=CN=”IceGrid Registry”

Now we can start the registry and the node. If you have problems 
starting these processes, you can set the security tracing property to 
help you isolate the source of the problem:

IceSSL.Trace.Security=1

Next, we must modify the deployment. Note that the encoder fac-
tory is deployed within an IceBox container. Therefore, we must 
configure both the encoder factory and the container. First, we’ll 
add the base SSL configuration to the container:

// IceGrid deployment descriptor 
<icebox id="${instance-name}" exe="icebox" 
activation="session"> 
  <property name="IceBox.ServiceManager.Endpoints" 
   value="ssl -h ${host}"/> 
  <property name="Ice.Plugin.IceSSL" 
   value="IceSSL:createIceSSL"/> 
  <property name="IceSSL.CertAuthFile" 
   value="ca_cert.pem"/> 
  <property name="IceSSL.CertFile" 
   value="gridserver_cert.pem"/> 
  <property name="IceSSL.KeyFile" 
   value="gridserver_key.pem"/> 
  <property name="IceSSL.DefaultDir" 
   value="certs"/>

IceGrId SecurIty



Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue �7, September 2006 Page ��Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Note that this descriptor specifies session activation mode. That 
mode is necessary to properly secure the encoder factory. (We’ll 
examine the reason for this in a moment.)

Next, we define the trust rules. On the client side, the container 
must trust the registry and, on the server side, it must trust the 
IceGrid node so the node can use the Process object. Because the 
container has only one object adapter, we can again use the generic 
TrustOnly.Server property:

# IceGrid deployment descriptor  
<property name="IceSSL.TrustOnly.Client" 
 value='CN="IceGrid Registry"'/> 
<property 
 name="IceSSL.TrustOnly.Server.IceBox.ServiceManag 
er" 
 value='CN="IceGrid Node All"'/>

Next, we examine the configuration for the encoder factory service. 
Again, we need to add the base SSL configuration:

# IceGrid deployment descriptor  
<service name="${instance-name}" 
 entry="Mp3EncoderService:create"> 
  <property name="Ice.Plugin.IceSSL" 
   value="IceSSL:createIceSSL"/> 
  <property name="IceSSL.CertAuthFile" 
   value="ca_cert.pem"/> 
  <property name="IceSSL.CertFile" 
   value="gridserver_cert.pem"/> 
  <property name="IceSSL.KeyFile" 
   value="gridserver_key.pem"/> 
  <property name="IceSSL.DefaultDir" 
   value="certs"/>

For client-side invocations, we only need to trust the registry:

# IceGrid deployment descriptor 
<property name="IceSSL.TrustOnly.Client" 
 value='CN="IceGrid Registry"'/>

Now, we need to look at the server-side trust rules. The encoder 
factory must trust client applications, but only those clients that 
have allocated a factory. (A client application that has not allo-
cated a factory must not be able to talk to the server.) This cannot 
be expressed via static configuration but we can use IceGrid’s 
session.id substitution variable to achieve what we want. The 
variable contains the value of the client session identifier and, for 
sessions created from a secure connection, it contains the DN of 
the user’s credentials. Thus, we can use the following property:

<property name="IceSSL.TrustOnly.Server" 
 value='${session.id}'/>

Since session mode activation means that the server is re-started 
each time a server is allocated to a user, the variable always con-
tains the DN of the user. For example, my user certificate DN is as 
follows:

CN=Matthew Newhook, O=GridCA-may.local/emailAddres 
s=matthew@zeroc.com

Once my client has allocated a server, this property is expanded to:

IceSSL.TrustOnly.Server=CN=Matthew Newhook, O=Grid 
CA-may.local/emailAddress=matthew@zeroc.com

This gives us exactly what we need: only the client with these 
credentials can access the encoder factory endpoints, and all other 
clients are rejected. This also explains why we cannot use user 
name and password for authentication if we secure the entire grid 
with SSL: in that case, the session.id variable would contain 
the user name instead of the DN and would expand to:

IceSSL.TrustOnly.Server=matthew

This clearly would not be workable but, without a trust rule, any 
client could access the server (not only the client that allocated the 
server), meaning that it would not be correctly protected.

The remaining task is to change the adapter endpoints to SSL:

# IceGrid deployment descriptor  
<adapter name="${instance-name}-EncoderFactory" 
 endpoints="ssl -h ${host}"> 
  <allocatable 
   identity="${instance-name}-Mp3Encoder" 
   type="::Ripper::Mp3EncoderFactory"/> 
</adapter>

Now that we have a deployment descriptor, we need to write a con-
figuration file for icegridadmin so we can deploy the descriptor. 
Since icegridadmin needs to communicate with the registry 
only, the trust rule is very simple:

# IceGrid admin configuration file 
IceGrid.InstanceName=EncoderIceGrid 
Ice.Default.Locator=EncoderIceGrid/Locator:ssl -p 
12000 
Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.CertAuthFile=ca_cert.pem 
IceSSL.CertFile=admin_cert.pem 
IceSSL.KeyFile=admin_key.pem 
IceSSL.DefaultDir=certs 
IceSSL.TrustOnly=CN="IceGrid Registry"

Now we move to the client configuration. The base SSL configura-
tion is as follows:

# Client configuration file 
Ice.Default.Locator=EncoderIceGrid/Locator:ssl -p 
12000 
Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.CertAuthFile=ca_cert.pem 
IceSSL.CertFile=matthew_cert.pem 
IceSSL.KeyFile=matthew_key.pem 
IceSSL.DefaultDir=certs

The client must trust the IceGrid registry and IceGrid services, 
which leads to the following rule:

# Client configuration file 
IceSSL.TrustOnly=CN="IceGrid Registry";CN="Ice Ser 
ver All"

IceGrId SecurIty



Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue �7, September 2006 Page ��Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

SSL Session Creation
We need a few code changes to establish the session via a secure 
connection instead of using user name and password authentica-
tion. (If the client were to continue to use user name and password 
authentication, its connection would be rejected—even if an ac-
cidentally left-behind permissions verifier were to accept the user 
name and password—because the trust rule would be violated.) 
The code for the session creation is straightforward:

// C++ 
IceGrid::RegistryPrx registry = IceGrid::   
 RegistryPrx::checkedCast( 
  communicator()->stringToProxy( 
   "EncoderIceGrid/Registry")); 
IceGrid::SessionPrx session;   
try 
{   
 session = 
 registry->createSessionFromSecureConnection(); 
} 
catch(const IceGrid::PermissionDeniedException&ex) 
{   
 cout << "permission denied:\n" << ex.reason 
   << endl;   
 return 1; 
}

If we try this client, however, we will get an error:

$ ./client testcase.wav  
... 
permission denied: 
no ssl permissions verifier configured, use the 
property `IceGrid.Registry.SSLPermissionsVerifier' 
to configure a permissions verifier.

What did we forget to do? As the error says, there is no permis-
sions verifier configured to authorize SSL connections. Unfortu-
nately, there is no equivalent of the NullPermissionsVerifier 
for SSL available with Ice �.�, so we will have to write it our-
selves. Our implementation is very simple. (The actual source code 
is not quite as shown but has the same semantics.)

// C++ 
class SSLPermissionsVerifierI : 
 public Glacier2::SSLPermissionsVerifier 
{ 
public: 
    virtual bool 
    authorize(const Glacier2::SSLInfo&, 
     string&, const Current&) const 
    { 
  return true; 
    } 
};

We’ll host this object along with the existing admin SSL permis-
sions verifier with the identity SSLPermissionsVerifier. Note 
that hosting the admin permissions verifier with IceGrid presents 
a bootstrapping problem if you want to use the IceGrid GUI: the 
problem is that in order to load the initial configuration that con-
tains the admin permissions verifier, you need to run the IceGrid 
GUI—however, authenticating the tool requires the as-yet unde-
ployed permissions verifier. To get around this, you can either use 
the -deploy option to icegridregistry to load the initial de-
ployment, temporarily use the null permissions verifier, or use the 
icegridadmin command line tool (which, as of Ice �.�, doesn’t 
use the same authentication mechanism).

Let’s look at the deployment descriptor:

# IceGrid Deployment Descriptor 
<server id="verifier" exe="../services/
sslverifier" activation="on-demand"> 
  <property name="IceSSL.CertAuthFile" 
   value="ca_cert.pem"/> 
  <property name="IceSSL.CertFile" 
   value="verifier_cert.pem"/> 
  <property name="IceSSL.KeyFile" 
   value="verifier_key.pem"/> 
  <property name="IceSSL.DefaultDir" 
   value="certs"/> 
  <adapter name="PermissionsVerifier" 
   endpoints="ssl -h localhost"> 
    <object identity="SSLPermissionsVerifier"/> 
    <object 
     identity="AdminSSLPermissionsVerifier"/> 
  </adapter> 
</server> 

We need to set the SSL permissions verifier property and the trust 
rules so that the IceGrid registry can talk to the permissions veri-
fier:

# IceGrid Registry Configuration 
IceSSL.TrustOnly.Client=CN="IceGrid Registry";CN=" 
IceGrid Node All";CN="Ice Server SSL Verifier" 
IceSSL.TrustOnly.Server.IceGrid.Registry.Server=CN 
="Ice Server All";CN="Ice Server SSL Verifier" 
IceGrid.Registry.SSLPermissionsVerifier=SSLPermiss 
ionsVerifier

It is worth remembering that, while this configuration is quite com-
plex, it is very secure (provided that no-one can access the private 
certificate keys). Also note that this is only one of many possible 
SSL certificate setups. More restrictive (and complex) setups 
are also possible. For example, you might want to have different 
classes of servers, some which cannot be accessed by particular 
clients.

IceGrId SecurIty



Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue �7, September 2006 Page �5Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �5Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Glacier2
Now we will examine a setup using Glacier2 in conjunction with a 
firewall (which is a common configuration):

Here all machines inside the network are trusted and the grid itself 
is secured by the firewall. Glacier2 takes care of securing access 
to grid resources. In other words, all of the IceGrid administrative 
tools have direct access to the IceGrid nodes and registry because 
we assume no malicious code will run inside the firewall. Clients 
access IceGrid via Glacier2.

Our initial setup will use TCP between Glacier2 and the client, 
and will use user name and password authentication. As I men-
tioned previously, this is not safe because it sends the user name 
and password over the wire in clear text. However, we’ll first look 
at this simple configuration and then modify it for use with SSL. A 
summary of the steps involved in using Glacier2 to protect the grid 
is as follows:

• Modify the IceGrid deployment to deploy a Glacier2 router.
• Modify the client configuration to define a default router 

instead of a default locator.
• Modify the client code to establish the IceGrid session with 

the Glacier2 router instead of with the IceGrid registry.
• Modify the deployment descriptor for the allocatable objects 

to use server or session allocation instead of object allocation.

First, we will modify the deployment descriptor to deploy Gla-
cier2. We will use the predefined Glacier2 template that accompa-
nies the Ice distribution, so we need to tell the descriptor to import 
the default templates as follows:

# IceGrid Deployment Descriptor 
<icegrid> 
  <application name="Mp3Ripper" 
   import-default-templates="true">

Next, we deploy Glacier2.

# IceGrid Deployment Descriptor 
<server-instance template="Glacier2" 
 client-endpoints="tcp -h 1.2.3.4 -p 10005" 
 server-endpoints="tcp" 
 session-timeout="60"/>

Glacier2 clients access Glacier2 on the public IP address 1.2.3.4 
at port 10005. Server endpoints use a random port on their local 
host. We also need to tell Glacier2 to use the IceGrid session man-
ager and permissions verifier implementation. Note that the session 
manager object is hosted on the admin endpoints in the IceGrid 
registry. Since we are using only TCP in this configuration it is suf-
ficient to ensure that the admin endpoints are enabled. (With SSL, 
we would have to add suitable trust rules to the admin endpoint for 
the Glacier2 router.)

# IceGrid Deployment Descriptor 
<server-instance template="Glacier2" ...> 
 <properties> 
  <property name="Glacier2.SessionManager" 
   value="EncoderIceGrid/SessionManager"/> 
  <property name="Glacier2.PermissionsVerifier" 
   value="EncoderIceGrid/NullPermissionsVerifier"
/> 
 </properties> 
</server-instance>

Next, we need to modify the client application to create the session 
with Glacier2 instead of the IceGrid registry:

// C++ 
RouterPrx defaultRouter = 
 communicator()->getDefaultRouter(); 
if(!defaultRouter) 
{ 
 cerr << argv[0] << ": no default router set" 
   << endl; 
 return EXIT_FAILURE; 
} 
 
Glacier2::RouterPrx router = 
 Glacier2::RouterPrx::checkedCast( 
  defaultRouter); 
if(!router) 
{ 
 cerr << argv[0] 
   << ": configured router is not a " 
   << " Glacier2 router" << endl; 
 return EXIT_FAILURE; 
} 
IceGrid::SessionPrx session; 
try 
{ 
 session = IceGrid::SessionPrx::uncheckedCast( 
  router->createSession("foo", "bar")); 
} 
catch(const IceGrid::PermissionDeniedException&ex) 
{    
 cout << "permission denied:\n" << ex.reason 
   << endl; 
 return 1; 
}

This code is almost identical to the code for creating a session with 
the IceGrid registry, except that the router comes from configura-
tion. The session refresh timeout interval also comes from the 
Glacier2 router:

IceGrId SecurIty

Figure 11: Glacier2

Client Server
Glacier2

Router

Private  NetworkPublic Network



Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue �7, September 2006 Page �5Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �5Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

// C++ 
SessionRefreshThreadPtr refresh = 
 new SessionRefreshThread( 
  IceUtil::Time::seconds( 
  router->getSessionTimeout()/2), session);

The next step is to alter the client configuration to set a default 
router (instead of a default locator):

# Client side Configuration 
Ice.Default.Router=Mp3Ripper.Glacier2/router:tcp 
-h 1.2.3.4 -p 10005

If we run this client (after deploying and starting the Glacier2 
router), we get the following error:

$ ./client testcase.wav 
Exception: Outgoing.cpp:368: 
ObjectNotExistException: 
object does not exist: 
identity: `2DAD6FAB-200D-443F-83DB-C38AEF67C690' 
facet:  
operation: encode

The problem here is that Glacier2 is getting in the way. Glacier 
prevents clients from talking to objects they should not have ac-
cess to and, unless told otherwise, Glacier2 will block all traffic. 
To coexist with Glacier2, at run time, IceGrid tells Glacier2 via 
the Glacier2::SessionControl interface to open appropriate 
holes in the firewall, so IceGrid clients can access the IceGrid::
Query and IceGrid::Session objects (but no other objects). 
For allocated objects, IceGrid tells Glacier2 to additionally allow 
access to the allocated objects’ identity. However, this means 
that Glacier2 blocks the client’s attempt to contact the encoder 
object because the encoder object is not an allocated object (only 
the encoder factory is). The easiest way to fix this is to change 
the allocation method from object allocation to server allocation. 
With server allocation, IceGrid tells Glacier2 to allow access to all 
objects hosted by a server’s indirect object adapters. Therefore, we 
can change the template as follows:

<icebox id="${instance-name}" exe="icebox" 
 activation="on-demand" allocatable="true">

Or alternatively:

<icebox id="${instance-name}" exe="icebox" 
 activation="session">

The allocatable=”true” tag tells IceGrid to allocate 
the entire server to the client instead of just a single object. 
(activation=”session” implies allocation=”true”.) This 
also causes the IceGrid node to execute the server when the session 
allocates the server, and to shut the server down when the session 
releases it.

How do you decide whether to use session activation or straight 
server allocation? Session activation is appropriate if you want to 
run the server as a given user-ID, or if you want to use SSL with 
multiple client-side certificates. Otherwise, it is generally better to 
use server allocation. 

SSL and Glacier2
Next we will add SSL to the mix, but we will still use user name 
and password authentication. This eliminates the weakness of the 
preceding approach, which sends the user name and password in 
clear text over a TCP connection (and hence is subject to eaves-
dropping attacks.) Here is a summary of the steps required to use 
SSL:

• Generate a certificate for the Glacier2 router.
• Configure the Glacier2 router to use only SSL for its client-

side endpoints.
• Distribute the CA certificate to the client-side application.
• Modify the client-side default router proxy to use SSL.
• Configure the client-side SSL plug-in, and set the trust rules 

so that only the Glacier2 router is trusted.

For our initial configuration, we will authenticate the client with a 
user name and password, and secure communications with SSL.

First, we initialize the simple CA and generate a server certifi-
cate for the Glacier2 router. (We use the name Glacier2 Router, 
which results in the common name Ice Server Glacier2 
Router.) We store the certificate in glacier2_cert.pem, and 
the private key in glacier2_key.pem. Then we change the Gla-
cier2 router deployment to use SSL:

# IceGrid Deployment Descriptor 
<server-instance template="Glacier2" 
 client-endpoints="ssl -h 1.2.3.4 -p 10005" 
 server-endpoints="tcp" 
 session-timeout="30"> 
  <properties> 
    <property name="Glacier2.SessionManager" 
  value="EncoderIceGrid/SessionManager"/> 
    <property name="Glacier2.PermissionsVerifier" 
  value="EncoderIceGrid/NullPermissionsVerifie
r"/> 
    <property name="Ice.Plugin.IceSSL" 
  value="IceSSL:createIceSSL"/> 
    <property name="IceSSL.CertAuthFile" 
  value="ca_cert.pem"/> 
    <property name="IceSSL.CertFile" 
  value="glacier2_cert.pem"/> 
    <property name="IceSSL.KeyFile" 
  value="glacier2_key.pem"/> 
  </properties> 
</server-instance>

We also need to change the client configuration to use the CA and 
Glacier2’s SSL endpoint:

IceGrId SecurIty



Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue �7, September 2006 Page �7Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �7Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

# Client configuration 
Ice.Default.Router=Mp3Ripper.Glacier2/router:ssl 
-h 1.2.3.4 -p 10005 
Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.CertAuthFile=ca_cert.pem

Note that since the client is anonymous (from the SSL point of 
view) it does not have a certificate itself. However, it must still 
identify the CA certificate so that the client knows how to validate 
that the router's certificate is actually valid. In other words, the 
client can be sure that it is talking to the correct Glacier2 instance, 
but Glacier2 cannot authenticate the client. When we try to run the 
client, we get the following error:

$ ./client  testcase1.wav 
./client: ConnectorI.cpp:143: ProtocolException: 
protocol exception: 
SSL error for new outgoing connection: 
remote address = 1.2.3.4:10005 
sslv3 alert handshake failure: SSL alert number 40

The problem here is that the Glacier2 router tries to validate the 
client certificate but, because it has no such certificate, it rejects 
the connection. We can fix this by setting IceSSL.VerifyPeer 
property in the Glacier2 configuration to zero, which means that 
the client validates the server certificate, but the server does not 
request a certificate from the client. (To have Glacier2 recognize 
the property, we need to update its deployment and restart it.)

# IceGrid Deployment Descriptor 
<property name="IceSSL.VerifyPeer" value="0"/>

Now the client works as expected. However, there is still some-
thing missing: as it stands, the client trusts any certificate signed by 
the CA certificate in ca_cert.pem. However, we want the client 
to trust only the Glacier2 router. To achieve this, we need to add a 
trust rule to the client configuration file:

# Client Configuration 
IceSSL.TrustOnly=CN="Ice Server Glacier2 Router"

Now the client authenticates the Glacier2 router and validates that 
it indeed has the correct common name. The server authenticates 
the client via user name and password. Because communications 
are encrypted with SSL, this is now safe because the user name 
and password are no longer sent as clear text.

Secure Connection Authentication with Glacier2
Next, we will change the authentication method to use the creden-
tials associated with the SSL connection instead of using a user 
name and password. This requires issuing a unique certificate to 
each client.

Here is a summary of the steps required to do this:

• Write an implementation of the Glacier2::
SSLPermissionsVerifier interface. Because the server 
lives behind the firewall, it is not necessary to use SSL end-
points for it.

• Modify the Glacier2 router configuration to use the SSL 
permissions verifier. In addition, Glacier2 must use IceSSL.
VerifyPeer=2 (the default) because every client is now 
required to have a certificate.

• Modify the client’s configuration to use a per-client certificate.
• Modify the client to authenticate via a secure connection 

instead of a user name and password.

As the client certificate, we can re-use the certificate from the SSL 
section. Here is the new Glacier2 deployment:

# IceGrid Deployment Descriptor 
<server-instance template="Glacier2" 
 client-endpoints="ssl -h 1.2.3.4 -p 10005" 
 server-endpoints="tcp" 
 session-timeout="30"> 
 <properties> 
  <property name="Glacier2.SSLSessionManager" 
   value="EncoderIceGrid/SessionManager"/> 
  <property name="Glacier2.SSLPermissionsVerifier"  
   value="SSLPermissionsVerifier"/> 
  <property name="Ice.Plugin.IceSSL" 
   value="IceSSL:createIceSSL"/> 
  <property name="IceSSL.CertAuthFile" 
   value="ca_cert.pem"/> 
  <property name="IceSSL.CertFile" 
   value="glacier2_cert.pem"/> 
  <property name="IceSSL.KeyFile" 
   value="glacier2_key.pem"/> 
 </properties> 
</server-instance>

Compared to the previous one, this deployment makes the follow-
ing changes:

• It sets the property Glacier2.SSLSessionManager instead 
of Glacier2.SessionManager.

• It sets the property Glacier2.SSLPermissionsVerifier 
instead of Glacier2.PermissionsVerifier. (In this case, 
we have told the Glacier2 router to use the SSL permissions 
verifier that we developed earlier in this article. Note that we 
are also using TCP for the verifier since the verifier is behind 
the firewall.)

• It removes the setting of the IceSSL.VerifyPeer property 
because we now want to request a peer certificate.

Next, we need to alter the client configuration to supply a client-
side certificate:

# Client Configuration 
Ice.Default.Router=Mp3Ripper.Glacier2/router:ssl 
-h 1.2.3.4 -p 10005 
Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.CertAuthFile=ca_cert.pem 
IceSSL.CertFile=matthew_cert.pem 
IceSSL.KeyFile=matthew_key.pem 
IceSSL.TrustOnly=CN="Ice Server Glacier2 Router"

IceGrId SecurIty



Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue �7, September 2006 Page �7Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �7Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

The only other change to the client is to have it authorize via its 
secure connection as follows:

// C++ 
IceGrid::SessionPrx session; 
try 
{ 
 session = IceGrid::SessionPrx::uncheckedCast( 
  router->createSessionFromSecureConnection()); 
} 
catch(const IceGrid::PermissionDeniedException&ex) 
{ 
 cout << "permission denied:\n" << ex.reason 
  << endl; 
 return 1; 
}

Conclusion
You can protect unauthorized access to grid resources using Gla-
cier2 only, SSL only, or a combination of both. Which mechanism 
to use is an administrative decision. If you deploy the grid inside 
a corporate network and do not want to allow access to the grid 
from the outside, the most likely choice is to secure administra-
tive access to the grid with SSL, and to allow everything else to 
proceed unsecured. However, if you want to allow access to your 
grid from outside the boundaries of your corporate firewall, then 
you will certainly want to use Glacier2. Completely securing the 
grid with SSL is necessary only if you want strong security behind 
the firewall (that is, you assume that hostile parties may be present 
inside the network) and you do not want to set up a separate inter-
nal private network just to host the grid. 

If you want to use Glacier2 to permit access to a grid from an 
outside network, I recommend the following configuration:

• Use SSL for communication between clients and Glacier2.
• Authenticate the Glacier2 router to clients with a certificate, 

so clients can be sure that they are talking to the correct Gla-
cier2 server (instead of an impostor).

• Use user name and password client authentication with 
Glacier2.

• Run the Glacier2 router(s) on a server with two network 
cards, one facing the internal network and one facing the 
external network.

• Do not permit administrative access to Glacier2 or IceGrid 
from outside the firewall. For administrative access from in-
side the firewall, you can either leave admin access unsecured 
(if you trust everyone with access to the inside network), or 
you can secure admin access with a single SSL certificate. For 
slightly better protection, you can secure admin access with 
user name and password authentication, or with separate SSL 
certificates.

• Otherwise, run the grid on the internal network over TCP/IP. 
This provides better application performance (but assumes 
that the data your clients and servers exchange is either not 
sensitive or, if it is, that there are no eavesdroppers on the 
internal network).

This configuration is quite simple to set up and provides good 
security. In addition, because a Glacier2 router acts as a connection 
concentrator, if you have many clients, you can achieve better scal-
ability by running several Glacier2 router instances.

In contrast, if you do not allow outside clients to access a grid 
through a firewall, you can dispense with Glacier2. In that case, 
you have the following options for running the grid:

�. Insecure: The grid is not protected in any way.
2. Administratively secure: The grid can be used by any cli-

ent, but cannot be administered except by authenticated 
administrators.

�. Fully secure: Only authenticated and authorized clients and 
administrators can use the grid, with all communication ex-
plicitly secured via SSL.

For many organizations the second option is most attractive. 
Administration of the grid is secured (with SSL for encryption and 
user names and passwords for authentication), but any client on the 
internal network can use the grid without authentication. This is se-
cure provided that the applications that run on the grid are secure, 
and it is simple to configure and manage. (If you want to use grid 
sessions with your application, you will need some form of client 
authentication; however, you can use a null permissions verifier if 
all you need are sessions, but no actual authentication.)

Of course, these are only general guidelines. If you have more 
complex requirements, we can provide assistance via our con-
sulting services—please contact sales@zeroc.com if you are 
interested.

There are other aspects of grid security that I did not touch on 
in this article. For example, the way applications are deployed, 
the user-IDs of server processes, and the deployment of IceGrid 
nodes and the registry are also important aspects of grid security. I 
will discuss these and other security concerns in future articles on 
IceGrid.

IceGrId SecurIty

mailto:sales@zeroc.com


Connections
ZeroC’s Newsletter for the Ice Community

Page �8 Issue �7, September 2006 Page �9Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �9Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner
In each issue of our newsletter, we present a few frequently-asked 
questions about Ice. The questions and answers are taken from our 
support forum at http://www.zeroc.com/vbulletin/ and deal with 
specific problems that developers tend to encounter, and for which 
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this 
section useful.

Q: Is Ice thread-safe?

The short answer is “yes”. All Ice APIs are thread-safe, in the sense 
that you can call them concurrently from different threads without 
running the risk of corrupting data structures that are internal to the 
Ice run time. For example, it is perfectly safe to do the following:

// C++ 
// Executed by thread 1: 
communicator->add(servant, id); 
 
// ... 
// Executed concurrently by thread 2: 
communicator->remove(id);

The concurrent calls to add and remove are safe because the Ice 
run time internally locks the ASM before attempting to modify it, 
so the two API calls are serialized. In general, you never need to 
protect Ice-internal data structures from concurrent access.

However, Ice does not protect the integrity of application data. 
Consider the following Slice definition:

// Slice 
struct Item 
{ 
    string name; 
    // ... 
}; 
 
interface ItemStore 
{ 
    void put(string s, Item i); 
    bool get(string s, out Item i); 
};

The slice2cpp compiler generates the following signatures for 
the put and get operations:

// C++ 
void put(const string& s, const Item& i); 
bool get(const string& s, Item& i);

Now, if you call put and get concurrently and pass the same item 
to each operation, you can end up in trouble:

// C++ 
Item i; 
i.name = ″Joe″; 
 
// Pass i to thread 1 and thread 2... 
 
// In thread 1: 
itemStoreProxy->put(″Joe″, i); 
 
// Concurrently in thread 2: 
itemStoreProxy->get(″Fred″, i);

Of course, the problem here is that the put operation in thread � 
may read the contents of i at the same time as the get operation 
in thread 2 modifies the contents of i. The most likely outcome 
is that that the put operation is passed a corrupted value of I but, 
depending on your CPU architecture and threading package, the 
consequences might be more serious, such as a core dump (either 
while get and put are executing, or later, when the application 
attempts to use i).

So, as usual, you must establish critical regions around concur-
rent access to application data, regardless of whether that access is 
performed by a thread of your own or a thread inside the Ice run 
time.

Note that “thread-safe” does not mean that you can blindly call 
any Ice API at any time. There are a few Ice API calls that can 
cause deadlock. For example:

// Slice 
interface Admin 
{ 
    void shutdown(); // Shut down server 
};

// C++ 
void 
AdminI::shutdown(const Current& c) 
{ 
    c.adapter->deactivate(); 
    // ... 
    c.adapter->waitForDeactivate(); // Deadlock! 
}

This cannot possibly work because waitForDeactivate 
waits until all operations on the adapter have completed; if you 
call waitForDeactivate from within an operation on the 
adapter being deactivated, waitForDeactivate cannot com-
plete until the operation has completed, and the operation can-
not complete until waitForDeactivate has completed, so the 
code deadlocks. However, there are only a handful of operations 
that can cause this problem: Communicator::destroy, Com-
municator::waitForShutdown, Adapter::waitForDeac-
tivate, Adapter::waitForHold, and Service::waitFor-
Shutdown. If your code deadlocks due to incorrect use of these 
operations, the problem is easily diagnosed: one of the threads 
will be stuck in one of these methods and have an earlier stack 
frame that corresponds to the implementation of a Slice operation. 

FAQ corner

http://www.zeroc.com/vbulletin/


Connections
ZeroC’s Newsletter for the Ice Community

Page �8 Issue �7, September 2006 Page �9Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �9Issue �7, September 2006 Connections
ZeroC’s Newsletter for the Ice Community

Q: Why does the MFC leak detector report memory 
leaks with Ice?

When running a debug version of an MFC application that links 
with the Ice libraries, after the application terminates, you may see 
something similar to the following in the IDE debug window:

Detected memory leaks! 
Dumping objects -> 
{77} normal block at 0x00475768, 16 bytes long. 
Data: < WG hWG > 18 57 47 00 68 57 47 00 00 00 00 
00 00 00 00 00 
{75} normal block at 0x00475A90, 1808 bytes long. 
Data: <0123456789ABCDEF> 30 31 32 33 34 35 36 37 
38 39 41 42 43 44 45 46 
{74} normal block at 0x00472FE0, 28 bytes long 
...

We have tested the Ice run time extensively and are confident that 
it does not harbor memory leaks—even when MFC is used. The er-
roneous leak reports are caused by the use of static variables in the 
Ice libraries, such as instances of std::string. These instances 
allocate memory when they are constructed, but have not released 
the memory at the time the Microsoft memory tracker runs its leak 
detection routines. This is annoying and, unfortunately, there is no 
known solution to this problem.

Of course, it is always possible that your application has real 
memory leaks, so it is best to use a leak detector to help track down 
such bugs. However, we recommend that you ignore the output 
from the Microsoft memory tracker and instead use a leak detector 
that does not suffer from this problem, such as Rational Purify.

FAQ corner


	IceGrid Security
	FAQ Corner

