
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �9, November 2006

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 19, November 2006

Leaky Abstractions
When I wrote last month’s editorial, I
was going to add a section on “leaky”
abstractions but, after running out of
space, decided to make that the topic
of this month’s editorial instead. To my
surprise, after we published Issue �8,
Dilip Ranganathan got in touch with
me and asked whether I knew of Joel
Spolky’s law of leaky abstractions

(which I had never heard of before). It seems that Joel indepen-
dently came up with the same idea, namely that abstractions are
“leaky”. As it turns out, I gave presentations that mentioned leaky
abstractions in June 200� and November 200�, so I managed to
beat Joel to the punch by a few months. (Incidentally, the latter pre-
sentation also marks my departure from CORBA—it is the keynote
I gave at the OMG meeting in Dublin, which was the last meeting I
attended.)

So, what’s the big deal about leaky abstractions? They leak their
secrets, that is to say, they are not perfect. Both Joel and I quoted
virtual memory as an example of a leaky abstraction: virtual mem-
ory provides the illusion of memory very much larger than physi-
cal memory. Most of the time, I can afford to forget that virtual
memory is not real memory, and write my code as if they were both
the same thing. However, sometimes, I cannot: Years ago, I had
a new graduate complain to me that “The code works, except it’s
terribly slow.” When I looked at his code, I found that he had used
mmap() to implement a very large sparse array and, as a result, the
machine was page faulting itself into oblivion.

Here is my favorite example of a leaky abstraction:

char c;
short i;
Mutex cMutex; // Protects c
Mutex iMutex; // Protects i
// ...
cMutex.lock(); // Thread 1
c = getchar();
cMutex.unlock();
// ...
iMutex.lock(); // Thread 2
++i;
iMutex.unlock();

Even though the two threads that update c and i faithfully lock the
appropriate mutex, every now and then, the state of the two vari-
ables gets corrupted. (If you have not come across this before, take
a moment to see whether you can work out why…)

The corruption occurs if c and i happen to occupy the same
word of memory: the underlying hardware is simply incapable of
updating c without also updating i and, depending on the timing of
the two threads, they will sometimes write to the same memory cell
concurrently, despite the locks. (This particular problem is known
as a word-tearing race.)

All abstractions leak to some extent, and Ice is no exception. For
example, even though an Ice RPC looks just like a local procedure
call, you cannot afford to forget that it is not. An RPC is around
four orders of magnitude slower than a local call, and it has differ-
ent semantics: while a local call can fail only if the program’s state
is corrupted or the hardware is faulty (in which case the program is
toast anyway), an RPC can fail for all sorts of external reasons.

What this means is that you cannot design an Ice application
as you would a non-distributed one. The leaks in the abstractions
matter and you must create your design with this in mind. But,
provided that you do, you can enjoy the abstractions for all they
are worth. Or, to paraphrase a common idiom: an abstraction in the
hand is worth two leaks in the roof…

Michi Henning
Chief Scientist

Issue Features

Custom Sessions and IceGrid
In this article we show how to make your server application
more resistent to client side abuse through the use of a custom
session

Teach Yourself IceGrid in 10 Minutes
Michi Henning describes the basics of IceGrid and why your ap-
plications should use it.

Contents
Custom Sessions and IceGrid ... 2

Teach Yourself IceGrid in �0 Minutes ��

FAQ Corner .. �6

http://www.zeroc.com/newsletter/issue18.pdf
http://www.zeroc.com/newsletter/issue18.pdf
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.zeroc.com/newletter/issue19/Components.ppt
http://www.omg.org/docs/omg/01-11-02.ppt
http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V50_HTML/ARH9RATE/DOCU_007.HTM#gran_wordtear

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue �9, November 2006 Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Custom Sessions and IceGrid
Matthew Newhook, Senior Software Engineer

Introduction
In the previous article, we added an interposed session to our
encoder application so clients could use only a fixed number of
MP� encoders, to prevent them from using more than a fair share
of resources. However, the server still has a serious flaw: If the
encoding process only occurs over a LAN, there will typically be
no problem because each client has a very fast connection to the
server backend. However, over a WAN, with limited bandwidth,
the situation is different: a client with a slow connection can oc-
cupy an encoder much longer than a client with a fast connection.
This is unacceptable because the speed of the connection to the
client should not play any part in the allocation time of a back-end
server that is otherwise primarily CPU bound.

A malicious client could do even more damage by allocating
an MP� encoder but never using it. As long as the client keeps the
session alive, it can tie up resources indefinitely. Of course, this
could be rectified in a number of ways. For example, we could try
to ensure that the MP� data is streamed at a minimum guaranteed
rate, or bill for allocated time as well as bytes encoded, among
other things. However, these solutions ignore the key problem,
namely, that server side encoding resources are occupied while the
WAV data is streamed to and from the server.

In order to solve this problem, we are going to split the data
transfer and the encoding of the MP� byte stream into separate
steps. First we send all of the data to the server, and then we en-
code it.

Let’s redesign the client interfaces to meet this goal. First, we
want to ensure that all of the MP� data is present on the server side
before the process of encoding the data starts. This suggests an
interface such as the following:

// Slice
interface Encoder
{
 Ice::ByteSeq encode(Samples left,
 Samples right);
};

This interface suffers from the problem that it sends all of the
samples and receives all of the encoded data in a single invoca-
tion. Because the amount of data is considerable, this is unlikely
to work. As explained in the FAQ “How do I transfer a file with
Ice?”, it is better to send the data in chunks. The FAQ recommends
the following interface:

// Slice
interface FileStore
{
 ByteSeq read(string name, int offset,
 int num);
 void write(string name, int offset,
 ByteSeq bytes);
};

This is appropriate for a file store but is not all that convenient for
sending a WAV file to the server and receiving the corresponding
MP3-encoded byte sequence. Here is a modified version of the
interface:

// Slice
interface Encoder
{
 void encode(Samples leftSamples,
 Samples rightSamples);
 void destroy();
};

The client repeatedly calls encode, passing samples in chunks.
Once it has sent all of the samples, it calls destroy to indicate that
the samples are complete and that encoding should start. To get the
results, the client can use a similar interface:

// Slice
interface EncodingResult
{
 void result(Ice::ByteSeq bytes);
 void destroy();
};

The client passes a proxy for this interface to the server, and the
server invokes the result operation repeatedly to pass the en-
coded data to the client, and calls destroy once it has sent all of
the data.

How does the client interact with the server to create an
Encoder object? In the previous article, we used an interposed
IceGrid session for the client-side interactions to avoid making
changes to the client interface. However, with the new interfaces,
we have a very different interaction model, so we’ll create a cus-
tom session interface as follows:

// Slice
interface EncodingSession extends Glacier2::
Session
{
 void keepAlive();
 Encoder* create(string desc, int channels,
 int sampleRate, EncodingResult* result);
};

As with the IceGrid session approach, the client must call
keepAlive on a timely basis to keep the session alive. The client
calls create to encode a new MP3 file, passing a description of
the file to be encoded, the number of channels to encode, the sam-
ple rate, and a proxy to the Result object; the operation returns a
proxy to an Encoder object.

Custom sessions and iCeGrid

http://www.zeroc.com/faq/fileTransfer.html
http://www.zeroc.com/faq/fileTransfer.html

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue �9, November 2006 Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Server Architecture
Let’s take a look at the server-side
implementation. To decide how to pro-
ceed, we need to know what objects are
necessary for the implementation and
consider the client interaction in more
detail. See Figure � and Figure 2 for
object and interaction diagrams of the
encoding process.

A SessionManager manages
multiple Sessions. In turn, a Session
has multiple Encoder objects that
each have a single EncodingResult
that is used to return the MP�-encoded
data to the client. The client creates an
Encoder object by calling Encod-
ingSession::create and passing a
proxy for the result object.

The encoding process proceeds only
once the client calls destroy on the
encoder object. At that point, all of the
data is available to the server side and
the server can now allocate an MP�
encoder, encode the data, and send
the results back to the client. Note that, for the actual encoding
process, we can use the same server back end as in the previous
articles in this series.

To do the encoding, we’ll create a second object called an En-
coderWorkItem that encapsulates the encoding process. As raw
data arrives, the encoder stores the data. Once the client destroys
the encoder, the work item is created and uses the MP3Encoder to
encode the data and then sends the encoded MP� data back to the
client via the associated EncodingResult object.

How should we manage the encoding process? One option
would be to do the encoding in the Encoder::destroy method

(or at least in the same thread that calls the destroy method). That
is, once the client calls destroy, we allocate the MP� encoder, en-
code the transmitted data, and send the results back. However, this
has the serious disadvantage of consuming a server-side dispatch
thread for an extended period of time. This is not acceptable be-
cause, while the server side dispatch thread is busy encoding data,
other clients may not be able to invoke on their sessions. There-
fore, we instead need a separate thread to do the encoding process.
We have two options here:

• Create a new thread that manages the encoding process once
destroy is called.

• Use a pool of worker threads to manage the encoding process.

Note that creating new threads is expensive and, due to stack size
limitations on most operating systems, the number of threads that
can be created is limited. (See the FAQ “How can I increase the
maximum number of threads my C++ application can create?” for
more information on this topic). Consider �00 concurrent ses-
sions, each encoding 20 files. We would need 2000 threads to do
this, which is definitely too many. Clearly, if we want scalability,
we need to use a thread pool. The question is how to allocate this
thread pool.

Once again we have two options:

• Per-session thread pool
• Per-session manager thread pool (shared between each

session)

Custom sessions and iCeGrid

Figure 1: Interaction Diagram

ServerClient

Client Encoding
Session

Encoder

Encoding
Result

<<create>>

create

<<create>>

encode

destroy

result

destroy

reply

Figure 2: Object Diagram

*

1

Session
Manager

Session

Encoding
Result

Encoder

*

1

1

1

http://www.zeroc.com/faq/threadStackSize.html
http://www.zeroc.com/faq/threadStackSize.html

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �9, November 2006 Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

If we allocate the thread
pool on a per-session ba-
sis, the session itself will
be limited to concurrently
encoding as many WAV
files as there are threads in
the thread pool, regardless
of how many encoders
are available on the server
back end. Ideally, we want
the back-end encoders
do be fully utilized if
possible, regardless of the
number of clients.

This points to a per-
session manager thread
pool as the better solution.
However, with a shared
thread pool, the queuing
strategy becomes im-
portant: we don’t want a
single client to queue up
a whole host of MP3 files
and hog all of the encoders
while other clients are waiting for their data to be encoded. There-
fore, the fairest solution would probably be a queue per session
that is serviced in a round-robin fashion. However, implementing
a round-robin per-session queue is fairly complex, so I will not
present this solution here; instead, we will use a simple queue of
outstanding working items.

The encoding process is managed by a pool of encoding threads
that are managed by a per-session manager encoding queue. Once
a client destroys an encoder, the encoder places the work item on
the encoding queue, which processes the item as soon as a worker
thread becomes available—see Figures � and �.

Consider the process of encoding the data. This will look some-
thing like the client-side code I presented earlier:

// C++
ObjectPrx obj = _session->allocateObjectByType(
 Mp3EncoderFactory::ice_staticId());
Mp3EncoderFactoryPrx factory =
Mp3EncoderFactoryPrx::checkedCast(obj);

Mp3EncoderPrx encoder =
 factory->createEncoder(channels, samplerate);
while(/*data left to encode*/)
{
 Samples lbuf;
 Samples rbuf;
 // Fill lbuf and rbuf from the received WAV
 // data.
 Ice::ByteSeq bytes = encoder->encode(
 lbuf, rbuf);
 // Send bytes to the client.
}
// ...

What strategy should we use in the server to send the encoded
bytes back to the client? Consider a straight synchronous method
invocation as follows:

// C++
EncoderResultsPrx result = ...;
// ...
Ice::ByteSeq bytes = encoder->encode(lbuf, rbuf);
result->result(bytes);

This blocks a server thread until the byte sequence has been trans-
mitted to the client, which is bad because transmission can take

Custom sessions and iCeGrid

Figure 3: Encoding Object Model

Session
Manager

Encoder
Work
Item

Encoding
Queue

1

1

Encoding
Thread

*

1

1

1

Figure 4: Encoding Interaction Diagram

Client Server

Encoding
Queue

EncoderEncoding
Result

encode

destroy

result

destroy

<<create>>
Encoder

Work Item

enqueue

Encoding
Thread

dequeue

MP3
Encoder

encode

run

flush

reply

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue �9, November 2006 Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

quite some time. Moreover, while the data is being transmitted, the
back-end encoder sits idle, which is undesirable. Instead, we could
use asynchronous invocations:

// C++
EncoderResultsPrx result = ...;
// ...
Ice::ByteSeq bytes = encoder->encode(lbuf, rbuf);
result->result_async(
 new AMI_EncoderResult_resultI, bytes);

However, there is also problem with this approach. We must not
send a second result chunk until after a reply has been received for
the preceding request: if we send without waiting for a reply, the
client can receive the invocations out of order. (Note that this AMI
call cannot block since Glacier2 buffers it).

To get around this, we could buffer up all of the replies and send
them once the encoding has completed (and the backend encoder
object has been released, thus making it available to any other
pending encoders). However, this will consume the worker thread
for the duration of the transmission of the entire result back to the
client. During that time, if all workers are fully utilized, no other
encodings can take place within the session manager. Even worse,
a single slow client could end up consuming all worker threads,
thus monopolizing an entire front-end session manager.

Buffering up data also has the additional side effect of delay-
ing the transmission of the data back to the client until the entire
dataset is encoded, which is inefficient both in terms of bandwidth
(assuming that the bandwidth is not being used for some other
purpose), and in terms of storage because we’ll have to store data
that could otherwise be thrown out as soon as it has been transmit-
ted to the client.

Instead, we’ll queue the encoded data in a per-client object that
sends the data to the client. Why do we use a per-client object, and
not a per-encoder result object? The reason is that there is no ben-
efit in allowing multiple threads to send the same client at the same
time. (In fact, it would likely slow things down due to increased
context switching.)

Next, we need to decide how to send the messages. The obvious
approach is to a use a sender thread that removes messages from
the pending queue and sends them one at a time. While this ap-
proach would certainly work, there is another approach that I want
to explore.

Instead of using a separate thread, we will send each message
asynchronously. We use the ice_response call on the AMI
callback object to trigger the sending of the next message in the re-
sponse queue. That way, we avoid having to use a separate thread.
With this scheme, we send a message under two circumstances:

• When a new message is pushed onto the queue and no re-
sponse is pending.

• When a response is received and there are pending messages
on the queue.

By using the thread that calls the AMI callback (which comes from
the Ice client side thread pool), we avoid the overhead of spawn-
ing an additional thread ourselves. You may wonder whether AMI
presents a problem because AMI calls can potentially block? The
answer is no: because calls to Glacier2 can be considered safe and
should never block (unless we have some serious internal network
problem, in which case probably nothing works anyway), we can
safely use AMI.

We’ll look at the exact implementation of this sender object
shortly. The encoder worker looks something like this:

// C++
while(/*data left to encode*/)
{
 Samples lbuf;
 Samples rbuf;
 // Fill lbuf and rbuf from the received WAV
 // data.
 Ice::ByteSeq bytes = encoder->encode(
 lbuf, rbuf);
 _sender->queue(bytes);
}
// ...

Figure � shows the object diagram.

Server Implementation
For brevity, the description that follows does not show all of the
implementation. Instead, I have concentrated on the important
highlights.

Firstly, we’ll look at the implementation of the session manager.
The session manager must implement the Glacier2::Session-
Manager to create the encoding session:

// Slice
module Glacier2
{
interface SessionManager
{
 Session* create(string userId,

Custom sessions and iCeGrid

Figure 5: Result Queue Object Diagram

Session

Encoder
Work
Item

Result
Queue

1

1

Encoding
Result

1

*

*

1

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue �9, November 2006 Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

 SessionControl* control)
 throws CannotCreateSessionException;
};
};

As discussed in my article in Issue �8 of Connections, Glacier2
validates the user before it creates a session, and you can use the
session control object to control Glacier2 filters. (I recommend
reviewing this article before continuing.) At some point, the ses-
sion will need to allocate IceGrid objects for the actual encoding,
so we first need to create an IceGrid session. This suggests a class
definition as follows:

// C++
class SessionManagerI :
 public Glacier2::SessionManager
{
public:
 SessionManagerI(
 const Glacier2::SessionManagerPrx&);

 virtual Glacier2::SessionPrx create(
 const std::string&,
 const Glacier2::SessionControlPrx&,
 const Ice::Current&);
 void destroy();

private:
 const Glacier2::SessionManagerPrx _manager;
 std::vector<Glacier2::SessionPrx> _sessions;
 EncodingQueuePtr _encodingQueue;
};

The _manager data member contains a proxy to the IceGrid ses-
sion manager. The session also keeps track of what sessions have
been created, and maintains the encoding queue in the _encod-
ingQueue data member. We also have a destroy method that is
called when the session manager shuts down. We need the de-
stroy method because, otherwise, we could not correctly reclaim
resources (such as IceGrid sessions) in response to an orderly shut-
down. (In the event of a crash, the IceGrid session is reclaimed
because it will time out).

Now we can move onto the implementation of the create
method:

// C++
Glacier2::SessionPrx
SessionManagerI::create(const string& userId,
const Glacier2::SessionControlPrx& control, const
Ice::Current& current)
{
 Lock sync(*this);

 //
 // Reap any dead sessions.
 //
 vector<Glacier2::SessionPrx>::iterator p =
 _sessions.begin();
 while(p != _sessions.end())

 {
 try
 {
 (*p)->ice_ping();
 ++p;
 }
 catch(const Ice::Exception&)
 {
 p = _sessions.erase(p);
 }
 }

First, we run through all created sessions and reap any that have
been destroyed. We do this so that the session itself does not need
to call back on the session manager object. Arranging the call
graph of objects to create an acyclic graph (that is, to avoid call-
backs) is a commonly used method for avoiding deadlocks—see
Bernard’s articles in Issue � and Issue � of Connections for more
details.

Here is the create operation for the session manager:

// C++
Glacier2::SessionPrx
SessionManagerI::create(
 const string& userId,
 const Glacier2::SessionControlPrx& control,
 const Ice::Current& current)
{
 // . . .
 IceGrid::SessionPrx gridSession =
 IceGrid::SessionPrx::uncheckedCast(
 _manager->create(userId, control));
 Ice::LoggerPtr logger =
 current.adapter->
 getCommunicator()->getLogger();
 Glacier2::SessionPrx session =
 Glacier2::SessionPrx::uncheckedCast(
 current.adapter->addWithUUID(
 new SessionI(
 logger, control, gridSession
 _encodingQueue)));
 _sessions.push_back(session);

 Glacier2::IdentitySetPrx identities =
 control->identities();
 Ice::IdentitySeq ids;
 ids.push_back(session->ice_getIdentity());
 identities->add(ids);
 ids.clear();
 ids.push_back(gridSession->ice_getIdentity());
 identities->remove(ids);

 return session;
}

create allocates an IceGrid session as well as our custom session
object. It then alters the Glacier2 filtering rules to add the newly
created session to the set of permitted objects, and it removes the
IceGrid session from the set of permitted objects. (See my article
“Session Management with IceGrid” for more details on the neces-

Custom sessions and iCeGrid

http://www.zeroc.com/newsletter/issue18.pdf
http://www.zeroc.com/newsletter/issue4.pdf
http://www.zeroc.com/newsletter/issue5.pdf
http://www.zeroc.com/newsletter/issue18.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue �9, November 2006 Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

sity of altering the Glacier2 filtering rules.)

Next we look at the session implementation. First, the class
definition:

// C++
class SessionI : public EncodingSession,
 public IceUtil::Mutex
{
public:

 SessionI(
 const Ice::LoggerPtr&,
 const Glacier2::SessionControlPrx&,
 const IceGrid::SessionPrx&,
 const EncodingQueuePtr&);
 ~SessionI();

 virtual void ice_ping(
 const Ice::Current& current);
 virtual void keepAlive(const Ice::Current&);

 virtual EncoderPrx create(
 const string&, int, int,
 const EncodingResultPrx&,
 const Ice::Current&);
 virtual void destroy(const Ice::Current&);

private:

 const Ice::LoggerPtr _logger;
 const Glacier2::SessionControlPrx _control;
 const IceGrid::SessionPrx _session;
 const EncodingQueuePtr _manager;
 const EncodingResultQueuePtr _queue;
 vector<pair<Ice::Identity,
 EncoderWorkItemPtr> > _encoders;
};

Here is the implementation of keepAlive and ice_ping:

// C++
void
SessionI::keepAlive(const Ice::Current& current)
{
 try
 {
 _session->keepAlive();
 }
 catch(const Ice::ObjectNotExistException&)
 {
 destroy(current);
 throw;
 }
}

void
SessionI::ice_ping(const Ice::Current& current)
{
 try
 {
 _session->ice_ping();

 }
 catch(const Ice::ObjectNotExistException&)
 {
 destroy(current);
 throw;
 }
}

keepAlive is straightforward. When the client side calls kee-
pAlive on the session, we in turn call keepAlive on the IceGrid
session. If the call fails, the IceGrid session is dead, so we in turn
destroy our own session and inform the client.

ice_ping is more interesting. The implementation is the same
as keepAlive, except that it calls ice_ping on the IceGrid ses-
sion. But why do we bother with this call? If you recall the reaping
of sessions in the session manager, the manager runs through all
sessions and calls ice_ping on each session to determine if the
session is still alive. Now consider the situation of a Glacier2
crash. In that case, all clients are kicked off, and the sessions will
eventually time out because keepAlive is no longer called. How-
ever, note that keepAlive does not record a timeout, so how does
this work? Our implementation relies on IceGrid to time out the
session. By delegating the ice_ping call to the IceGrid session,
we can detect when the IceGrid session disappears and subse-
quently destroy our own session. In case IceGrid itself becomes
unreachable, we will not destroy the session until IceGrid comes
back up, but this is not a concern because the whole service is use-
less without IceGrid anyway. The session create operation looks
as follows:

// C++
EncoderPrx
SessionI::create(
 const string& desc,
 int channels, int samplerate,
 const EncodingResultPrx& result,
 const Ice::Current& current)
{
 Lock sync(*this);

 EncoderPrx encoder =
 EncoderPrx::uncheckedCast(
 current.adapter->addWithUUID(
 new EncoderI(_manager, _logger, _session,
 result, _queue, desc, channels,
 samplerate)));
 _encoders.push_back(
 encoder->ice_getIdentity());
 Ice::IdentitySeq ids;
 ids.push_back(encoder->ice_getIdentity());
 _control->identities()->add(ids);

 return encoder;
}

create creates a new work item and an encoder servant, and it ad-
justs the Glacier2 filtering rules to allow access to the new object.

Custom sessions and iCeGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue �9, November 2006 Page 9Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Here is the implementation of destroy:

// C++
void
SessionI::destroy(const Ice::Current& current)
{
 Lock sync(*this);
 try
 {
 current.adapter->remove(current.id);
 }
 catch(const Ice::NotRegisteredException&)
 {
 return;
 }
 _queue->destroy();
 Ice::IdentitySeq ids;
 ids.push_back(current.id);
 vector<Ice::Identity>::const_iterator p;
 for(p = _encoders.begin();
 p != _encoders.end();
 ++p)
 {
 try
 {
 ids.push_back(*p);
 current.adapter->remove(*);
 }
 catch(const Ice::NotRegisteredException&)
 {
 // Ignore. If the encoder is already
 // destroyed this can be expected.
 }
 }

 _encoders.clear();
 try
 {
 _control->identities()->remove(ids);
 }
 catch(const Ice::Exception&)
 {
 }
 try
 {
 _session->destroy();
 }
 catch(const Ice::Exception&)
 {
 }
}

destroy first removes the servant from the object adapter. It then
destroys the result queue, which prevents any further encoded
results from being forwarded to the client. destroy then runs
through the created encoders and removes them from the object
adapter. Finally, the code removes all the registered objects from
the Glacier2 filters and destroys the IceGrid session.

The implementation of the encoder is straightforward. The
encode method adds the left and right channel samples to an

internal buffer. (See the discussion below regarding memory and
secondary storage.) The destroy method removes the servant
from the object adapter, and then creates and queues a work item
with the encoding queue. (See the source code for details.)

The implementation of the encoder work item is very similar to
what I discussed previously. However, there are a few interesting
things worth mentioning.

Firstly, this implementation buffers all of the data in memory in
two vectors of samples. If your front end has loads of memory, this
is appropriate. However, more likely, you would store the samples
in secondary storage. This is not very difficult (though you must
ensure that you reclaim this secondary storage correctly in the
event of a crash). Secondly, because we have the data available in
a vector, we can make use of the alternative C++ array mapping
supported by Ice in order to avoid making an extra copy of the data
for transmission:

// C++
interface Mp3Encoder
{
 // Input: PCM samples for left and right
 // channels Output: MP3 frame(s).
 Ice::ByteSeq encode(
 ["cpp:array"] Samples leftSamples,
 ["cpp:array"] Samples rightSamples)
 throws EncodingFailedException;
 // . . .
};

Now, when calling the encode method, we provide a pair of
Ice::Short pointers, the first of which points to the start of the
buffer, and the second of which points one element past the end of
the buffer (just like an STL iterator). Thus the primary encoding
loop is as follows:

// C++
// Contains the samples.
Ripper::Samples _left, _right;
// The encoder result queue.
EncodingResultQueuePtr _queue;
// The encoding result proxy.
EncodingResultPrx _result;

MP3EncoderPrx encoder = ...;
Ripper::Samples::size_type curr = 0;
int nsamples = (1000 * 1000) / 8;
while(curr < _left.size()
{
 if(_queue->destroyed())
 {
 throw EncoderDestroyedException(
 __FILE__, __LINE__);
 }
 int max = nsamples;
 if(curr + nsamples > _left.size())
 {
 max = _left.size() - curr;
 }

Custom sessions and iCeGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue �9, November 2006 Page 9Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

 encoded = encoder->encode(
 make_pair(&_left[curr], &_left[curr+max]),
 make_pair(&_right[curr],
 &_right[curr+max]));
 curr += max;
 _queue->result(_result, encoded);
}

Note the call to _queue->destroyed() as each set of samples
is encoded. In the event that the hosting session is destroyed, this
marks the encoding result queue destroyed as well. We check this
flag in each iteration and terminate the encoding process if the
queue has in fact been destroyed.

Before we can look at the encoding result queue object, we have
to deal with error handling. In case of an error, thus far, the client
had no way to tell the server that it cannot continue to deal with the
encoding results. Consider an implementation of the
EncoderResult object:

// C++
class EncodingResultI : public EncodingResult
{
public:
 EncodingResultI(FILE* fp) :
 _fp(fp)
 {
 }

 virtual void
 result(const Ice::ByteSeq& bytes,
 const Ice::Current&)
 {
 if(fwrite(&bytes[0], 1, bytes.size(), _fp)
 != bytes.size())
 {
 // What to do here?
 }
 }
 // ...
private:
 FILE* _fp;
};

What can result do if it the write to a file fails? Most likely, the
failure is due to a file system error, such as running out of disk
space, and all future writes will also fail. In that case, there is little
point in continuing with the encoding process. One option would
be to terminate the session and abort the client. However, it is nicer
to inform the server of the problem with an exception, as follows:

// Slice
exception ResultException
{
 string reason;
};

interface EncodingResult
{
 void result(Ice::ByteSeq bytes)

 throws ResultException;
 void destroy();
 // . . .
};

In addition, it would be nice for the server to have an operation on
the encoding result that notifies the client in the event of a failure.
For example, if server encounters an error such as failure to al-
locate an MP� encoder, it should let the client know about it. We
cannot easily do this with an exception because exceptions cannot
be passed as parameters to a callback operation. Instead, we’ll add
a failed method as follows:

// Slice
interface EncodingResult
{
 // ...
 void failed(string reason);
};

If anything goes wrong, the server calls failed and provides
a description of the error in the reason parameter. (The client
should destroy the encoding result object in response to a call to
failed.)

Now we can proceed with the implementation of the encoding
result queue. This object holds a queue of pending messages to be
sent to a client. A message consists of an encoding result proxy and
an MP�-encoded byte sequence, or a call to destroy.

The following is a simplified version of the
EncodingResultQueue. I have glossed over some of the more
complex issues, such as error handling; see the accompanying
source code for full details.

// C++
class EncodingResultQueue :
 public IceUtil::Shared,
 public IceUtil::RecMutex
{
public:
 ~EncodingResultQueue();

 void result(const EncodingResultPrx&,
 const Ice::ByteSeq&);
 void destroyEncoder(const EncodingResultPrx&);
 void failed(const EncodingResultPrx&, const
string&);
 void destroy();
private:
 friend class AMI_EncodingResult_resultI;
 friend class AMI_EncodingResult_destroyI;
 void send();

 list<QueueItemPtr> _queue;
};

The encoder calls result to add an encoded MP� byte sequence
for a particular encoding result proxy. destroyEncoder is called
to queue a destroy invocation, failed to queue a failed invoca-

Custom sessions and iCeGrid

http://www.zeroc.com/newsletter/issue19/CustomSession.zip
http://www.zeroc.com/newsletter/issue19/CustomSession.zip

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue �9, November 2006 Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

tion, and destroy to stop sending messages to the client. We wrap
each of the queue items in a class called QueueItem. QueueItem
has two sub-classes—one for each type of message that we send.

// C++
class QueueItem : public IceUtil::Shared
{
public:
 QueueItem(const EncodingResultPrx&);

 virtual void
 send(const EncodingResultQueuePtr&) = 0;
protected:
 const EncodingResultPrx _result;
};

The implementation of the EncodingResultQueueItem is as fol-
lows:

// C++
class EncodingResultQueueItem : public QueueItem
{
public:
 EncodingResultQueueItem(
 const EncodingResultPrx& result,
 const Ice::ByteSeq& encoding) :
 QueueItem(result),
 _encoding(encoding)
 {
 }
 virtual void
 send(const EncodingResultQueuePtr& queue)
 {
 _result->result_async(
 new AMI_EncodingResult_resultI(queue),
 _encoding);
 }
private:
 const Ice::ByteSeq _encoding;
};

Next we look at the implementation of the AMI callback:

// C++
class AMI_EncodingResult_resultI :
 public AMI_EncodingResult_result
{
public:
 AMI_EncodingResult_resultI(
 const EncodingResultQueuePtr& queue) :
 _queue(queue)
 {
 }
 virtual void
 ice_response()
 {
 _queue->send();
 }

 virtual void
 ice_exception(const Ice::Exception& e)
 {

 // Error handling
 }

private:
 const EncodingResultQueuePtr _queue;
};

As you can see, receipt of the ice_response callback prompts
the queue to send the next queued item. Here is how a message
gets queued:

// C++
void
EncodingResultQueue::result(
 const EncodingResultPrx& result,
 const Ice::ByteSeq& encoding)
{
 Lock sync(*this);
 _queue.push_back(
 new EncodingResultQueueItem(
 result, encoding));
 if(_queue.size() == 1)
 {
 _queue.front()->send(this);
 }
}

The code creates a new queue item and adds it at the tail of the
queue. If this is the only item in the queue, the code sends the item.

Next we look at send. Remember that this operation is called by
the AMI callback to trigger the sending of the next message in the
queue:

// C++
void
EncodingResultQueue::send()
{
 Lock sync(*this);
 assert(!_queue.empty());
 _queue.pop_front();
 if(!_queue.empty())
 {
 _queue.front()->send(this);
 }
}

Note that we do not dequeue a message until send is called by the
AMI callback. This ensures that the addition of another message to
the queue will not trigger another send while an AMI callback is
outstanding.

Conclusion
This concludes the implementation of the server side of the ap-
plication. I did not present the client-side changes but I encourage
you to have a look at the source code to see what is necessary. In
the next article in this series, I will further extend the server such
that it can store encodings for clients to be picked up at a later date.

Custom sessions and iCeGrid

http://www.zeroc.com/newsletter/issue19/CustomSession.zip

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue �9, November 2006 Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Teach Yourself IceGrid
in 10 Minutes

Michi Henning, Chief Scientist

Introduction
If you look at the title of this article, your reaction may well be
“Ten minutes? That’s ridiculous—no-one can learn IceGrid in
that time.” If so, you are right: you cannot learn IceGrid in ten
minutes, at least not if you want to use the more advanced features
of IceGrid. In that case, you will have to put up with the learning
curve and spend a fair bit more time than ten minutes (but learning
IceGrid is a lot easier than rocket science).

The title simply follows the naming theme of a popular series
of books with titles such as “Teach Yourself Linux in �0 minutes”,
“Teach Yourself SQL in �0 Minutes”, and many others in the same
vein. (In fact, looking at these books, it appears that there is hardly
any computing topic that you cannot learn in ten minutes.) Person-
ally, I do have a problem with books that claim to be able to impart
any significant amount of information on complex computing
topics in a few hours, let alone minutes—but that is a matter for a
future editorial instead of this article. Regardless, it is possible to
get up and running with IceGrid in a few minutes, at least for the
basics. To be honest, it will likely take a bit more time than ten
minutes, probably more like thirty, but who’s counting…

So, if you have never used IceGrid before, this article is for you:
it explains how you can avoid manual endpoint administration and
get a server activated on demand when a client invokes an opera-
tion on an object in that server. You will be surprised how easy this
is—a few simple steps are sufficient to achieve it.

Avoiding Hard-Wired Port Numbers
You will probably have seen server-side code such as the follow-
ing:

// Java
// ...
Ice.ObjectAdapter = communicator().
 createObjectAdapterWithEndpoints(
 "MyAdapter", "tcp -p 10000");
// ...

This is the simplest and most straightforward way of creating an
object adapter. Unfortunately, it is also one of the most useless:

• The server hard-wires the endpoint information into the
source code. As a result, if you want to move the server to a
different port for some reason, you will need to recompile the
code.

• You need to manually administer the port numbers that are
used by servers because no two servers can listen on the
same port. If you have a large number of servers, this rapidly
becomes tedious.

To improve on this situation, you can pass the port information
into the call to createObjectAdapterWithEndpoints, for
example:

// Java
// ...
Ice.ObjectAdapter = communicator().
 createObjectAdapterWithEndpoints(
 "MyAdapter", args[0]);
// ...

This code allows you to pass the endpoint specification into the
program as a command-line argument. This gets rid of hard-wir-
ing the endpoint into the source code, but is still awkward, for two
reasons:

• Ice already has a built-in mechanism for doing exactly the
same thing.

• You cannot use IceGrid’s location and server activation fea-
tures if you create the object adapter in this way.

Here is how to achieve the same thing properly:

// Java
// ...
Ice.ObjectAdapter = communicator().
 createObjectAdapter("MyAdapter");
// ...

This code is identical, except that it calls createObjectAdapter
instead of createObjectAdapterWithEndpoints. The code
does not specify an endpoint for the adapter, so the Ice run time
must use some other means to determine what endpoint to use. The
implementation of createObjectAdapter behaves as follows:

• If the property MyAdapter.Endpoints is not set, the run
time creates the adapter without endpoints. Obviously, be-
cause such an adapter does not listen on any network interface
for incoming requests, it is not useful for distributed com-
puting. However, an adapter without endpoints is useful for
bidirectional communication and used internally by the Ice
run time.

• Otherwise, the run time uses the value of
MyAdapter.Endpoints to determine at what endpoint(s) the
adapter will listen for incoming requests.

With this changed code, we can control the endpoint for the
server’s adapter from the command line, for example:

$ java MyServer.Main --Ice.Config=config

This assumes that the MyAdapter.Endpoints property is set in
the configuration file config as follows:

MyAdapter.Endpoints=tcp –p 10000

teaCh Yourself iCeGrid in 10 minutes

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue �9, November 2006 Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

With languages other than Java, you can also set the ICE_CONFIG
environment variable to the path name of the configuration file in-
stead of using a command-line option—please see the Ice Manual
for details on how to set properties.

With this configuration, the client can construct an initial proxy
for an object in the server as usual: as long as the client knows the
object identity and the endpoint, it can use a stringified proxy and
pass that to stringToProxy. With the preceding configuration,
assuming that the object identitiy of an object is Object1, the cli-
ent can use the following stringified proxy to reach the object:

Object1:tcp –h somehost.xyz.com –p 10000

Using IceGrid’s Location Service
By moving the port number that is used by an object adapter out
of the source code, we have gained some flexibility because we
now can run a server at a different port without having to recom-
pile the code. However, if we have lots of servers, we still need to
manually administer which port is used by what server. Moreover,
because clients specify the server’s port number in their stringified
proxy, whenever we change the machine on which a server runs,
or the port number at which it listens, we also need to update the
configuration of all clients.

Clearly, it would be preferable to not be burdened with all this
administrative overhead. Ideally, we want to be able to run servers
on arbitrary machines and on arbitrary ports that are dynamically
assigned by the operating system, and have clients bind to the serv-
ers without any change in configuration.

The location service that is built into IceGrid provides a neat
solution for exactly this scenario. The IceGrid location service
allows clients to dynamically (and transparently) acquire the cur-
rent endpoint for a server, regardless of the machine and the port
at which a server is running. Similarly, for servers, no ports need
be configured. We can run a server on any machine and let the
operating system choose a free port for the server, without having
to administer anything.

The location service works by replacing the endpoint informa-
tion in the proxy that is used by a client with a symbolic name, for
example:

Object1@MyAdapter

Such a proxy is known as an indirect proxy, because the proxy will
be bound to the server endpoint with an extra level of indirection
via IceGrid. (In contrast, a proxy that includes a specific endpoint
is known as a direct proxy.) When the client invokes an operation
using an indirect proxy, the client-side run time contacts the Ice-
Grid locator behind the scenes and asks for the machine and port at
which MyAdapter can be found. If the server is running, the loca-
tor knows the endpoint for the adapter and returns that to the client.

Once the client-side run time is aware of the actual endpoint, it
then sends the request to the server. The entire process is trans-
parent to application code and quite similar to the way the DNS
resolves domain names to IP addresses.

The Ice run time also uses a number of optimizations and
caching to prevent this extra level of indirection from becoming a
performance bottleneck. Typically, this means that each client will
contact the locator only once, the first time it binds to a particular
endpoint; future invocations are sent directly to the server without
first contacting the locator.

Servers keep the locator up-to-date by contacting it whenever
they activate an object adapter: each server updates the locator
with its current IP address and port number, so the locator can, in
turn, pass that information to clients when they resolve an indirect
proxy.

For all this to work, both clients and servers must agree to use
the same locator. The location service is provided by the IceGrid
registry, so this is the same as saying that clients and servers must
agree to use the same registry. To do this, clients and servers must
be configured with a single property, Ice.Default.Locator.
This property specifies the proxy to the IceGrid location service
and, if set, enables indirect binding for clients, as well as registra-
tion of endpoint details by servers. So, for both clients and servers,
we simply need to set this property, for example:

Ice.Default.Locator=IceGrid/Locator:tcp -h
registryhost.xyz.com -p 12000

We can set this property in a configuration file or on the command
line for client and server. The proxy states that the locator runs
on host registryhost.xyz.com, at port �2000, with the object
identity IceGrid/Locator. (This is the default object identity
of the IceGrid locator. You can change this identity by setting
the property IceGrid.InstanceName—see the Ice Manual for
details.)

To enable indirect binding, we need to run the location services,
that is, run the icegridregistry process. The registry requires a
minimum of configuration:

IceGrid.Registry.Client.Endpoints=tcp –p 12000
IceGrid.Registry.Server.Endpoints=tcp
IceGrid.Registry.Internal.Endpoints=tcp
IceGrid.Registry.Data=db/registry

IceGrid.Registry.DynamicRegistration=1

The IceGrid.Registry.Client.Endpoints property deter-
mines the endpoint at which the location service runs. You must
configure clients and servers with Ice.Default.Locator such
that the endpoint matches the locator endpoint.

teaCh Yourself iCeGrid in 10 minutes

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue �9, November 2006 Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Note that the proxy you specify with
IceGrid.Registry.Client.Endpoints must be a direct proxy
with a fixed port number: it provides the one fixed point that clients
and servers need in order to use indirect binding. (The locator
proxy cannot be an indirect proxy because that would create a
chicken-and-egg problem: to resolve the proxy to the locator, we
need a locator, but we cannot find the locator without resolving the
proxy…)

You must set the server and internal endpoint properties to one
or more protocols, but you need not specify a specific port for
these two properties; clients and servers find the actual endpoint by
contacting the locator at run time.

The IceGrid.Registry.Data property specifies the path
name to a directory in which the registry keeps its database.

Finally, you must set
IceGrid.Registry.DynamicRegistration to a non-zero
value. (Without this setting, servers will not be allowed to register
their object adapter endpoints unless they have been explicitly
deployed. I will return to explicit deployment shortly.)

Having specified these property settings in a file
config.registry, you can run the registry as follows:

icegridregistry --Ice.Config=config.registry

For the server, you only need two properties to make the server
register its adapter with the locator:

MyAdapter.Endpoints=tcp
MyAdapter.AdapterId=MyAdapter

Note that MyAdapter.Endpoints has changed: it now only
specifies a protocol, but no longer specifies a port number. In ef-
fect, this says “I want MyAdapter to use TCP/IP, but I don’t care
about what port number it listens at.” You also must set
MyAdapter.AdapterId. For example, we could set this property
as follows:

MyAdapter.AdapterId=FooBar

In that case, the proxy used by clients to bind to the server would
look like this:

Object1@FooBar

The <adapter-name>.AdapterId property controls three things:

• It tells the server-side run time to register the adapter with the
locator.

• It sets the ID by which the adapter is known to the locator and
to clients.

• It changes the way the proxies are stringified: with the prop-
erty set, the server produces stringified proxies that embed the
adapter ID (that is, stringified indirect proxies) when it calls
proxyToString, instead of proxies with an explicit port
number (stringified direct proxies).

The second point is particularly important: it allows two servers to
use the same adapter name, such as MyAdapter, without causing a
naming conflict in the registry: by assigning different adapter IDs
to these adapters, they remain distinguishable to the registry and
to clients. (Without such a renaming mechanism, all adapters in
all servers would have to have unique names, which is difficult to
ensure, especially if the servers are written by independent devel-
opers.) Adapter IDs are also useful for configuration because they
allow tools to unambiguously refer to a specific adapter by its ID.

With these two properties set, once you start the server, the
server contacts the registry and informs it of the endpoint details
for MyAdapter and, when a client uses a proxy such as
Object1@MyAdapter, it will correctly bind to the server, regard-
less of what machine the server runs on and at what port number it
listens. You can see this magic in action if you set the
Ice.Trace.Location property on the client side, which shows
you the behind-the-scenes activity during binding of indirect
proxies.

You can very easily see all of this in action by modifying the
demo in demo/Ice/hello a little bit. As it stands, this demo
uses direct binding so, by converting it to use indirect binding via
IceGrid instead, you can see exactly what is involved. Here are the
changes that are necessary:

• The server configuration sets the property
Hello.Endpoints to the value
tcp –p 10000:udp –p 10000:ssl –p 10001
Change this property to the value
tcp:udp:ssl

• Add the property setting
Hello.AdapterId=HelloAdapter
to the server configuration.

• The client configuration sets the property
Hello.Proxy to the value
hello:tcp –p 10000:udp –p 10000:ssl –p 10001
Change this property to the value
hello@HelloAdapter

• Set the property Ice.Default.Locator to the proxy of the
registry in both client and server configuration.

Now, when you run the demo while the registry is running, the cli-
ent uses indirect binding and the server uses a port that is assigned
by the operating system from the ephemeral port range.

Activating Servers Automatically
With the configuration we just discussed, you can start a server and
make the server’s endpoint information available via IceGrid with-
out having to manually configure host names and port numbers.
However, all this works only for as long as the server is running.
Often, this is not a problem: you can simply start the server when
the machine boots (by making the appropriate start-up entries in
/etc/rc.d or the Windows registry); once the server is up, you

teaCh Yourself iCeGrid in 10 minutes

Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue �9, November 2006 Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

can forget about it and let it do its job. However, there are three
drawbacks to this:

• Maintaining initialization scripts or registry entries for many
servers quickly becomes tedious.

• Servers consume operating system resources even when they
are idle.

• Servers may crash or malfunction.

The second point is not too serious—the only thing a server
consumes while it is idle is a slot in the process table, a few file
descriptors, and swap space, none of which are normally scarce re-
sources. However, the third point deserves more attention because
a server can malfunction due to no fault of its own. For example,
the operating system can run out of swap space and cause a memo-
ry allocation failure in the server. Depending on exactly where the
problem occurs, the server code may simply give up and exit or,
worse, misbehave in less obvious ways. (And the failure may occur
in a third-party library that is used by the server and whose quality
you cannot control.) Another scenario for unexpected server death
is a system administrator who accidentally kills the wrong process.
(Of course, the system administrator will usually in turn blame a
buggy script…) The proplem with manually started servers is that,
well, they are started manually: if a server crashes, it stays down
until someone re-starts it.

IceGrid provides a facility to activate servers on demand, when
a client first invokes an operation. In a nutshell, automatic server
activation is an add-on service to the location service: clients
resolve indirect proxies in the usual way; however, if a server is
not running at the time a client asks for the server’s endpoint, the
registry first starts the server and returns the endpoint details to the
client once the server has activated its object adapter.

Server activation is taken care of by IceGrid nodes. You must
run an IceGrid node on each machine on which you want IceGrid
to start servers on demand. In addition, you must run a single Ice-
Grid registry (not necessarily on one of the machines on which you
run your application servers). It is the job of each IceGrid node to
activate servers on the corresponding machine, to monitor the serv-
ers, and to make the servers’ status available to the registry.

Frequently, you will run the IceGrid registry on the same
machine as one of the IceGrid nodes; because this is a common
deployment scenario, IceGrid allows you to combine the registry
and a node into a single process by setting the
IceGrid.Node.CollocateRegistry property to a non-zero
value. In addition to the registry properties we used in the preced-
ing section, the node also requires a few configuration properties:

File config.icegrid

Registry configuration (as before)
IceGrid.Registry.Client.Endpoints=tcp –p 12000
IceGrid.Registry.Server.Endpoints=tcp
IceGrid.Registry.Internal.Endpoints=tcp
IceGrid.Registry.Data=db/registry

Only required if you want servers to register
themselves without explicit deployment. If all
servers are deployed explicitly, this property
can be left unset.
IceGrid.Registry.DynamicRegistration=1

Node configuration
IceGrid.Node.CollocateRegistry=1
IceGrid.Node.Name=node1
IceGrid.Node.Endpoints=tcp
IceGrid.Node.Data=db/node

Set the default locator so the node and admin
tools can find the registry.
Ice.Default.Locator=IceGrid/Locator:tcp \
–h registryhost.xyz.com –p 12000

The additional node configuration sets IceGrid.Node.
CollocateRegistry to indicate that the node should also
act as a registry. The IceGrid.Node.Name property assigns a
symbolic name to the node. This name can be anything—it serves
to distinguish nodes that use the same registry, that is, the nodes
of a registry must have unique names. The IceGrid.Node.Data
property sets the path name of a directory in which the node stores
information about its servers.

Now we can start a node that also includes a registry:

icegridnode --Ice.Config=config.icegrid

On the client side, no changes are required to make the client work
with automatically activated servers because all the work is done
by the registry. To make the server work with automatic activation,
we must make two changes:

• update the server configuration
• deploy the server

The first point is taken care of very easily: the server now requires
no configuration at all, other than the setting of
Ice.Default.Locator. In particular, we no longer need to
specify an endpoint or an adapter ID because, as we will see in a
moment, that configuration shifts from the server to the server’s
deployment.

To get IceGrid to activate the server on demand, we need to in-
form IceGrid of the particulars of the server. Here are the essential
items of information that IceGrid needs to know so it can start the
server:

• an application name
• a node name
• a server identifier
• the path name to the executable of the server
• the name of the server’s adapter
• the protocol to be used by the server

teaCh Yourself iCeGrid in 10 minutes

Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue �9, November 2006 Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

IceGrid expects these items to be presented in a deployment de-
scriptor. Deployment descriptors are written in XML. Here is the
deployment descriptor for our example:

<!-- demo.xml -->
<icegrid>
 <application name="demo">
 <node name="node1">
 <server id="DemoServer"
 exe="/usr/bin/demoserver"
 activation="on-demand">
 <adapter name="MyAdapter"
 endpoints="tcp"/>
 </server>
 </node>
 </application>
</icegrid>

Much of this is self-explanatory. All of the information is presented
as sub-elements of the icegrid element.

• The application name identifies the deployment information
for an application (which may have more than one server).
In other words, the application name serves as a convenient
handle when we need to identify a particular deployment (as
we will in a moment when we use the icegridadmin tool).

• The node name identifies the machine on which the server
will execute or, more precisely, it provides the name of the
node that will be instructed to start the server—the server will
execute on the machine that runs the node with that name.
The node name is the same name that we configured earlier
by setting the IceGrid.Node.Name property.

• The server ID is a label that identifies the server. It allows us
to refer to a particular server by name, for example, to enquire
about the server’s status with an administrative tool.

• The exe attribute provides the path name of the server’s
executable. (Usually, you will use an absolute path name here
because relative pathnames are interpreted relative to the
node’s working directory.)

• The activation attribute specifies that the server should be
activated on demand, when a client invokes an operation on
one of the server’s objects. (IceGrid provides a number of oth-
er activation modes—please see the Ice Manual for details.)

• The adapter element’s name attribute must specify the
adapter name that is used by the server. (You can also option-
ally set an id attribute; if that attribute is not set, the default
adapter ID is <server-ID>.<adapter-name>.)

• The endpoints attribute specifies the protocol(s) to be used
by the server.

Now that we have a deployment descriptor, we can deploy the ap-
plication, that is, inform the IceGrid registry about these details:

icegridadmin --Ice.Config=config.icegrid -e
'application add demo.xml'

The -e option tells icegridadmin to execute the commands
provided as the option argument. In this case, the add command
tells the tool that we want to add the information in demo.xml to
the registry database. Note that the command also points the tool at
the configuration file for the registry and the node. The only prop-
erty setting that will be read by the tool is Ice.Default.Loca-
tor, which the tool needs so it knows how to contact the location
service.

This is all that is necessary to have your server activated on
demand. Provided that you have deployed the server with the reg-
istry, it now starts automatically as soon as the first client tries to
contact an object in that server.

Other Features
This articles only covers the basics of IceGrid to get you started.
There are many other features in IceGrid, some quite sophisticated,
such as replication and load balancing, allocation of particular
servers for exclusive use by clients, and templates to simplify
deployment and configuration of large numbers of servers. You
can also arrange for a server to stop automatically once it has been
idle for some time, to conserve machine resources. You can even
arrange for software updates to be downloaded to a number of
remote machines, allowing you to automatically update application
software from a central point without intervention at the remote
end. As usual, please consult the Ice Manual for more informa-
tion on these features, as well as Matthew Newhook’s articles on
IceGrid in this and previous issues of Connections.

Summary
IceGrid makes it very easy to get away from manual port adminis-
tration and, through indirect binding, allows you to move servers
from one machine to another (for example, to balance machine
load) without having to update the configuration of all deployed
clients. In addition, the central administration of IceGrid allows
you to deploy a large number of servers easily and efficiently,
without getting overwhelmed by lots of detail.

If you want to experiment with IceGrid, I suggest you start with
the demo that is provided in the demo/IceGrid/simple direc-
tory in the Ice distribution. This article was inspired by that demo,
so you should have no problems getting started. But, please, give
yourself just a little more than ten minutes…

teaCh Yourself iCeGrid in 10 minutes

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue �9, November 2006 Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner
In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: Why is there no Ice.Exception base class in Ice
for Java?

In Ice for C++ (and other language mappings), all Ice exceptions
derive from a common base class. For example, in C++, we have
Ice::Exception at the root, with derived classes Ice::Lo-
calException and Ice::UserException. In turn, all the Ice
run-time exceptions derive from LocalException, and all the Ice
user exceptions derive from UserException.

The advantage of having a common base class for user- and
run-time exceptions is that you can catch all Ice exceptions with a
single exception handler:

// C++
try
{
 someProxy->someOp();
}
catch(const Ice::Exception& ex)
{
 cerr << ex;
}

In Java, we also have Ice.LocalException and Ice.UserEx-
ception, but these two classes are not derived from a common
base class. If you want to catch all Ice exceptions, you must write
two separate exception handlers:

// Java
try
{
 someProxy.someOp();
}
catch(Ice.UserException ex)
{
 System.out.write(ex);
}
catch(Ice.LocalException ex)
{
 System.out.write(ex);
}

So, why this difference? The reason is Java’s checked exception
model. (People either hate or love this model—Kevlin Henney
(among many others) provides an interesting discussion of its
trade-offs.)

Java distinguishes between two kinds of exceptions, checked
exceptions and unchecked ones. For checked exceptions, the
language, at compile time, enforces that a method must declare all
checked exceptions that it can possibly throw in a separate throws
clause. This includes any exceptions that (recursively) might be
thrown by any called methods. On the other hand, for unchecked
exceptions (which are exceptions that derive from java.lang.
RunTimeException or java.lang.Error), the language does
not require you to list them explicitly in a throws clause—any
method can throw an unchecked exception at any time.

Unchecked exceptions were added to the language out of
necessity. For example, imagine the consequences of NullPoin-
terException being a checked exception: either every method
would need a throws clause for this exception, or the body of
every method would have to catch and swallow this exception (or
translate it to some other exception that can be thrown). Clearly,
this would be quite intrusive and messy.

Ice follows the Java philosophy: Ice run-time exceptions are
unchecked exceptions and Ice user exceptions are checked excep-
tions. This allows you to write code without eternally having to
write throws clauses for Ice run-time exceptions, while still en-
forcing that your methods correctly deal with user exceptions. The
down-side of this approach that you need two exception handlers if
you want to catch both Ice user- and run-time exceptions.

Note that you can catch all Ice exceptions with a single excep-
tion handler:

// Java
try
{
 someProxy.someOp();
}
catch(java.lang.Throwable ex)
{
 // Catches too much...
}

Sure enough, this catches all Ice user- and run-time exceptions,
but the glitch is that it catches everything else as well, including
exceptions that have nothing to do with Ice. As a work-around, you
could add further processing in the handler to determine whether
the exception is not an Ice exception and, if so, rethrow it:

// Java
static void
throwIfNonIceException(java.lang.Throwable ex)
{
 if(!(ex instanceof Ice.LocalException) &&
 !(ex instanceof Ice.UserException))
 {
 throw ex;

faQ Corner

http://www.zeroc.com/vbulletin/
http://www.two-sdg.demon.co.uk/curbralan/index.html
http://www.mindview.net/Etc/Discussions/CheckedExceptions

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue �9, November 2006 Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue �9, November 2006 Connections
ZeroC’s Newsletter for the Ice Community

 }
}

try
{
 someProxy.someOp();
}
catch(java.lang.Throwable ex)
{
 throwIfNonIceException(ex);
 // Handle Ice exception...
}

However, most people would agree that this rather obscures the
issue; it is clearer and simpler to write two separate exception han-
dlers in the few places in the code where you need to catch both
Ice user- and run-time exceptions.

Q: How do I run the clients and servers on different
hosts?

By default, the demo programs that ship with Ice assume that
you will run client and server on the same host. This behavior is
controlled by two configuration files, config.client and con-
fig.server. For example, here is the relevant line for the server
configuration of the hello demo:

Hello.Endpoints=tcp -p 10000:udp -p 10000:ssl -p
10001

This says that the server’s object adapter named Hello will listen
for incoming requests on port �0000 for UDP and TCP, and on port
10001 for SSL. Because this configuration does not use the -h op-
tion to explicitly specify an interface, the server binds itself to all
network interfaces on its machine.

The corresponding entry for client looks like this:

Hello.Proxy=hello:tcp -p 10000:udp -p 10000:ssl -p
10001

This configures the proxy that is used by the client to make an
invocation. Again, because the configuration does not use the -h
option, the client will try all network interfaces on its machine
when it tries to reach the server.

If you want to run client and server on different machines,
you need to modify the configuration of the client to specify the
server’s machine. For example, if the server runs on host www.
zeroc.com, you can modify the client configuration to specify
that machine:

Hello.Proxy=hello:tcp -h www.zeroc.com -p 10000:
udp -h www.zeroc.com -p 10000:ssl -h www.zeroc.com
-p 10001

This configuration assumes that the DNS for the client can cor-
rectly resolve the domain name www.zeroc.com; if that is not the
case, you can also use an IP address instead of a domain name.

Because you can configure a separate endpoint for each proto-
col, you can also create more complex configurations. For exam-
ple, for a machine with separate interfaces for an external network
and an internal network, you could use a server configuration as
follows:

Hello.Endpoints=tcp –h internal.zeroc.com -p
10000:udp -h internal.zeroc.com -p 7859:ssl –h
external.zeroc.com -p 10001

With this endpoint specification, the server will accept TCP and
UDP requests only on the internal interface, at ports �0000 and
�8�9, respectively, and will accept SSL requests only on the exter-
nal interface, at port �000�.

Regardless of what configuration you use, if a client cannot
reach the server, the first thing to do is to run both client and server
with --Ice.Trace.Network=2 and check that the endpoint that
the client tries to connect to matches the endpoint at which the
server listens. If not, the fault is inevitably in the endpoint configu-
ration of either client or server (or both): the configurations must
match for the client to be able to reach the server.

Instead of configuring endpoints manually, you can also let
IceGrid take care of port allocation for you. Please check the Ice
Manual for details.

faQ Corner

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

