
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �8, October 2006

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 18, October 2006

Abstraction Layers
A fundamental technique of dealing
with complexity in computing is to
provide abstractions. What makes
abstractions work is that they throw
away irrelevant information and retain
only information that is necessary for a
particular purpose. By throwing away
information, abstractions reduce com-
plexity to manageable levels.

Ice is an abstraction that presents a simplified picture of a
complex network infrastructure: as a programmer, you can call an
operation on a remote object and, in a nutshell, Ice lets you know
whether the operation worked or not. Underneath the covers, doing
this requires a lot of complex activity that you can safely ignore—
the whole idea of Ice is that it lets you get on with the job of build-
ing your application instead of worrying about the network.

Abstractions are everywhere in computing. In particular, layers
of abstractions are everywhere. We not only create abstractions, we
also create abstractions on top of other abstractions. For example,
at the bottom-most layer, we have hardware. On top of that, we
have device drivers and an operating system. On top of the OS, we
have system libraries that provide various services. Typically, these
libraries are themselves arranged into layers, with one library call-
ing on the services of another. And on top of the libraries, we have
applications that typically are themselves structured as layers of ab-
stractions. Layering of abstractions is an immensely powerful and
useful idea—without it, computing as we know it could not exist.

Layered abstractions are not without problems. For example,
we all probably had moments where we were confounded by some
mysterious and inexplicable failure of code, only to ultimately
find out that the failure was caused by some lower layer. Diagnos-
ing such problems can be very difficult: by definition, abstractions
throw away information (otherwise they would not be abstractions)
but, occasionally, it is precisely the information that is thrown away
that we need to find out why things do not work.

It is interesting to note that, the lower in the abstraction hier-
archy a problem occurs, the less tolerant we are of the problem.
For example, bugs in compilers generally elicit extremely vitriolic
reactions from developers. Similarly, you might remember the Intel
Pentium floating point bug. The problem caused a huge public out-
cry, even though the bug affected very few people. What makes us
so intolerant of lower-level bugs is that they bite indiscriminately
and, therefore, can cause a lot of consequential damage.

If you develop applications with Ice, you will probably think
of Ice as something quite low in your hierarchy of abstractions,

probably somewhere just above the OS level. If your application
does not communicate the way you think it should, you would like
to know why. And, if you can’t easily find out why things do not
work, you are probably upset. (Believe me, I know what that feels
like, because I get upset every time one of my Ice applications does
not work and I cannot easily find out why.)

Sometimes your problem will be caused by something you have
done wrong in your code. To help you find out what that is, you
have quite a few resources to turn to. For one, there is Connec-
tions, which you are reading right now. I particularly recommend
the FAQ section, which provides answers to problems that fellow
developers really have run into. (No, we don’t invent these ques-
tions; they come from our developer community.) There is also the
extensive Ice manual, which, apart from telling you how things
work, provides many tips for how to stay out of trouble and how to
debug things. And there is our developer forum, where you get help
from us and other members of the Ice community.

And sometimes, your problem will be caused by a bug in Ice.
(Yes, we are not perfect and make mistakes like everyone else.) We
care about our developers, and we apologize for the inconvenience
a bug causes you. When you do find a bug, please let us know
about it. We will do our best to solve your problem, and to solve it
quickly. At ZeroC, we take pride in the quality of our software, and
we are indebted to you when you find a bug in Ice and tell us about
it: every time that happens, Ice becomes a better abstraction.

Michi Henning
Chief Scientist

Issue Features

Session Management with IceGrid
This article discusses the use of an interposed IceGrid session to
prevent malicious clients from monopolizing a grid.

Write Once, Read Everywhere
Michi Henning describes how to use slice2docbook.

Contents
Session Management with IceGrid 2

Write Once, Read Everywhere �0

FAQ Corner .. �4

http://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://www.zeroc.com/faq/index.html
http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/vbulletin
http://www.zeroc.com/vbulletin/forumdisplay.php?f=5
http://www.zeroc.com/vbulletin/forumdisplay.php?f=5

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue �8, October 2006 Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Session Management with IceGrid
Matthew Newhook, Senior Software Engineer

Introduction
The previous article in this series (see Issue �7 of Connections)
showed how to secure a grid against unauthorized access. How-
ever, the application did nothing to protect itself from malicious
or otherwise broken clients. This article demonstrates how we can
add such protection.

The MP� encoder application we developed so far had the fol-
lowing goals:

• The application must not run more encoders to run in parallel
than the number of CPUs (or some factor thereof).

• Each factory allows only one file to be encoded at a time.
• Each factory is reserved for the exclusive use of a single client

until the client no longer uses that factory.

We satisfied these goals in the following way:

• We used the IceGrid session allocation mechanism to allocate
factories to clients.

• On each encoding machine, we deployed a limited number of
encoder factory services according to the number of CPUs on
that machine.

Each client could allocate only one encoder factory and therefore
encode only one file at time. However, we assume that we have an
entire server farm, and we would like to keep the servers as busy
as possible, so we would like to allow clients to allocate more
than one factory, so that clients can encode several files in parallel.
However, a potential problem of this strategy is that a client, due
to bandwidth and processing limitations, may not be able to fully
utilize the encoders it has allocated. Therefore, we want to allow
clients to allocate more than one encoder, but not more encoders
than the clients each can reasonably use. Also, we do not want a
malicious or broken client to allocate all of the available encoders
because that would deny service to other clients. A simple strategy
for dealing with this is to limit the number of encoders that a client
can allocate to some (small) fixed number. However, IceGrid can-
not enforce this limitation, so we need to take of it ourselves.

Implementation
First, we will deal with how to prevent a client from allocating
more than a fair share of resources. Initially, we will limit the client
to allocating only one encoder factory per session. Once we have
accomplished this, it is fairly simple to modify things such that
clients can allocate several encoders, up to some specific limit.

A simple approach to solving the problem would be to introduce
a new Glacier2 session manager object that performs the session
allocation on behalf of the client. For example:

// Slice
interface EncoderSessionManager extends
 Glacier2::SessionManager
{
 Ripper::EncoderFactory* allocate();
};

When a client creates this object, the implementation could es-
tablish an IceGrid session and release that session again when the
object is destroyed. This strategy would certainly work but has the
drawback that it requires code changes in the client. However, we
can also create an implementation that does not require any client
code changes: we can create an implementation of the IceGrid::
Session interface that, while imposing additional restrictions
on the client, delegates parts of its implementation to an actual
IceGrid session.

Glacier2 creates sessions by delegating the creation to a session
manager. Recall that there are two supported methods for user au-
thentication with Glacier2. The first uses user name and password
authentication, and the second uses the credentials associated with
an SSL connection. There are two session manager interfaces, one
for each authentication method:

// Slice
interface SessionManager
{
 Session* create(string userId,
 SessionControl* control)
 throws CannotCreateSessionException;
};

interface SSLSessionManager
{
 Session* create(SSLInfo info,
 SessionControl* control)
 throws CannotCreateSessionException;
};

These are configured with the properties Glacier2.Session-
Manager and Glacier2.SSLSessionManager, respectively.
The previous application configuration for Glacier2 was something
like the following:

// IceGrid descriptor
<server-instance template="Glacier2"
 client-endpoints="ssl -h 192.168.1.102 -p 10005"
 server-endpoints="tcp"
 session-timeout="30">
 <properties>
 <property name="Glacier2.SessionManager"
 value="EncoderIceGrid/SessionManager"/>
 ...
 </properties>
</server-instance>

SeSSion ManageMent with icegrid

http://www.zeroc.com/newsletter/issue17.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue �8, October 2006 Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

This descriptor tells Glacier2 to use the IceGrid session manager to
create its sessions. It is important to note that access to the ses-
sion manager should normally be restricted to authorized users.
Glacier2 invokes the session manager only after it has success-
fully validated the client's credentials, but you must also prevent a
malicious client from directly invoking operations on the session
manager. You can do this in a number of ways, such as by forcing
all interaction with backend servers to go through Glacier2, or by
using SSL with sufficient access controls.

What we will do is configure Glacier2 to use our custom session
manager, and configure our custom session manager to delegate
to the IceGrid session manager, that is, we interpose the custom
session manager between Glacier2 and IceGrid and enforce the
limit on the number of files a client can encode in the interposed
implementation.

Let’s start with the implementation, beginning with the session
manager. The class definition is as follows:

// C++
class SessionManagerI :
 public Glacier2::SessionManager
{
public:
 SessionManagerI(
 const Glacier2::SessionManagerPrx&);
 ~SessionManagerI();

 virtual Glacier2::SessionPrx
 create(const std::string&,
 const Glacier2::SessionControlPrx&,
 const Current&);

private:

 const Glacier2::SessionManagerPrx _manager;
};

The implementation of the constructor and destructor are straight-
forward; see the accompanying source code for details. We’ll move
on to the implementation of session creation:

// C++
Glacier2::SessionPrx
SessionManagerI::create(
 const string& userId,
 const Glacier2::SessionControlPrx& control,
 const Current& current)
{
 IceGrid::SessionPrx session =
 IceGrid::SessionPrx::uncheckedCast(
 _manager->create(userId, control));
 Glacier2::SessionPrx interposed =
 Glacier2::SessionPrx::uncheckedCast(
 current.adapter->addWithUUID(
 new SessionI(session)));
 return interposed;
}

We allocate a session from the IceGrid session manager, allocate
our custom session manager implementation, and then return a
proxy to the custom session manager.

Now we move onto the implementation of the custom session
manager. The Slice definition for the interface is shown below:

// Slice
interface Session extends Glacier2::Session
{
 idempotent void keepAlive();
 ["ami", "amd"] Object* allocateObjectById(
 Ice::Identity id)
 throws ObjectNotRegisteredException,
 AllocationException;
 ["ami", "amd"] Object* allocateObjectByType(
 string type)
 throws AllocationException;
 void releaseObject(Ice::Identity id)
 throws ObjectNotRegisteredException,
 AllocationException;
 idempotent void setAllocationTimeout(
 int timeout);
};

As a first step, we’ll delegate all calls directly to the IceGrid ses-
sion to ensure that all of the plumbing is hooked up correctly. Here
is a partial implementation:

// C++
class SessionI : public IceGrid::Session
{
public:

 SessionI(const IceGrid::SessionPrx& session) :
 _session(session)
 {
 }

 ~SessionI()
 {
 }

SeSSion ManageMent with icegrid

Figure 1: Interposed Session Manager

Glacier2
Custom
Session
Manager

IceGrid

delegates

http://www.zeroc.com/newsletter/issue18/SessionManagement.zip

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue �8, October 2006 Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

 virtual void
 keepAlive(const Current&)
 {
 _session->keepAlive();
 }

 virtual void
 releaseObject(const Identity& id,
 const Current&)
 {
 _session->releaseObject(id);
 }

 virtual void
 setAllocationTimeout(int timeout,
 const Current&)
 {
 _session->setAllocationTimeout(timeout);
 }

 virtual void
 destroy(const Current& current)
 {
 current.adapter->remove(current.id);
 _session->destroy();
 }

 // ...

private:

 const IceGrid::SessionPrx _session;
};

Next we’ll deal with the allocation methods, which are a bit
trickier because the above interface uses asynchronous method
dispatch (AMD). We could have used synchronous operations in-
stead, but session allocation is likely to be slow because it typically
will have to wait for an encoder object to become available. With
a synchronous implementation, the server would consume a thread
from the server-side dispatch pool for every client that is waiting
for an encoder to become available. However, we expect a session
server to support many clients, and we expect many clients to be
waiting, so the number of clients that could be waiting at a time
would be limited by the number of threads that the server has in its
pool. Because threads are expensive in terms of memory consump-
tion, this does not scale all that well and, by using AMD, we can
have an unlimited number of clients waiting for an encoder without
consuming a separate thread for each client for the duration of
the wait. (If you are not familiar with the details of asynchronous
method invocation and dispatch, have a look at Asynchronous
Programming in Issue 4 of Connections.)

Let’s look at the implementation of these methods:

// C++
virtual void
allocateObjectById_async(
 const AMD_Session_allocateObjectByIdPtr&

 response,
 const Identity& id, const Current&)
{
 _session->allocateObjectById_async(
 new AMI_Session_allocateObjectByIdI(
 response), id);
}

virtual void
allocateObjectByType_async(
 const AMD_Session_allocateObjectByTypePtr&
 response,
 const string& type, const Current&)
{
 _session->allocateObjectByType_async(
 new AMI_Session_allocateObjectByTypeI(
 response), type);
}

The operations use the technique of AMD/AMI chaining, which
releases the server-side invocation thread as soon as the AMI invo-
cation is sent to the IceGrid session.

The implementation of the AMI callback objects is trivial and
simply notifies the caller of the completion of an invocation, either
normally, or via an exception:

// C++
class AMI_Session_allocateObjectByIdI :
 public AMI_Session_allocateObjectById
{
public:

 AMI_Session_allocateObjectByIdI(
 const AMD_Session_allocateObjectByIdPtr&
 response) :
 _response(response)
 {
 }

 virtual void
 ice_response(const ObjectPrx& obj)
 {
 _response->ice_response(obj);
 }

 virtual void
 ice_exception(const Exception& e)
 {
 _response->ice_exception(e);
 }

private:

 const AMD_Session_allocateObjectByIdPtr
 _response;
};

The implementation of AMI_Session_allocateObjectByTy-
peI is essentially the same so I have omitted it—see the source
code for full details.

SeSSion ManageMent with icegrid

http://www.zeroc.com/newsletter/issue4.pdf
http://www.zeroc.com/newsletter/issue18/SessionManagement.zip
http://www.zeroc.com/newsletter/issue18/SessionManagement.zip

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue �8, October 2006 Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Now we can turn our attention to implementing the session man-
ager as an IceBox service:

// C++
class SessionManagerServiceI :
 public IceBox::Service
{
public:
 virtual void
 start(const string& name,
 const CommunicatorPtr& communicator,
 const StringSeq& args)
 {
 Glacier2::SessionManagerPrx manager =
 Glacier2::SessionManagerPrx::
 uncheckedCast(
 communicator->stringToProxy(
 communicator->getProperties()->
 getProperty("SessionManager")));
 assert(manager);

 _adapter = communicator->
 createObjectAdapter(
 name + "-SessionManager");
 _adapter->add(
 new SessionManagerI(manager),
 communicator->stringToIdentity(
 name + "-SessionManager"));
 _adapter->activate();
 }

 virtual void
 stop()
 {
 _adapter->deactivate();
 }

private:

 ObjectAdapterPtr _adapter;
};

The service binds to the IceGrid session manager that is configured
in the SessionManager property, creates an object adapter for the
session manager, and then creates the session manager implemen-
tation itself. Note that we use the session manager instance name to
create unique object adapter and object instance names so that we
can have multiple session managers if necessary.

Now we can discuss the deployment descriptor. First, we’ll write
a template for the SessionManager server.

// IceGrid deployment descriptor
<server-template id="SessionManager">
 <parameter name="instance-name"/>
 <parameter name="host"/>
 <icebox id="${instance-name}" exe="icebox"
 activation="on-demand">
 <property name="SessionManager"
 value="EncoderIceGrid/SessionManager"/>
 <service name="${instance-name}"

 entry="SessionManagerService:create">
 <adapter
 name="${instance-name}-SessionManager"
 endpoints="tcp -h ${host}">
 <object
 identity="${instance-name}-SessionManager"
 type="::Glacier2::SessionManager"/>
 </adapter>
 </service>
 </icebox>
</server-template>

We can deploy the template on the localhost node:

// IceGrid deployment descriptor
<node name="localhost">
 <server-instance
 template="SessionManager"
 instance-name="localhost-manager"
 host="localhost"/>
 ...
</node>

We also need to change the Glacier2 descriptor to use the correct
session manager.

// IceGrid deployment descriptor
<property name="Glacier2.SessionManager"
 value="localhost-manager-SessionManager"/>

Ok, now let's try it to make sure all of the plumbing works. After
starting up IceGrid and deploying the application, we run the cli-
ent. However, we’ll get the following error:

$./client testcase.wav
./client: Outgoing.cpp:368: Ice::ObjectNotExistExc
eption:
object does not exist:
identity: `66B8126A-5212-4963-BDD2-F04507D49385’
facet:
operation: allocateObjectByType

A good way to get to the bottom of this is to enable Glacier2 filter
tracing and inspect the logs. You can enable tracing by modifying
the properties section of the Glacier2 deployment:

// IceGrid deployment descriptor
<property name="Glacier2.Client.Trace.Reject"
 value="1"/>

Furthermore, let's add some tracing to our session manager imple-
mentation:

// C++
Glacier2::SessionPrx
SessionManagerI::create(
 const string& userId,
 const Glacier2::SessionControlPrx& control,
 const Current& current)
{
 IceGrid::SessionPrx session =
 IceGrid::SessionPrx::uncheckedCast(
 _manager->create(userId, control));

SeSSion ManageMent with icegrid

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue �8, October 2006 Page 7Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

 CommunicatorPtr communicator =
 current.adapter->getCommunicator();
 Trace trace(communicator->getLogger(),
 "SessionManagerI");
 trace << " allocated session: "
 << communicator->proxyToString(session);
 Glacier2::SessionPrx interposed =
 Glacier2::SessionPrx::uncheckedCast(
 current.adapter->addWithUUID(
 new SessionI(session)));
 trace << " interposed: " << communicator->
 proxyToString(interposed);
 return interposed;
}

After updating the deployment, restarting the Glacier2 router, and
re-running the client, we find the following in the logs:

[localhost-manager: SessionManagerI: allocated
session: EncoderIceGrid/6926E105-4466-4333-818E-
D374B9319377 -t:tcp -h 192.168.1.5 -p 51341
interposed: 66B8126A-5212-4963-BDD2-F04507D49385 -
t @ localhost-manager.localhost-manager.localhost-
manager-SessionManager]
[glacier2router: Glacier2: rejecting request:
identity filter identity: 66B8126A-5212-4963-BDD2-
F04507D49385]

The trace indicates that Glacier2 does not permit access to the
interposed session because the configured filters deny access to this
object. At this point, I want to look at Glacier2 filtering in more
detail because the topic is important for our implementation.

The primary purpose of Glacier2 filtering is to ensure that
Glacier2 clients do not gain access to unintended objects. Glacier2
supports the following types of filters. The different filter types
progressively move from coarse-grained to fined-grained levels of
access control.

• Address Filters: Permit or deny client side access to a given
set of hosts and ports.

• Category Filters: Configure the set of Ice identity categories
that clients can access.

• Identity Filters: Configure access to a given set of identities.
• Adapter Filters: Configure access to all objects accessed via

an indirect proxy with a given object adapter.

The default for all of these filters is to permit access to all objects.
The properties can be configured statically (using the Glacier2.
Filter family of properties), and they can also be altered at run
time using the Glacier2::SessionControl interface.

The session control and other interfaces related to dynamic con-
trol of the Glacier2 filtering are shown below:

// Slice
module Glacier2
{
interface StringSet
{
 idempotent void add(Ice::StringSeq additions);
 idempotent void remove(
 Ice::StringSeq deletions);
 idempotent Ice::StringSeq get();
};

interface IdentitySet
{
 idempotent void add(
 Ice::IdentitySeq additions);
 idempotent void remove(
 Ice::IdentitySeq deletions);
 idempotent Ice::IdentitySeq get();
};

interface SessionControl
{
 StringSet* categories();
 StringSet* adapterIds();
 IdentitySet* identities();
 void destroy();
};
};

The SessionControl interface gives access to the category,
adapter, and identity filters. Calling destroy causes the router to
destroy the client’s session, which eventually results in destroy
being called on the IceGrid session. Calling identities, adapt-
erIds, or categories returns a proxy to an object that can be
used to add, remove, and retrieve the current set of filter configura-
tion values.

The Glacier2 router immediately terminates a client’s session
if the client attempts to use a proxy that is rejected by an address
filter. The Ice run time in the client responds by raising Connec-
tionLostException to the application. If a client attempts to use
a proxy that is rejected by a category, identity, or adapter identifier
filter, the router raises ObjectNotExistException.

IceGrid itself configures the Glacier2 filtering using the Gla-
cier2::SessionControl object. By default, IceGrid configures
Glacier2 to only permit access to the IceGrid::Session and
IceGrid::Query objects. IceGrid updates the identity filters
when a client allocates or releases an object via its IceGrid session.
When a client allocates a server, IceGrid adds adapter identity fil-
ters for the server’s indirect adapters and removes the filters again
once the server is released.

Given the above description, we can now see why the client
cannot use the interposed session object: the default filters estab-
lished by IceGrid deny access to an object with the identity of the
interposed session. To fix this, we can add an identity filter for the
interposed object:

SeSSion ManageMent with icegrid

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue �8, October 2006 Page 7Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

// C++
Glacier2::SessionPrx
SessionManagerI::create(
 const string& userId,
 const Glacier2::SessionControlPrx& control,
 const Current& current)
{
 IceGrid::SessionPrx session =
| IceGrid::SessionPrx::uncheckedCast(
 _manager->create(userId, control));
 CommunicatorPtr communicator =
 current.adapter->getCommunicator();
 Trace trace(communicator->getLogger(),
 "SessionManagerI");
 trace << " allocated session: "
 << communicator ->proxyToString(session);
 Glacier2::SessionPrx interposed =
 Glacier2::SessionPrx::uncheckedCast(
 current.adapter->addWithUUID(
 new SessionI(session)));
 IdentitySeq ids;
 ids.push_back(interposed->ice_getIdentity());
 control->identities()->add(ids);
 trace << " interposed: " << communicator->
 proxyToString(interposed);
 return interposed;
}

When we try the client again, we find that, with this change, every-
thing works as expected. There are a couple of problems, however.
Firstly, the identity filter is never removed when the session is
destroyed. Doing this isn’t strictly necessary the filters are reset for
each new session, and destroy is only called when the session is
over. However, for cleanliness we’ll make this change. We pass the
Glacier2::SessionControl object to the interposed session
and, when the session is destroyed, we remove the filter:

// C++
class SessionI : public IceGrid::Session
{
public:

 SessionI(
 const Glacier2::SessionControlPrx& control,
 const IceGrid::SessionPrx& session) :
 _control(control),
 _session(session)
 {
 }
 // . . .

 virtual void
 destroy(const Current& current)
 {
 current.adapter->remove(current.id);
 IdentitySeq ids;
 ids.push_back(current.id);
 _control->identities()->remove(ids);

 _session->destroy();
 }

private:

 const Glacier2::SessionControlPrx _control;
 const IceGrid::SessionPrx _session;
};

And when allocated the control must be passed to the interposed
session:

// C++
Glacier2::SessionPrx
SessionManagerI::create(
 const string& userId,
 const Glacier2::SessionControlPrx& control,
 const Current& current)
{
 IceGrid::SessionPrx session = ...;
 Glacier2::SessionPrx interposed =
 Glacier2::SessionPrx::uncheckedCast(
 current.adapter->addWithUUID(
 new SessionI(control, session)));
 // ...

Having dealt with the filter removal issue, we still have a more
subtle problem: the Glacier2 filtering is too permissive. Remember
that our primary goal is to stop the client from doing undesirable
things, namely, allocating too many objects. When IceGrid creates
a session object, it adds an identity filter to Glacier2 to permit
access to the session. If a client somehow obtains a proxy to the
IceGrid session object, it could call this object directly, thus by-
passing whatever additional restrictions we place in the interposed
session object. Therefore we must remove access to the IceGrid
session object from the identity filter. We can do this easily enough
by changing the session allocation method:

// C++
Glacier2::SessionPrx
SessionManagerI::create(
 const string& userId,
 const Glacier2::SessionControlPrx& control,
 const Current& current)
{
 IceGrid::SessionPrx session =
 IceGrid::SessionPrx::uncheckedCast(
 _manager->create(userId, control));
 CommunicatorPtr communicator =
 current.adapter->getCommunicator();
 Trace trace(communicator->getLogger(),
 "SessionManagerI");
 trace << " allocated session: "
 << communicator->proxyToString(session);
 Glacier2::SessionPrx interposed =
 Glacier2::SessionPrx::uncheckedCast(
 current.adapter->addWithUUID(
 new SessionI(control, session)));
 Glacier2::IdentitySetPrx identities =
 control->identities();
 IdentitySeq ids;
 ids.push_back(interposed->ice_getIdentity());
 identities->add(ids);

SeSSion ManageMent with icegrid

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue �8, October 2006 Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

 ids.clear();
 ids.push_back(session->ice_getIdentity());
 identities->remove(ids);
 trace << " interposed: " << communicator->
 proxyToString(interposed);
 return interposed;
}

Adding whatever restrictions we want to place on the client now is
quite straightforward. For example, let's say that we want to restrict
the client to allocating at most � objects. To do this, we'll add a
counter to the session implementation, increment the counter when
each object is allocated, and decrement the counter when the object
is released. The only tricky part is determining when to increment
the counter. Recall that the current implementation is as follows:

// C++
void
SessionI::allocateObjectById_async(
 const AMD_Session_allocateObjectByIdPtr&
 response,
 const Identity& id, const Current&)
{
 _session->allocateObjectById_async(
 new AMI_Session_allocateObjectByIdI(
 response), id);
}

Should we increment the counter here or when the AMI callback
gets the result? If we only increment the counter when the object
is actually allocated by the session then, once the counter reaches
the limit, we would have to immediately release the object again.
But that is awkward (and needlessly allocates an object that won’t
be used.) Instead, it is better to increment the counter when the al-
locateObjectById method is called, and decrement the counter
again if the allocation fails or when the object is later released.

Here is the implementation for allocateObjectById. Note
that we avoid holding the lock that protects the counter during
the remote calls on the session in allocateObjectById and
releaseObject. (In general, it is best to avoid holding locks
while making remote invocations in order to avoid deadlocks—see
Bernard’s articles in Issue 4 and Issue � of Connections.) The
implementation for allocateObjectByType is identical and not
shown.

// C++
class SessionI : public IceGrid::Session,
 public IceUtil::Mutex
{
public:

 SessionI(
 const Glacier2::SessionControlPrx&
 control,
 const IceGrid::SessionPrx& session) :
 _control(control),
 _session(session),
 _allocated(0)
 { }

 virtual void
 allocateObjectById_async(
 const AMD_Session_allocateObjectByIdPtr&
 response,
 const Identity& id, const Current&)
 {
 {
 Lock lock(*this);
 if(_allocated > 3)
 {
 throw AllocationException(
 "allocated too many objects");
 }
 ++_allocated;
 }
 _session->allocateObjectById_async(
 new AMI_Session_allocateObjectByIdI(
 this, response), id);
 }

 virtual void
 releaseObject(const Identity& id,
 const Current&)
 {
 {
 Lock lock(*this);
 --_allocated;
 assert(_allocated >= 0);
 }
 _session->releaseObject(id);
 }

 void
 allocationFailed()
 {
 Lock lock(*this);
 --_allocated;
 assert(_allocated >= 0);
 }
 // . . .

private:

 const Glacier2::SessionControlPrx _control;
 const IceGrid::SessionPrx _session;
 int _allocated;
};
typedef IceUtil::Handle<SessionI> SessionIPtr;

class AMI_Session_allocateObjectByIdI :
 public AMI_Session_allocateObjectById
{
public:

 AMI_Session_allocateObjectByIdI(
 const SessionIPtr& session,
 const AMD_Session_allocateObjectByIdPtr&
 response) :
 _session(session),
 _response(response)
 { }

SeSSion ManageMent with icegrid

http://www.zeroc.com/newsletter/issue4.pdf
http://www.zeroc.com/newsletter/issue5.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue �8, October 2006 Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

 virtual void
 ice_exception(const Exception& e)
 {
 _session->allocationFailed();
 _response->ice_exception(e);
 }
 // . . .
private:
 const SessionIPtr _session;
 const AMD_Session_allocateObjectByIdPtr
 _response;
};

Next, we need to change the client to do multiple encodings in
parallel. The strategy is to add a pool of worker threads to handle
the encodings concurrently. To do this we’ll add three classes:

• an Encoder object that encodes a single WAV file,
• an EncoderManager that manages the set of remaining en-

coding objects and encoder worker threads,
• an EncodingThread that that de-queues the next available

unit of work from the encoder manager and calls on the en-
coder object to perform the encoding.

The implementation of the EncodingManager and Encod-
ingThread objects is straightforward; see the source code for
details.

The Encoder object is defined as follows:

// C++
class Encoder : public IceUtil::Shared
{
public:
 Encoder(const IceGrid::SessionPrx& session,
 const string& file);
 void run();

private:
 const IceGrid::SessionPrx _session;
 const string _file;
};
typedef IceUtil::Handle<Encoder> EncoderPtr;

The encoder object is given the IceGrid::Session object, from
which it allocates an encoder factory, creates an encoder, encodes
the file, and then subsequently releases the encoder factory object.

// C++
void
Encoder::run()
{
 // ... Prepare the WAV file for encoding.
 ObjectPrx obj =
 _session->allocateObjectByType(
 Mp3EncoderFactory::ice_staticId());
 Mp3EncoderFactoryPrx factory =
 Mp3EncoderFactoryPrx::checkedCast(obj);
 Mp3EncoderPrx encoder =
 factory->createEncoder(
 sfinfo.channels, sfinfo.samplerate);

 try
 {
 // ... Encode the MP3 file.
 }
 catch(const Exception&)
 {
 // ... Do whatever logging is
 // appropriate.
 }
 _session->releaseObject(
 obj->ice_getIdentity());
}

At startup, the client creates the IceGrid session, then creates the
encoder manager, and adds an encoder object for the file to be
encoded:

// C++
IceGrid::SessionPrx session = ...;
SessionRefreshThreadPtr refresh =
 new SessionRefreshThread(
 IceUtil::Time::seconds(router->
 getSessionTimeout()/2), session);
refresh->start();
EncodingManagerPtr manager =
 new EncodingManager(3);
for(int i = 1; i < argc; ++i)
{
 manager->add(new Encoder(session, argv[i]));
}
manager->waitForComplete();
manager->destroy();

refresh->destroy();
refresh->getThreadControl().join();

session->destroy();

Conclusion
The technique of interposing a session implementation allows you
to impose additional restrictions on the client without changing
any client side source code. Note that the server in this application
is not yet fool-proof. For example, it is still possible for a client
to allocate an encoder factory and encode multiple files using this
encoder, thus getting more than its fair share of server resources.
Further, the server is at the mercy misbehaved clients. For ex-
ample, a client can allocate an encoder and then never send it data,
or send the data very slowly. In the next article in this series, I will
present a different design that further isolates the server from ill-
behaved clients.

SeSSion ManageMent with icegrid

http://www.zeroc.com/newsletter/issue18/SessionManagement.zip

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue �8, October 2006 Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Write Once, Read Everywhere
Michi Henning, Chief Scientist

If you have installed an Ice binary distribution and you look in
the doc/reference directory, you will find a lot of HTML files,
including a file index.html. This file contains a table of contents
for the Ice reference documentation, which provides the reference
material for all the Slice definitions used by Ice and its services,
as well as a list of all the properties and a reference for stringified
proxies and endpoints. If you have not discovered this documen-
tation yet, I suggest you have a look—this information is useful
while you are programming and want to confirm some detail of
an Ice API—because HTML is extensively hyperlinked, it makes
it easy to navigate among different Slice definitions and quickly
home in on the part of the API you are interested in.

Not by coincidence, the HTML reference is exactly the same as
appendixes B to D in the Ice manual; it’s just that the appendixes
in the manual are in PDF format instead of HTML. Obviously, here
at ZeroC, we know better than to manually maintain two versions
of the same documentation in different formats. Instead, we gener-
ate the documentation from SGML in DocBook format. In turn, for
the Slice reference, the SGML is generated from Slice definitions
by a compiler. This compiler, slice2docbook, scans for special
documentation comments in Slice definitions and produces SGML
in DocBook format from these comments. Here is an example:

// Slice

/**
 * Having a family is like having a bowling
 * alley installed in your head.
 **/
module Family
{
 /**
 * Children frequently throw this.
 **/
 exception Tantrum
 {
 /**
 * Reason for tantrum (often not a
 * discernible one).
 **/
 string reason;
 };

 /**
 * Mother Nature is wonderful. She gives us
 * twelve years to develop a love for our
 * children before turning them into
 * teenagers.
 * <para>
 * Sons are not meant to like their parents
 * That’s what greatchildren are for.

 * <para>
 * Children are a great comfort in old
 * age—and they help you reach it
 * faster, too.
 *
 * @see Parent
 **/
 interface Child
 {
 /**
 * A teenager is always too tired to hold
 * a dishcloth, but never too tired to hold
 * a phone.
 *
 * @throws Tantrum Raised frequently.
 */
 void askToCleanUp() throws Tantrum;
 };

 /**
 * You can learn many things from children.
 * How much patience you have, for instance.
 **/
 sequence<Child> Children;

 /**
 * Parents are the bones on which children
 * cut their teeth.
 *
 * @see Child
 */
 interface Parent
 {
 /**
 * Return the direct descendants of this
 * parent.
 *
 * @param byName If true, the return value
 * is sorted alphabetically; if false, it
 * is sorted by increasing age.
 *
 * @return The direct descendants. (The
 * returned [Children] sequence has at
 * least one element.)
 **/
 Children offspring(bool byName);
 };
};

Keeping the documentation of an API together with its code is gen-
erally a good thing. That way, as an API evolves over time, there
is a better chance that the documentation will be kept up to date as
well. Of course, the idea of generating documentation from code
is not new—it dates back as far 1983, to Donald Knuth’s WEB sys-
tem. And, obviously, slice2docbook was inspired by Javadoc.

If you look through the comments in the preceding example, you
will note that the comments contain various kinds of markup (You
may have also inferred that I am currently blessed with teenaged
offspring…). The text and markup in these comments determine

write once, read everywhere

http://www.zeroc.com/Ice-Manual.pdf
http://www.docbook.org/
http://sunburn.stanford.edu/~knuth/cweb.html
http://java.sun.com/j2se/javadoc/

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue �8, October 2006 Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

the contents of the generated DocBook output. For example,
slice2docbook generates the following table of contents for the
preceding definitions:

Of course, as shown, the text has been post-processed into HTML,
so we are not looking at the SGML in DocBook format, but the
HTML that we generated from it as displayed by a browser. The
underlined parts are hyperlinks to the corresponding section of the
documentation. For example, if we follow the Family::Parent
link, we see the screenshot below.

Again, this shows the documentation as it appears after being
converted to HTML and displayed by a browser. (I will say more
on this shortly.)

Markup
Any comment that opens with /** and closes with **/ is a
documentation comment. slice2docbook only processes text
within documentation comments, and ignores normal C-style com-
ments (/* ... */) and C++-style comments (//). You can add a
documentation comment to any Slice construct, such as a module,
structure, structure field, and so on. The documentation comment
for a Slice construct must precede the definition of that construct.

As for Javadoc, the first sentence of a documentation com-
ment is taken to be a summary sentence. That sentence is used
by slice2docbook for the generation of a symbol index: the
first sentence appears as the summary in the index entry for each
symbol.

Hyperlinks
Within a documentation comment, slice2docbook recognizes
Slice symbols enclosed in square brackets and displays these as a
hyperlink. For example, the comment

(The returned [Children] sequence has at least one
element.)

causes the symbol Children to be rendered as a hyperlink to the
corresponding section of the documentation.

Explicit Cross-References
The @see directive must be followed by a single Slice symbol. All
@see directives for a Slice construct are collected by the compiler
and presented in a separate “See Also” sub-section in the documen-
tation for the corresponding construct. You can use several @see
directives for a single construct. For example,

@see Parent
@see Child

results in a comma separated list of hyperlinks in the “See Also”
section.

Markup for Operations
slice2docbook recognizes three directives specifically for
operations: @param, @return, and @throws. These directives
create separate sub-sections titled “Parameters”, “Return Value”,
and “Exceptions”, respectively. For clarity, you should document
parameters in the same order as they are defined in the operation
signature.

write once, read everywhere

Figure 1: Generated Table Of Contents

Figure 2: Family::Parent Section

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue �8, October 2006 Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

General Markup
You can insert any valid DocBook markup into documentation
comments. For example, you can add <para> elements to create
paragraphs, use <literal> elements to display text in constant-
width font, and use markup such as — to insert special
characters.

Using slice2docbook
To create DocBook documentation from Slice files, you specify an
output file and an input file. For example:

slice2docbook family.sgml family.ice

This compiles the documentation comments in family.ice and
places the DocBook output into family.sgml. If you have several
Slice files with documentation comments that refer to symbols
in other source files, you must pass all of the Slice files on the
command line in a single invocation of slice2docbook; this is
necessary so the compiler can correctly generate hyperlinks that
span files. (Please refer to the Ice manual for information on com-
mand-line options.)

Generating HTML
Once we have generated SGML in DocBook format with
slice2docbook, we can render the documentation into vari-
ous formats, such as HTML, PDF, and others. To do this, you can
grab any one of a number of format converters. For Ice, we use
db2html, which is available with most Linux distributions. (If you
prefer to use other tools, you can find many of them on the web.)

To get an idea of how to generate HTML from Slice, have a look
at the example code for this article. The code contains a Makefile
that invokes slice2docbook and db2html. Instead of compiling
the generated family.sgml file directly, the example compiles
a file called reference.sgml that specifies the DTD for Doc-
book, and then includes family.sgml as a <chapter> within a
<book> element:

<!DOCTYPE book PUBLIC ″-//OASIS//DTD DocBook
V3.1//EN″ [
 <!ENTITY SliceDoc SYSTEM ″family.sgml″>
]>

<book><?dbhtml filename=″index.html″>
 <chapter>
 <title>The Model Family</title>
 &SliceDoc;
 </chapter>
</book>

By doing this, we end up with a well-formed document in Doc-
Book format because slice2docbook uses <section> as the
top-level element in the generated SGML. The actions for make
boil down to the following two commands:

slice2docbook family.sgml family.ice
db2html reference.sgml

db2html places the generated HTML into a reference subdirec-
tory; in this directory, you will find index.html, plus a separate
HTML file for each Slice construct.

The generated HTML makes it easy to peruse the documenta-
tion. For example, here is a screenshot of the Family module
overview:

write once, read everywhere

Figure 3: Family Modufle Overview

http://www.zeroc.com/Ice-Manual.pdf
http://www.die.net/doc/linux/man/man1/db2html.1.html
http://www.zeroc.com/newsletter/issue18/slice2docbook.zip

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue �8, October 2006 Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Generating Other Formats
DocBook documentation can easily be converted to a large number
of other popular formats. For example, generating PDF is as simple
as replacing db2html with db2pdf. If you have FrameMaker, you
can import the generated SGML into a FrameMaker document and
then use FrameMaker’s built-in tools to control layout and look of
the text. This is what we do for the PDF version of the Ice manual:
the manual is authored in FrameMaker, and appendixes B to D are
created by simply importing the generated SGML. The appearance
of the appendixes is controlled by an element definition docu-
ment that maps DocBook elements to FrameMaker paragraph and
character tags. (See the FrameMaker documentation for details on
how to do this.) There are many other documentation formats that
you can create from DocBook, among them PostScript, RTF, TeX,
DVI, and man pages. Tools that can target these and other formats
are freely available.

Summary
slice2docbook allows you to keep your Slice definitions and
documentation in one place, making it less likely for discrepancies
between the API and its documentation to creep in. You can easily
convert the SGML that is generated by slice2docbook into a
large number of other formats. In turn, this makes it easy to inte-
grate Slice documentation with the remainder of your documen-
tation system, and it provides you with flexibility if you want to
publish documentation in new formats as your application evolves
over time. If you want to publish documentation for your Slice
definitions, I suggest you give slice2docbook a try—it truly al-
lows you to “write once, and read everywhere”.

write once, read everywhere

http://www.adobe.com/products/framemaker/

Connections
ZeroC’s Newsletter for the Ice Community

Page �4 Issue �8, October 2006 Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner
In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the docu-
mentation. We hope that you will find the hints and explanations
in this section useful.

Q: The Slice compiler does not work—what should I
check?

The various Slice compilers (slice2cpp, slice2java, and so on)
launch the C preprocessor icecpp.exe as a sub-process. On
Windows, if the directory containing icecpp.exe is not in your
PATH, you can get an error message:

> slice2cpp Hello.ice
‘icecpp.exe’ is not recognized as an internal or
external command,
operable program or batch file.

The same problem can arise under UNIX:

$ slice2cpp Hello.ice
sh: line 1: icecpp: command not found

Another common problem on Windows is an incorrect setting of
the ComSpec environment variable. This variable specifies the
location of the command line interpreter and, if incorrectly set,
prevents the Slice compiler from being started by the development
environment. For example, with Visual Studio, if ComSpec is set
incorrectly, the build halts with an error:

------ Build started: Project: test,
Configuration: Debug Win32 ------

Performing Custom Build Step
Project : error PRJ0019: A tool returned an error
code: "Performing Custom Build Step"

You can check the value of the ComSpec environment variable by
opening a command window and displaying its value:

> echo %ComSpec%
C:\WINDOWS\system32\cmd.exe

Unless you are using a custom command line interpreter or have
installed Windows in a location other than the default, the value
should be the one shown above.

If ComSpec is incorrectly set and you need to change it, you
can right-click on “My Computer” in the start menu and select
“Properties” to open the system properties window. Select the
“Advanced” tab and then click on “Environment Variables”. In the
“System Variables” section, select the ComSpec variable and press
Edit. It should look similar to the following:

You should change the value to:

%SystemRoot%\system32\cmd.exe

Press OK, and then OK again in the “Environment Variables”
dialog. Note that, for the setting to take effect, you must restart any
process that depends on the new value. For example, if you use
Visual Studio, you need to close it down and restart it for it to rec-
ognize the new variable setting. Similarly, if you are using a com-
mand prompt and have changed the PATH setting, you need to start
a new command window for the changed setting to take effect.

FaQ corner

Figure 1: Edit System Variable

http://www.zeroc.com/vbulletin/

Connections
ZeroC’s Newsletter for the Ice Community

Page �4 Issue �8, October 2006 Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �8, October 2006 Connections
ZeroC’s Newsletter for the Ice Community

Q: How do I use Ice.loadSlice()with Ice for
Python?

Ice for Python supports two types of code generation: static and
dynamic. Static code generation, which will be familiar to users of
compiled languages such as C++ and Java, uses the Slice compiler
slice2py to create Python source files from Slice definitions at
compile time. On the other hand, when a program calls the Ice.
loadSlice function, code is generated from Slice definitions dy-
namically at run time. Dynamic code generation slightly increases
program start-up time but eliminates the need to generate and man-
age additional Python source files. (Please see the Ice manual for a
discussion of the trade-offs of static and dynamic code generation.)

Users of dynamic code generation sometimes encounter prob-
lems when multiple Slice files are involved. For example, consider
the following Slice definitions:

// A.ice
module A
{
 struct Pair
 {
 long first;
 long second;
 };
};

// B.ice
#include <A.ice>
module B
{
 interface Mapper
 {
 void doit(A::Pair p);
 };
};

Now run python as follows:

$ python
Python 2.3.5 (#1, Jan 13 2006, 20:13:11)
[GCC 4.0.1 (Apple Computer, Inc. build 5250)] on
darwin
Type "help", "copyright", "credits" or "license"
for more information.
>>> import Ice
>>> Ice.loadSlice(‘B.ice’)
B.ice:1: No include path in which to find A.ice
B.ice:6: `A::Pair’ is not defined
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
RuntimeError: Slice parsing failed for `B.ice’

The problem in this case is that B.ice includes A.ice but the
compiler cannot find A.ice because the include path is not set. To
remedy this, use the -I option to tell the code generator where to
find the included files. Assuming A.ice resides in the same direc-

tory as B.ice, you can use the following command:

>>> Ice.loadSlice(‘-I. B.ice’)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "B.ice", line 3, in ?
 {
ImportError: No module named A_ice

Now A.ice is found, but loadSlice complains about an import
error. As explained in the Ice manual, the reason for this error
is that, by default, the code generator creates Python code only
for the Slice definitions in the specified file; for included files, it
instead generates equivalent Python import statements. In other
words, by default, the compiler assumes that included files have
already been translated statically. (The reason for this behavior is
that it allows you to combine dynamic and static code generation
when necessary.)

To get the compiler to generate code for both B.ice and the
included A.ice file, we need to specify the --all option:

>>> Ice.loadSlice(‘-I. --all B.ice’)

This recursively translates B.ice and all files it includes.

FaQ corner

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

	Session Management with IceGrid
	Write Once, Read Everywhere
	FAQ Corner

