
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 20, December 2006

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 20, December 2006

80 Percent?
I have just returned from the
Middleware ’06 conference. The
conference was well attended, with a
number of high-quality papers. (Check
out the conference proceedings for de-
tails.) I also met quite a few Ice users
at the conference—I had fun talking
with them and seeing Ice make inroads
not only in industry, but also

in academia.

As the conference papers amply demonstrated, research in the
middleware arena is vibrant and active, and it produces useful
results. That is a Good Thing™: as I said previously, middleware
will continue to increase in importance. In fact, I see middleware as
the key enabler for continued progress in computing: without ongo-
ing research and improvements for middleware, the “Global Grid”
(remember, you heard the term here first!) simply won’t happen.
But, sadly, very few of the research results make it into mainstream
products.

During the many conversations at the conference, I was struck
with the disillusionment with web services. After years of trying,
developers and researchers are getting increasingly disenchanted
with WS complexity and poor performance, not to mention the
standards mess and interoperability problems. (See Peter Lacey’s
satire “The S Stands for Simple” for a sobering history of web
services.) Many conference attendees expressed the opinion that
the WS bubble will implode in the near future. Personally, I look
forward to the release of WS-Death-Certificate: some technologies
are simply too awful to allow them to exist.

But, for middleware as a whole, this isn’t exactly good news.
Consider where we currently stand. On the one hand, Java RMI and
.NET Remoting are tied to particular platforms and are of no inter-
est for heterogeneous applications. (Besides, .NET Remoting has
just been replaced by the Windows Communication Foundation; it
goes almost without saying that WCF has a new and incompatible
API…) On the other hand, for heterogeneous networking, CORBA
is getting rather long in the tooth and, while REST offers some
attractive ideas, developers want technology, not philosophy. And,
with this short list, we have just about exhausted the available op-
tions. If WS is about to go the way of the Dodo too, that leaves the
industry without ubiquitous middleware, despite fifteen years of
promises to the contrary.

And ubiquitous middleware is what the industry needs. It needs
ubiquitous middleware because, without it, universal e-commerce
will remain a pipe dream. “B2B everywhere” cannot happen while
the market is fragmented among a number of competing, incompat-

ible, and technologically retarded offerings. No amount of de jure
standardization will fix this. Here is my prediction of what will fix
it: one product will capture a majority of the market before the rest
of the players wake up. Then, after gaining sufficient experience,
we’ll write the standards around that product to codify existing best
practice (which is what standards should be doing anyway).

“One product?” you ask? Yes, I am entirely serious. I firmly
believe that one middleware product can comfortably serve the
needs of 80 percent of applications, without being as complicated
and inefficient as web services. So, is Ice that product? Quite
possibly: Ice provides everything that is needed to cover the 80-
percent bracket. With Ice, you can build efficient, reliable, and
industrial-strength e-commerce systems today whereas, with web
services, you count your blessings if you can exchange anything
more complex than an integer among different implementations.
No doubt, the industry will be ready to add yet another WS‑Some‑
thing standard to address your concerns but, while you wait for that
standard to (maybe) fix things, you can use Ice to get on with the
job. What do you prefer—a product without a standard that works,
or a product with a standard that doesn’t?

And, before you know it, you may find that Ice indeed has
captured those 80 percent. Please, when that happens, don’t be too
smug about it. The web services devotees will know that you were
right all along without you rubbing salt into their wounds and say-
ing “I told you so!”

Michi Henning
Chief Scientist

Issue Features

Ice for Ruby
In this article, Mark Spruiell introduces Ice for Ruby.

Optimizing Performance of File Transfers
Matthew Newhook describes several techniques that you can
use to optimize your applications.

Contents
Ice for Ruby .. 2

Optimizing Performance of File Transfers �2

FAQ Corner .. 22

http://2006.middleware-conference.org/
http://www.amazon.com/Middleware-2006-International-Conference-Proceedings/dp/354049023X/sr=1-1/qid=1165211755/ref=sr_1_1/104-5422456-7467158?ie=UTF8&s=books
http://www.zeroc.com/newsletter/issue9.pdf
http://wanderingbarque.com/nonintersecting/2006/11/15/the-s-stands-for-simple/
http://msdn2.microsoft.com/en-us/windowsvista/aa905015.aspx
http://msdn2.microsoft.com/en-us/windowsvista/aa905015.aspx
http://www.artima.com/weblogs/viewpost.jsp?thread=4840
http://www.artima.com/weblogs/viewpost.jsp?thread=4840

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 20, December 2006 Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Ice for Ruby
Mark Spruiell, Senior Software Engineer

Introduction
Dissatisfied with currently available technology, an enterprising
developer decides to forge his own path and create something new.
It’s a familiar story in computing circles, and in fact it’s exactly
how Ice came to be. In this case, though, I’m referring to Ruby, a
language worthy of your attention. In this article, I’ll present an
overview of the language and introduce the latest addition to the
Ice family, Ice for Ruby.

Meet Ruby
Ruby sprang to life in Japan more than a decade ago when Yuki-
hiro Matsumoto, unhappy with existing scripting languages such as
Perl and Python, decided to design his own language. His goal was
to create a pure object-oriented language that was easy for pro-
grammers to learn and use, and judging by Ruby’s ever-growing
popularity, he has succeeded remarkably well.

Everything is an object in Ruby, including strings, methods, and
even numbers. For example, in Java you would obtain the abso-
lute value of an integer by calling a static method and passing the
integer as an argument:

// Java
int num = Math.abs(‑42)

In Ruby, you invoke the method directly on the number:

Ruby
num = ‑42.abs

Notice that I've omitted the trailing parentheses when calling the
abs method. This is an example of Ruby’s relaxed syntax, in
which parentheses are optional for method invocations.

Matz, as Ruby’s creator is known, borrowed heavily from other
languages; mostly from Perl, but also from Python, Smalltalk,
and Lisp. Many of us have undoubtedly written some completely
unreadable Perl code in past lives, and I’m no exception. I’ll be
the first to admit that it was difficult to resist combining magic
symbols like $_ and complex regular expressions to accomplish a
result in one line that would have taken dozens of lines or more in
other languages. Although Ruby preserves some of this terseness,
it has fallen out of favor among Ruby purists and, as of late, use of
such cryptic expressions actually triggers warnings in the interpret-
er. I’ve learned my lesson, and Matz apparently has too.

Ruby versus Python
With my background in traditional languages such as C and C++,
I was initially repelled by Python’s rigid indentation requirements;
eventually I overcame that bias and learned to appreciate what
Python had to offer. As an Ice user, you probably know that Python
is ZeroC’s scripting language of choice; however I’m pleased that
Python’s formatting requirement is one “feature” that Ruby does
not emulate. For example, here is a trivial Ruby class definition:

Ruby
class Person
 def initialize(first, last)
 @first = first
 @last = last
 end

 def name()
 "#@first #@last"
 end
end

The method initialize is the constructor for an instance of
class Person, and the @ symbol is how you refer to instance vari-
ables. The keyword end terminates blocks, methods, classes, and
modules. The name method demonstrates some convenient string
formatting syntax as well as Ruby’s convention of using the result
of the last statement as the return value of a method. The equiva-
lent Python code is shown below:

Python
class Person:
 def initialize(self, first, last):
 self.first = first
 self.last = last

 def name(self):
 return self.first + " " + self.last

They look quite similar, and both are clean and easy to read and
understand but, personally, I prefer Ruby's syntax. You may have a
different opinion, but that's why we have many choices in pro-
gramming languages.

Language Highlights
Getting back to our Ruby example, we have defined the Person
class and now we want to instantiate it. Since classes are objects
like everything else in Ruby, we simply invoke the new method on
the class:

p = Person.new("Roger", "Seagraves")

If you like, you can also write the statement as follows:

p = Person.new "Roger", "Seagraves"

This style is a little too loose for my taste (I guess I'm just old-fash-
ioned), so I'll be using parentheses from now on.

Ice for ruby

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 20, December 2006 Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Ruby’s object-oriented nature gives it a flexibility that you can
exploit in a dizzying number of ways. For example, if you prefer a
more verbose style in your expressions, you can rename the addi-
tion operator:

class Fixnum
 alias plus +
end

Fixnum is the name of Ruby’s built-in �2-bit integer class. (It
really has only �� bits, but who’s counting?) Declaring the class
again does not replace its previous definition; instead, it opens the
existing class to be modified or extended. In this case, we have
added another way to invoke the + method, so that the following
statements are all equivalent:

1 + 1
1.+(1)
1.plus(1)

Ruby also allows you to add or redefine methods in just one in-
stance of a class:

p1 = Person.new("Roger", "Seagraves")
p2 = Person.new("Oliver", "Stone")
class <<p2
 def name()
 "#@last, #@first"
 end
end
puts p1.name()
puts p2.name()

The output of this program is shown below:

Roger Seagraves
Stone, Oliver

All this flexibility might lead you to believe that programming in
Ruby is a complete free-for-all, but Ruby does have some interest-
ing naming conventions that might dampen some of that rebellious
spirit:

• The names of modules, classes, and constants begin with an
upper-case letter.

• The names of methods and local variables begin with a lower-
case letter.

• Instance variable names begin with the @ character and are
normally followed by a lower-case letter.

• Class variable names (such as a static variable in C++ and
Java) begin with @@.

• Global variable names begin with the $ character.

Ruby enforces some of these conventions, while others are merely
recommendations, as determined by the needs of the parser.

In the sections that follow, I’ll give a very brief introduction
to Ruby’s main constructs. If you find yourself intrigued, the
“Pickaxe” book is a great way to learn more about the language.

Built‑In Types
Ruby’s native types include the aforementioned small integer, an
arbitrary precision integer, floating point, string, array, and an as-
sociative array type called hash. As with any untyped language, a
Ruby program typically doesn’t need to concern itself with types;
the type of a variable is determined by its current value, but the
variable can be used to hold a value of another type at a later time.

A Ruby array is an indexed collection similar to Python’s list
type:

arr = ['a', 'b', 'c']
arr[10] = 99

As you can see, a program can assign values of varying types to
arbitrary locations in the array; any gaps are automatically filled
with the value nil.

While an array can only be indexed using an integer, a hash ac-
cepts any type of value as a key:

h = { "abc" => "def", 17 => "ghi" }
h[false] = [1, 2, 3]

True to its Perl heritage, Ruby also supports regular expressions
as a native language feature, which makes it trivial to incorporate
them into your own code:

class Person
 def match(expr)
 @first =~ expr || @last =~ expr
 end
end

p = Person.new("Caleb", "Shaw")
p.match(/[Cc]al/)

The value returned by match in this example is 0, representing the
position at which the expression matched the string “Caleb”. In
Ruby, only the values false and nil cause a boolean expression
to fail, therefore the following test executes as expected even when
match returns 0:

if p.match(/[[Cc]al/)
 puts "Found a match!"
end

Modules
A module serves several purposes in Ruby. The most common use
case, which should be familiar to Python programmers, is encapsu-
lating methods and classes in a unique namespace:

module Ice
 def initialize()
 # ...
 end
end

Ice for ruby

http://www.pragmaticprogrammer.com/titles/ruby/index.html

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 20, December 2006 Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

At this point you might be thinking that the code above looks
surprisingly like a procedural Python program, and you'd be right.
In Ruby's object-oriented world, however, this example actually
declares a module object and defines a method in it named ini‑
tialize. You can invoke this method using the :: scope resolu-
tion operator:

Ice::initialize()

Modules serve another important purpose in Ruby: they provide
a convenient way to incorporate functionality into a class without
needing to use inheritance. Although Ruby classes are restricted to
single inheritance, modules give you the equivalent of unlimited
multiple inheritance. Consider the following example:

module Comparable
 def <(other)
 self.<=>(other) < 0
 end
 def >(other)
 self.<=>(other) > 0
 end
 # ...
end

class Person
 include Comparable
 def <=>(other)
 # ...
 end
end

We have defined the module Comparable that supplies a number
of comparison methods. Each method assumes that the receiving
object has implemented the <=> method, which, by convention,
must return ‑1, 0, or 1 to indicate its order compared with another
object. It may seem strange at first to see methods that refer to
self defined in a module—after all, self is normally used in
classes. However, the module is intended to be used as a mix‑in
by other classes. As you can see, the Person class includes the
module, thereby adding all of the methods in the module to its own
definition. To comply with Comparable’s protocol, Person must
implement only <=> to get a number of useful comparison methods
for free, without sacrificing its ability to inherit from another class.

Duck Typing
Given the power of modules shown in the previous section, it’s no
surprise that an object’s type has less importance in Ruby than it
does in more statically-typed languages. You can still test an object
to determine whether it is an instance of a class:

if (p1.kind_of?(Person) && p2.kind_of?(Person))
 cmp = p1 < p2 # Compare two people
end

However, an object's class (as well as its super-classes) is really
just one source of methods you can invoke. The object's class
might also include modules that define methods and, as we saw

earlier, the object itself may have been extended to have additional
methods. As a result, what really matters in many cases is whether
an object supports the capability you need, and not whether it is an
instance of a particular class. We could rewrite the code above as
simply:

cmp = p1 < p2 # Equivalent to p1.<(p2)

The interpreter will raise an exception in this case if p1 fails to
implement the < method. If you want to verify that p1 implements
<, use the respond_to? method:

if (p1.respond_to?(:<))
 cmp = p1 < p2
end

In Ruby terminology, this is known as duck typing: if it walks like
a duck, and talks like a duck, then Ruby treats it like a duck, re-
gardless of whether it actually is a duck. Once you get used to the
idea, you’ll find it’s a very powerful concept.

Blocks and Iterators
Speaking of powerful concepts, check this out:

arr = [1, 2, 3]
arr.each { |i| puts i }

When executed, this code produces the following output:

1
2
3

We have declared an array and invoked its each method. The
argument to each is a segment of code enclosed in braces, called
a block in Ruby. This code is not evaluated immediately; the block
is treated as (you guessed it) an object that each invokes for every
element of the array, and the variable i within the vertical bars rep-
resents the block’s parameter list. The each method is known as an
iterator because it iterates an arbitrary block over a collection.

Another example of an iterator is the upto method, which is
often used in place of a traditional for statement:

0.upto(arr.length‑1) { |i| puts arr[i] }

This code invokes upto on the integer zero and passes the maxi-
mum value as an argument.

Blocks are used throughout Ruby’s libraries as a very convenient
way of defining callbacks and handling transactions. For example,
the code below opens a file, reads some text, and closes the file:

f = File.open("log.txt", "r")
line = f.gets()
...
f.close()

We could write this another way using a block, but this time we'll
use the do/end keywords instead of braces:

Ice for ruby

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 20, December 2006 Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

File.open("log.txt", "r") do |f|
 line = f.gets()
 # ...
end

The open method detects the presence of this block and changes
its behavior: instead of simply returning the opened file as in the
previous example, open now opens the file, executes our block,
and closes the file, freeing us from having to remember to close the
file ourselves. As an added bonus, open also ensures that the file is
closed in case our block raises an exception.

Exceptions
Exceptions in Ruby have the same semantics as in other main-
stream languages, although the keywords can be a bit confusing
at first. Whereas C++ and Java use the keywords try, catch, and
throw for exception handling, Ruby’s equivalents are begin,
rescue, and raise:

begin
 raise "Oops!" # Throws a runtime error
rescue RuntimeError => ex
 puts ex
end

The confusion arises from the fact that the keywords catch and
throw are also used in Ruby, but have nothing to do with excep-
tions.

Ruby supports the equivalent of Java’s finally clause, albeit
with a different name of course:

begin
 raise "Not again!"
rescue => ex # Equivalent to rescue StandardError
 # Handle exception
ensure
 # Clean up
end

Ruby guarantees that the ensure clause will be executed regard-
less of whether an exception is raised; this provides the application
with an opportunity to take action such as cleaning up resources.

Threads
Ruby’s Thread class is an example of an API that relies on the
block concept we saw earlier:

t = Thread.new("http://www.zeroc.com", 80) do
|url, port|
 conn = Net::HTTP.new(url, port)
 page = conn.fetch("/", nil)
end
t.join()

The Thread constructor requires the caller to define a block; any
arguments passed to the constructor are transferred to the block’s
parameter list. This use of blocks conveniently eliminates the need

to define a new class for each activity that you want performed in a
separate thread.

The main disadvantage of Ruby’s current thread implementation
is its use of “green”, or emulated, threads. The interpreter runs in
a single native thread and performs its own task switching among
the threads created by the application. This strategy is portable,
and it works fine for many situations, but it may not be appropri-
ate for applications that make a lot of system calls that can block:
when the interpreter’s one and only thread blocks, all Ruby threads
block. I’ll have more to say about this later.

Run Time Library
I have only touched on a few of Ruby’s built-in classes; many
others are available that supply such core functionality as signals,
processes, date/time, file I/O, and more. In addition, Ruby’s robust
set of class libraries provides a wide range of services, including
wrappers for database systems, math facilities, mutexes and moni-
tors, XML parsing, and a suite of network protocol classes such
as HTTP and SMTP. One particularly useful library is WEBrick,
which implements a standard HTTP server and includes support
for servlets and CGI. For example, here is all you need to serve
static pages from a local filesystem using WEBrick:

require 'webrick'
include WEBrick
server = HTTPServer.new(
 :Port => 80,
 :DocumentRoot => File.join(Dir.pwd, "/html")
)
trap("INT") { server.shutdown() }
server.start()

There is plenty more you can do with WEBrick, as you'll see later
in the article.

Ruby on Rails
I would be remiss in my duties if I did not at least mention Ruby
on Rails, which is largely responsible for the tremendous growth
that Ruby has been experiencing. The Rails framework’s success
lies in its ability to dramatically simplify the task of creating data-
base-backed Web applications without complicated configuration
files or even much programming. If you are in a situation where
you need to offer Web access to database CRUD actions (create,
read, update, delete), you should investigate what Rails can do for
you.

The Birth of a New Mapping
The development of a new Ice language mapping requires vary-
ing degrees of effort. The compatibility of Slice and the target
language is certainly a factor in determining how much work will
be needed, but more significant is the implementation strategy for
the Ice run time. There are essentially two choices: implement the
Ice run time from the ground up in the target language, or try to

Ice for ruby

http://www.rubyonrails.org/
http://www.rubyonrails.org/

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue 20, December 2006 Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

use an existing Ice run time as the foundation of the new product.
We strive to do the latter whenever possible (as long as doing so
wouldn’t negatively impact the product) because our maintenance
duties are reduced when we can reuse an existing, well-tested run
time. The advantages of a native implementation would have to be
very compelling for us to consider attempting such a project.

At the time of this writing, ZeroC has only three native imple-
mentations of the Ice run time: C++, Java, and C#. All of the
remaining language mappings are layered on top of one of these
three products. Since the interpreters for scripting languages are
typically written in C for maximum portability, the only sensible
choice for the foundation of such a language mapping project is Ice
for C++.

The disadvantage of this layered approach is that the script
programmer must be aware of the external dependencies (such as
shared libraries) that are necessary to use Ice. It’s a small price to
pay, however, because it’s really the only way ZeroC could justify
supporting the languages that we already do. Some of the Ice
internals are pretty complex and rely heavily on low-level APIs
for sockets and other system calls. Even if a scripting language
provided access to all of the facilities we would need, and even if
they worked reliably (a big if), it would still be a huge undertaking
to reimplement the Ice run time, test it, and maintain it. If we had
to do that for every new language mapping, it’s likely that the only
language mappings we’d support would still be C++, Java, and C#.

Layering a new scripting language implementation on the C++
run time not only saves an enormous amount of time (which gets
the product into your hands that much faster), but also results in
a more reliable product from the start. Such a project consists of
designing the mapping from Slice to the target language, writing
the translator, and implementing a thin integration layer between
the interpreter and Ice for C++. The integration layer is often the
most challenging, since we need to get intimately familiar with the
interpreter’s extension API. This can be a somewhat frightening
experience, as was the case with PHP, or a relatively pleasant one.

Overall, implementing the Ruby mapping was quite straightfor-
ward. The interpreter’s C API seems to be generally well designed
and easy to use, which made the development process much easier.
There was really only one issue we had to face, but it was a sig-
nificant one: Ruby’s lack of support for native threads. It’s not the
fact that the interpreter uses green threads, but that the C API is not
thread safe. As you know, Ice uses threads extensively, so this was
a serious limitation. As a result, we didn’t even try to implement
support for writing an Ice server in Ruby, and it made us give up
on asynchronous invocations. Essentially, any functionality that re-
quired the C++ Ice run time to call back into Ruby’s C API from an
arbitrary thread had to be abandoned. What remained was support
for synchronous outgoing invocations, which was all the project’s
sponsor needed anyway. A future version of Ruby is planned that
supports native threads, at which point it will become feasible for
us to consider adding the missing functionality to Ice for Ruby.

Slice to Ruby
Slice types map quite naturally to Ruby. Rather than repeat what’s
already described in the Ice Manual, I’ll touch on elements of the
mapping that provide more information on the Ruby language and
demonstrate useful idioms.

Identifiers
Earlier in the article, I described Ruby’s quirky naming conven-
tions for identifiers; you need to be familiar with these rules
because they can affect the generated code and therefore your ap-
plication. As an example, consider the following Slice definitions:

// Slice
module corp {
 interface backOffice {
 void Reconcile();
 };
};

When translated to Ruby, these identifiers are modified as shown
below:

module Corp
 class BackOffice
 def Reconcile()
 # ...
 end
 end
end

As this example demonstrates, a Slice construct that maps to a
Ruby module, class, or constant must have an identifier that begins
with an upper-case letter, therefore the identifiers corp and back‑
Office are modified as shown. For method names such as Recon‑
cile, Ruby conventions recommend that they start with a lower-
case letter, but the interpreter doesn’t enforce that rule, and neither
does the Slice mapping.

Primitive Types
Aside from the identifier issue, a Ruby programmer should be very
comfortable using the Slice mapping. For example, the table below
describes the Ruby mapping for primitive Slice types.

Slice Type Ruby Type
bool true or false
byte Fixnum

short Fixnum

int Fixnum or Bignum

long Fixnum or Bignum

float Float

double Float

string String

Ice for ruby

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue 20, December 2006 Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Fixnum is Ruby’s ��-bit integer type, whose range can represent
most of the Slice integer types. If an integer value requires more
than �� bits, Ruby transparently promotes it to the arbitrary-preci-
sion type Bignum. Consider the following Slice definitions:

// Slice
const int I1 = 1073741823;
const int I2 = 1073741824;

In Ruby, the constant I1 is represented by a Fixnum object, while
I2’s value can only be stored in a Bignum object. As far as the Ice
run time is concerned, an integer’s type is irrelevant; what matters
is whether the value is compatible with the expected Slice type.
Let’s continue this example below:

// Slice
const long L1 = 1;
const long L2 = 4294967292;

interface IntSender {
 void sendInt(int i);
};

It is legal to invoke sendInt and pass the values I1, I2, or L1.
However, attempting to pass L2 will prompt the Ice run time to
raise an exception because the value exceeds the range of Slice’s
int type.

With respect to strings, Ruby’s String class represents a string
value as an arbitrary array of bytes, therefore it’s a good match for
the Ice protocol’s use of the UTF-8 encoding. Practically speaking,
the Ice run time performs no translation while sending or receiving
string values, so your strings must be properly-formatted UTF-8
values.

User-Defined Types
User-defined Slice types such as structures, classes, enumerations,
sequences, and dictionaries all map easily to Ruby types. The
results should not surprise you: structures, classes, and enumera-
tions are represented by Ruby classes, sequences map to arrays,
and dictionaries become hashes. The sections that follow present a
brief example for each type.

Structures
We’ll begin our review with structures, as shown in the example
below:

// Slice
struct S {
 string str;
 int i;
};

The mapping for a structure includes a constructor that accepts val-
ues for each of the data members, and definitions for the methods
hash, ==, and inspect:

class S
 def initialize(str='', i=0)
 @str = str
 @i = i
 end
 def hash ...
 def ==(other) ...
 def inspect ...

 attr_accessor :str, :i
end

The constructor provides suitable default values for the structure's
data members and transfers its arguments to corresponding in-
stance variables. The hash method enables an application to use
instances of this type as keys in a hash object, and the == method
provides member-wise equality semantics. Ruby invokes inspect
on an object to obtain its printable representation, so Ice defines
inspect to display the object’s data members in a nice way.

More interesting is the last statement, which invokes the class
method attr_accessor (without parentheses) and passes the
symbols of the instance variables. This is a convenient way of
defining accessor and mutator methods for each of the type’s data
members, whose private visibility would otherwise make them in-
accessible outside the class. Calling attr_accessor is equivalent
to declaring the following methods:

def str(val)
 @str = val
end
def str()
 return @str
end
def i(val)
 @i = val
end
def i()
 return @i
end

Since Ruby allows us to omit parentheses when invoking methods,
we can obtain the value of a data member in a style that looks very
familiar:

s = S.new("my string", 5)
puts "str = " + s.str + " and i = " + s.i

Furthermore, Ruby automatically translates assignment statements
into invocations of a mutator method, so although we could modify
the member i as shown below:

s.i(6)

It's much more natural to use an assignment statement and take
advantage of Ruby's syntactic sugar:

s.i = 6

Ice for ruby

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue 20, December 2006 Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Enumerations
Ruby doesn’t have a native enumeration type, so Ice generates a
Ruby class that has similar semantics. Consider this example:

// Slice
enum Color { red, green, blue };

The generated class provides several useful methods:

class Color
 include Comparable

 def Color.from_int(val) ...
 def to_s ...
 def to_i ...
 def <=> ...
 def hash ...
 def inspect ...
 def Color.each(&block) ...

 Red = ...
 Blue = ...
 Green = ...
 private_class_method :new
end

The first aspect worth mentioning is the inclusion of the standard
module Comparable which, as we learned earlier, extends the
class with a number of comparison methods. The generated class
implements the <=> method to support this functionality.

The from_int method, which allows you to convert an integer
into an enumerator, demonstrates the syntax for defining class
methods in Ruby.

The methods to_s and to_i have the conventional names that
Ruby classes use for obtaining string and integer representations
of an object, respectively. As I described in the previous section on
structures, the hash method is provided mainly to allow instances
to serve as hash keys, while the inspect method supplies a user-
friendly string that describes the object.

 The class method each is notable for its use of a Ruby block
as a parameter. The leading & character indicates that a block is
expected, and the interpreter places the block object in the named
parameter. This method allows us to iterate over the enumerators as
shown below:

Color.each { |e| puts e.to_i }

Next, a class constant is defined to represent each of the type's enu-
merators. In this example, you'll notice that the first letter has been
changed to upper-case in order to comply with Ruby's identifier
semantics for constants.

Finally, the invocation of private_class_method changes
the visibility of the new method so that applications are prevented
from calling Color.new; the only valid instances of Color are
those referenced by the constants Red, Green, and Blue.

Sequences
As in most other language mappings, a Slice sequence doesn’t
generate much code in Ruby because it uses the native array type.
There is one exception, however, and that is for the Slice type
sequence<byte>. Ice can transfer a value of this type much more
efficiently when it is stored in a Ruby string rather than an array;
therefore, Ice for Ruby always uses a string to hold values of this
type.

Ruby’s Array class offers a lot of useful functionality. For ex-
ample, let’s define a Slice sequence of structures and look at some
examples:

// Slice
struct S {
 string str;
 int i;
};
sequence<S> SArray;

In Ruby, we can create an instance of SArray and populate it us-
ing the << method:

arr = []
arr << S.new("red", 0)
arr << S.new("green", 1)
arr << S.new("blue", 2)

Next, we'll search for an element using the find iterator:

g = arr.find { |s| s.str == "green" }

The find method invokes our block for each element and stops if
the block evaluates to true; the return value is the element at the
current position, or nil if no match was found.

We can also use a block to selectively remove elements from the
array:

arr.delete_if { |s| s.i > 0 }

I've only scratched the surface of an array's capabilities. If you're
new to Ruby, you'll find a lot to like here.

Dictionaries
Let’s continue our Slice example from the previous section to dem-
onstrate that hash objects are just as powerful as arrays:

// Slice
dictionary<string, S> SMap;

The code below constructs an instance of SMap:

map = {
 "a" => S.new("abc", 0),
 "d" => S.new("def", 1)
}

The each method is also supported by the Hash class, along with
variations named each_key and each_value that do what you’d

Ice for ruby

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue 20, December 2006 Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

expect. In the case of each, the block receives two arguments
representing the element’s key and value:

map.each { |k,v| puts "#{k} => #{v.str}" }

The output of this statement is shown below:

a => abc
d => def

Exceptions
The mapping for Slice exceptions looks very similar to that for
structures. The only significant difference is the use of inheritance,
such that a generated class derives from a specified base class, or
from Ice::UserException if no base exception is defined. All
Ice exceptions ultimately derive from Ice::Exception, which
derives from Ruby’s StandardError class.

Typically, an application catches only the exceptions of interest
at a particular nesting depth while allowing other exceptions to
propagate higher in the call chain:

def do_something
 begin
 # ...
 rescue MyUserException => ex
 # handle user exception
 end
end
begin
 do_something()
rescue Ice::Exception => ex
 # General handler
end

Classes and Interfaces
Since Ice for Ruby does not support server-side functionality, Slice
classes and interfaces serve only two purposes: transferring objects
by value and invoking operations via proxies. Let’s concentrate on
objects-by-value now; I’ll discuss proxies in the next section.

In its simplest use case, a Slice class is very much like a struc-
ture, except that it also supports inheritance:

// Slice
class Vehicle {
 int numPassengers;
};
class Truck extends Vehicle {
 float capacity;
};

These are concrete classes because they do not define operations;
therefore, you can transfer instances of these classes without any
additional effort. Although these definitions don't look much dif-
ferent from structures, the generated Ruby code for a class differs
quite a lot from that for a structure. In particular, the generated
code makes use of mix-in modules for reasons I'll explain shortly:

module Vehicle_mixin
 include ::Ice::Object_mixin
 def ice_ids # ...
 def ice_id # ...
end

class Vehicle
 include Vehicle_mixin
end

As you can see, the definition of class Vehicle is quite simple
because it only needs to include the mix-in module.

A class becomes abstract once you define an operation. The
generated class is no longer sufficient because there is no imple-
mentation of the operation; it becomes your responsibility to define
a class that supplies the missing implementation. Suppose we
modify our definition of Vehicle to add an operation:

// Slice
class Vehicle {
 int numPassengers;
 void start();
};

We have two choices when implementing a class in Ruby: inherit
from the generated class, or include the mix-in module:

Approach 1: Inherit from generated class
class VehicleImpl1 < Vehicle
 def start
 # ...
 end
end
Approach 2: Include the mix‑in module
class VehicleImpl2
 include Vehicle_mixin
 def start
 # ...
 end
end

As far as the Ice run time is concerned, both approaches are
equally correct. In accordance with the duck typing semantics
I described earlier, Ice does not check whether an object imple-
ments a particular type when you attempt to transfer it by value.
All that matters to the Ice run time is that the object complies with
the expected protocol, which it can do in either of the ways shown
above. As a result, if you prefer to inherit from an unrelated base
class, you need only include the mix-in module to satisfy the Ice
run time.

Proxies
Defining an operation in a Slice class or interface automatically
generates code that allows a Ruby program to invoke that opera-
tion remotely. These invocations are made using a proxy, which
is a local artifact that represents a remote object. Since the Ice run
time is responsible for implementing proxies, we don’t need to ex-
plore the generated code in any detail. All you really need to know

Ice for ruby

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue 20, December 2006 Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

is that for an abstract Slice class or interface such as Truck, Ice
generates a separate proxy class named TruckPrx through which
you invoke operations. You obtain an instance of a proxy class
from the Ice run time, either as the result of a remote invocation, or
by calling methods on the communicator object such as string‑
ToProxy and narrowing the proxy to the desired type:

prx = communicator.stringToProxy("...")
truck = TruckPrx::checkedCast(prx)
truck.start()

In addition to the operations defined by your Slice interfaces,
proxy objects offer a number of other standard methods. The Ruby
mapping provides complete support for these methods, and you
can find more information in "The Ice Run Time in Detail" chapter
of the Ice Manual.

One important aspect of the Ruby mapping for proxies is the
semantics of operation parameters. Like Python, Ruby does not
support the notion of output arguments; therefore, Ruby and Py-
thon both handle them in the same manner. If an operation returns
more than one value, the caller receives the values as an array. For
example, consider the following operations:

// Slice
int getLevel();
void describe(out string text);
string query(string expr, out int numMatches);

Both getLevel and describe return only one value, although in
a slightly different way: getLevel declares a return value, while
describe uses an out-parameter. In Ruby, both invocations have
the same syntax:

lev = proxy.getLevel()
str = proxy.describe()

On the other hand, query declares both a return value and an out-
parameter, so its call syntax is slightly different. If you prefer to
receive the values as an array, you can simply write the following:

arr = proxy.query("...")

The first element in the array is the return value, followed by the
out-parameter. Alternatively, you can expand the array into sepa-
rate variables as shown below:

result, matches = proxy.query("...")

Although it may seem unusual at first, it's a common technique for
returning multiple values in Ruby, and that's what really matters:
making remote invocations in Ice is meant to be as natural as call-
ing methods on a language-native object.

Proxy invocations are affected by the threading limitations I
mentioned earlier, in that all Ruby threads are blocked until the
request completes. You could try to work around this issue by
using oneway invocations instead, but that can add considerable
complexity to your interfaces and, as this FAQ explains, doesn’t
guarantee that the main thread won’t block.

Using Ice for Ruby
Once you’ve installed Ice for Ruby and properly configured your
environment, you can start using it right away. If you have a Slice
file handy, you can start the interactive Ruby interpreter (irb) and
discover just how easy it is:

$ irb
irb> require 'Ice'
irb> Ice::loadSlice('Truck.ice')
irb> comm = Ice::initialize()
irb> p = comm.stringToProxy("truck:tcp ‑p 10000")
irb> truck = TruckPrx::checkedCast(p)
irb> truck.start()

There you have it — in just six commands we have managed to
install the Ice extension, load our Slice definitions, initialize a com-
municator, create a proxy, and invoke an operation. Of course, this
example assumes that an appropriate server is active and listening
on the specified port.

Having all the capabilities of an Ice client at your disposal in an
interactive environment is invaluable, not only for the educational
experience, but also during development when you need to quickly
test an idea or invoke a remote object. Naturally, Ruby is not only
suited to running short scripts, but is fully capable of handling
large and complex applications.

Translating Slice
The loadSlice method is a convenient way of translating your
Slice definitions into Ruby code. Unlike the statically-typed
language mappings, where an intermediate translation step is re-
quired along with the resulting generated source files, loadSlice
generates Ruby code dynamically. Immediately after loadSlice
completes, all of the equivalent Ruby types are installed and ready
for use. Of course, if you prefer to generate Ruby code statically,
the slice2rb compiler is also available and works very much like
its counterparts for other languages.

It’s often easier to use loadSlice at first and then migrate to
static translation later if necessary. Moving from one style of trans-
lation to another is straightforward. For example, suppose your
program currently invokes loadSlice as shown below:

Ice::loadSlice("‑‑all ‑I#{ENV['APP_HOME']}/slice
Account.ice")

The ‑‑all option requests that Ruby code be generated for the
definitions in Account.ice as well as any definitions included by
that file. To transition to static code generation, you could use the
following command line:

$ slice2rb ‑‑all ‑I$APP_HOME/slice Account.ice

Alternatively, you can eliminate the ‑‑all option if you also stati-
cally translate the files included by Account.ice. In either case,
slice2rb generates Ruby code into the file Account.rb, which
your program must load in the usual manner:

Ice for ruby

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/faq/onewaysBlock.html

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue 20, December 2006 Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

require 'Account'

As always, consult the Ice Manual for more details on Ruby code
generation.

Our First Application
Each of the Ice language mappings defines a convenience class
named Application that encapsulates functionality needed by
most Ice programs. In Ruby, we can define a sub-class in just a few
lines that replicates our prior interactive session:

require "Ice"
Ice::loadSlice("Truck.ice")

class MyApp < Ice::Application
 def run(args)
 comm = Ice::Application::communicator()
 proxy = comm.stringToProxy(
 "truck:tcp ‑p 10000")
 truck = TruckPrx::checkedCast(p)
 truck.start()
 return 0
 end
end
app = MyApp.new()
exit(app.main(ARGV))

Application takes care of initializing a communicator, respond-
ing appropriately to signals, and cleaning up when the application
terminates. Using Application certainly is not a requirement, but
we do recommend it unless your program has special needs.

Web Services and Ruby
As much as you might like to use Ice for all of your distributed
computing needs, there are often times when external forces com-
pel you to employ a different (and dare I say lesser?) technology.
In situations where a “Web services” (WS) solution such as REST,
XML-RPC, or SOAP is required, you may find that Ruby is an
excellent development platform for integrating these technologies
with your Ice applications.

A remote invocation using a protocol such as SOAP typically
has much higher latency than the same invocation using Ice, so it is
advisable to design your WS interfaces to be as coarse-grained as
possible. In other words, creating a SOAP/Ice bridge that exports
all of your Ice interfaces directly to SOAP clients is often undesir-
able. A better solution is to design an interface specifically to meet
the needs of the WS client, such that completing a WS request
might require many Ice invocations behind the scenes.

Ruby’s class libraries include support for WS protocols and, as
you should expect by now, it’s quite easy to get started. Using the
WEBrick HTTP server I mentioned earlier, we can build an XML-
RPC server that integrates with Ice. As a trivial example, let’s
create a bridge to an Ice-based search engine:

require "webrick"
require "xmlrpc/server"
require "Ice"

Ice::loadSlice("Engine.ice")
comm = Ice::initialize()
prx = comm.stringToProxy("server:tcp ‑p 8000")
engine = EnginePrx::checkedCast(prx)

servlet = XMLRPC::WEBrickServlet.new()
servlet.add_handler("query") do |text|
 engine.query(text)
end

server = WEBrick::HTTPServer.new(:Port => 80)
server.mount("/RPC2", servlet)
trap("INT") { server.shutdown() }
server.start()
comm.destroy()

After instantiating a servlet that speaks XML-RPC, we add a
handler for the query request. By now, you should recognize the
definition of a Ruby block; this one accepts a string representing
the search text and returns the results of a proxy invocation on an
Ice object. Notice that the block is able to access the local variable
engine defined in the outer scope. The other notable aspect of
this code is the call to mount, which associates the servlet with an
entry point on the Web server.

In a client, we only need three lines of code to invoke the re-
quest via XML-RPC:

require "xmlrpc/client"
server = XMLRPC::Client.new(
 "127.0.0.1", "/RPC2", 80)
puts server.call("query", "Camel Club")

Constructing a client requires the server's address, mount point,
and port number. We invoke the request using the call method,
whose first parameter identifies the name of the request; any ad-
ditional parameters are marshaled into XML and included in the
request message.

This simple example should give you a hint of what you can do
with Ruby. Even if you ultimately decided to deploy a Web ser-
vices integration project using a different technology, Ruby makes
it incredibly easy to create a prototype and get an initial implemen-
tation online with minimal effort.

Summary
With its rich language, diverse class libraries, and supportive user
community, Ruby is a rising star among modern programming
languages. Extending its capabilities with Ice creates a uniquely
powerful platform for creating distributed applications. Ruby
clearly can’t be used in all situations; as in any project you have
to pick the most appropriate tool for the job. However, its ease of
use and functionality make a compelling case for adding it to your
toolbox.

Ice for ruby

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue 20, December 2006 Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Optimizing Performance of File
Transfers

Matthew Newhook, Senior Software Engineer

Introduction
Performance is a tricky subject that is near and dear to our hearts.
In this article, I discuss a number of performance enhancing tech-
niques for file transfer that you can adapt to your own projects. As
you will see, it is easy to fall into the trap of prematurely chasing
the holy grail of performance. The only way to judge the effects of
performance improvements is to evaluate them in the context of
the entire application; taken in isolation, performance gains can be
meaningless and amount to no more than extra development work
without gain.

Client
Here is the first interface presented in the FAQ How do I transfer a
file with Ice?

// Slice
sequence<byte> ByteSeq;
interface FileStore
{
 ByteSeq get(string name);
 void put(string name, ByteSeq bytes);
};

This interface transfers the contents of a file in one fell swoop
with a single RPC call. If you are on a reliable LAN with plenty
of available memory, this simple interface often will do: simply
set Ice.MessageSizeMax to a large value and let the data fly.
However, as explained in the FAQ, there is a down-side to this ap-
proach. Whenever the potential data set is very large, it is generally
better to segment the data and retrieve it with several RPCs instead
of a single one. Real-world interfaces use this technique, as shown
in the following snippet from the IcePatch2 service:

// Slice
interface FileServer
{
 // ...
 nonmutating Ice::ByteSeq
 getFileCompressed(
 string path, int pos, int num)
 throws FileAccessException;
};

The caller already knows which files are available, as well as the
number of bytes in each file. The caller transfers the file in chunks
by repeatedly calling getFileCompressed until it has retrieved
all chunks. This avoids the problem of running out of memory if a
file is large.

The FAQ goes on to present another interface:

// Slice
interface FileStore
{
 ByteSeq read(
 string name, int offset, int num);
 void write(string name, int offset,
 ByteSeq bytes);
};

The read operation requests a number of bytes starting at the
specified offset. The operation returns at most num bytes (the
server may return fewer bytes than requested, for example, if the
requested number of bytes would exceed the server’s Messag‑
eSizeMax). The client keeps reading the file in chunks until it
receives an empty sequence to indicate end of file.

This interface, however, introduces a performance problem be-
cause a single network invocation is split into multiple invocations,
so latency increases.

Note that if a file is sufficiently large, there is no getting around
sending multiple invocations, especially if either client or server is
short on memory For example, to send a 1GB file in a single RPC
requires that the client have at minimum 2GB of available memory.
Why 2GB and not �GB? Consider the invocation using the original
FileStore interface:

// C++
FileStorePrx store = ...;
ByteSeq bytes;
// Copy 1GB of data into bytes.
store‑>put(name, bytes);

This clearly occupies 1GB of memory. However, the actual RPC
temporarily requires an additional gigabyte of memory because Ice
internally creates a marshaling buffer, encodes the protocol header,
and then copies the file data into this buffer for transmission over
the network. Similarly, the server also temporarily requires an ad-
ditional gigabyte of memory (unless it uses zero-copy, which I will
discuss shortly): �GB to read the encoded data into a marshaling
buffer, plus �GB for the sequence that is passed to the put opera-
tion. Note that if your hardware has lots of virtual memory, this
approach will be a little slow, but it will work—you need to judge
for yourself as to whether this limitation is acceptable in your
environment.

Now let’s see how a client might use this new FileStore inter-
face from the FAQ to read the contents of a file:

// C++
string name = ...;
string output = ...;
FileStorePrx store = ...;
int len = 1000*1024;
FILE* fp = fopen(output.c_str(), "wb");
int offset = 0;

optImIzIng performance of fIle transfers

http://www.zeroc.com/faq/fileTransfer.html
http://www.zeroc.com/faq/fileTransfer.html

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue 20, December 2006 Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

for(;;)
{
 Ice::ByteSeq data = store‑>read(
 name, offset, len);
 if(data.size() == 0)
 {
 break;
 }
 if(fwrite(&data[0], 1, data.size(), fp)
 != data.size())
 {
 cerr << "error writing: "
 << strerror(errno) << endl;
 break;
 }
 offset += data.size();
}
fclose(fp);

This code is quite simple: the client reads data from the store in
chunks and writes them directly to the output file. You can try this
client along with a simple version of the server by running the
simple client–server demo contained in the accompanying source
code archive.

This implementation suffers from two performance problems.
The first, as I mentioned earlier, is network latency. The second
and more serious issue is the time spent writing data to the file,
during which all network activity ceases. Ideally, we want to
exploit parallelism by having the server deliver the next chunk of
data while the client is still writing the previous chunk. We can
use AMI to achieve this, by sending the request for the next chunk
before writing the data to disk. First we must modify the interface
to add the AMI metadata directive:

// Slice
interface FileStore
{
 ["ami"] ByteSeq read(
 string name, int offset, int num);
};

We'll change the client's main loop as follows:

// C++
string name = ...;
string output = ...;
FileStorePrx store = ...;
int len = 1000*1024;
int offset = 0;
FileStore_readIPtr cb = new FileStore_readI;
store‑>read_async(cb, name, offset, len);
Ice::ByteSeq bytes;
for(;;)
{
 cb‑>getData(bytes);
 if(bytes.empty())
 {
 break;
 }
 offset += bytes.size();

 store‑>read_async(cb, name, offset, len);
 if(fwrite(&bytes[0], 1, bytes.size(), fp)
 != bytes.size())
 {
 cerr << "error writing: "
 << strerror(errno) << endl;
 break;
 }
}

The client starts the reading process by asynchronously sending the
read request using the read_async call and then enters a read–
write loop. Inside the loop, the client calls getData on the AMI
callback, which blocks until the data is available. Once getData
returns, the client immediately issues a request for the next chunk
of data so that, while it is writing the data to disk, a client-side
thread has the opportunity to read the next reply. In theory, this
should provide more parallelism and improve the performance of
our application. Here is the implementation of the AMI callback.

// C++
class FileStore_readI
 : public AMI_FileStore_read,
 public IceUtil::Monitor<IceUtil::Mutex>
{
public:

 FileStore_readI()

 : _done(false)
 {
 }
 // ...
private:

 bool _done;
 auto_ptr<Ice::Exception> _exception;
 Ice::ByteSeq _bytes;
};
typedef IceUtil::Handle<FileStore_readI>
 FileStore_readIPtr;

We have three member variables: _done is used to wait for pend-
ing invocations to complete, while _exception and _bytes
store the results of the invocation. Here is the implementation of
ice_response:

// C++
virtual void
ice_response(const Ice::ByteSeq& bytes)
{
 Lock sync(*this);
 _bytes = bytes;
 _done = true;
 notify();
}

This method is called when a thread from the client-side thread
pool receives the reply for an asynchronous invocation. The
response (a sequence of bytes) is passed as the argument to this
method, which saves the response in the _bytes member and then

optImIzIng performance of fIle transfers

http://www.zeroc.com/newsletter/issue20/performance.zip
http://www.zeroc.com/newsletter/issue20/performance.zip

Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue 20, December 2006 Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

notifies the monitor that a reply has arrived. Here is the implemen-
tation of ice_exception:

// C++
virtual void
ice_exception(const Ice::Exception& ex)
{
 Lock sync(*this);
 _exception.reset(ex.ice_clone());
 _done = true;
 notify();
}

This method is called if an invocation results in an exception. We
save the results in the _exception member variable and then
notify the monitor that a reply has arrived. Finally, getData waits
for the asynchronous invocation to complete:

// C++
void
getData(Ice::ByteSeq& bytes)
{
 Lock sync(*this);
 while(!_done)
 {
 wait();
 }
 _done = false;
 if(_exception.get())
 {
 auto_ptr<Ice::Exception> ex = _exception;
 _bytes.clear();
 ex‑>ice_throw();
 }
 bytes.swap(_bytes);
}

The method waits to be notified by ice_response or ice_ex‑
ception. If an exception occurred, getData rethrows it for
the caller to handle. Otherwise, it swaps the byte sequences and
returns. (We use swap to avoid copying the byte sequence.) Why
do we pass the vector by reference instead of returning the vector?
Consider this alternative implementation:

// C++
Ice::ByteSeq
getData()
{
 // ...
 Ice::ByteSeq bytes
 bytes.swap(_bytes);
 return bytes;
}

As this code stands, if the compiler does not implement the
Named Return Value Optimization (NRVO), it will cause an addi-
tional copy of the vector. We avoid this copy for compilers that do
not implement NRVO by passing a reference to the vector instead.

Is there anything we can do to further improve performance? We
have three variables to consider:

• The amount of time it takes to marshal and send an AMI
request, that is, the amount of time spent in read_async.

• The amount of time we block waiting for the reply to an AMI
request, that is, the amount of time spent waiting in getData.

• The amount of time it takes to write the data to disk, that is,
the amount of time spent waiting for fwrite to complete.

We cannot reduce the amount of time to taken to send the read_
async call, and we cannot reduce the amount of time it takes to
write to disk. However, we can reduce the amount of time we
block waiting for getData to return. We can reduce the effects of
network latency by having more than one AMI call active. For this
demo, I will use two calls but I could have used several. The first
call retrieves the current result while the second call retrieves the
next chunk of the file. The server is kept busier that way because,
as soon as it has sent the reply to the first invocation, the second
invocation most likely has arrived already and is waiting to be
dispatched. Similar reasoning applies to the client: once the client
has read the first reply, the second reply is likely to be available al-
ready for reading by the client-side thread pool. Of course, all this
assumes that the network really is the bottleneck—if, instead, the
bottleneck is the disk, interleaving the calls will not help matters.

The client loop becomes the following:

// C++
string name = ...;
string output = ...;
FileStorePrx store = ...;
int len = 1000*1024;
int offset = 0;
FileStore_readIPtr curr, next;
Ice::ByteSeq bytes;
for(;;)
{
 if(!curr)
 {
 curr = new FileStore_readI;
 next = new FileStore_readI;
 store‑>read_async(
 curr, name, offset, len);
 }
 else
 {
 swap(curr, next);
 }
 store‑>read_async(
 next, name, offset + len, len);
 curr‑>getData(bytes);
 if(bytes.empty())
 {
 break;
 }
 if(fwrite(&bytes[0], 1, bytes.size(), fp)
 != bytes.size())
 {
 cerr << "error writing: "
 << strerror(errno) << endl;
 rc = EXIT_FAILURE;

optImIzIng performance of fIle transfers

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs05/html/nrvo_cpp05.asp

Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue 20, December 2006 Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

 }
 offset += bytes.size();
}

We have two AMI callbacks, next and curr, that we swap each
time through the loop. The remainder of the loop remains the same,
as does the implementation of the AMI callback.

Can we optimize things further? Consider the current implemen-
tation of ice_response:

// C++
virtual void
ice_response(const Ice::ByteSeq& bytes)
{
 Lock sync(*this);
 _bytes = bytes;
 _done = true;
 notify();
}

Note that the data is being copied from the buffer bytes into the
_bytes member variable. In addition, the Ice core copies the data
from the marshaling buffer into bytes. As a result, �GB of data
returned to the application briefly occupies 3GB of memory: 1GB
for the marshaling buffer, �GB for bytes, and �GB for _bytes.
We can use the zero-copy feature of the C++ mapping to avoid the
copy from the marshaling buffer into the vector. Firstly, we have to
add the zero-copy metadata to the interface:

// Slice
interface FileStore
{
 ["ami", "cpp:array"] ByteSeq read(
 string name, int offset, int num);
};

The AMI ice_response callback then becomes:

// C++
void
ice_response(const pair<const Ice::Byte*,
 const Ice::Byte*>& bytes)

The Ice run time passes a pair of const Ice::Byte* to the
operation. The first pointer points to the start of the sequence and
the second pointer points to one past the end. (These are the same
semantics as for the begin and end methods of STL iterators.)
These pointers refer directly to locations in the Ice marshaling buf-
fer, so we can avoid making a copy of the data when storing it in
the _bytes member:

// C++
void
ice_response(const pair<const Ice::Byte*,
 const Ice::Byte*>& bytes)
{
 Lock sync(*this);
 Ice::ByteSeq(bytes.first, bytes.second).swap(
 _bytes);
 _done = true;

 notify();
}

Instead of using swap, we also could have done something like
this:

// C++
_bytes.resize(bytes.second – bytes.first);
memcpy(&bytes[0], bytes.first,
 bytes.second – bytes.first);

However, this technique is less efficient because the resize
method zero-initializes each element of the vector, whereas the
vector constructor does not.

With this change, the client now requires only 2GB of memory
to receive a �GB chunk (�GB for the marshaling buffer and �GB
for the _bytes member variable). Is there a way to avoid this
extra copy? It actually is possible, such as by writing the file data
directly in the ice_response callback. However, we would have
to be very careful about doing this. For example, the following is
incorrect:

// C++
void
ice_response(const pair<const Ice::Byte*,
 const Ice::Byte*>& bytes)
{
 Lock sync(*this);
 fwrite(bytes.first, 1,
 bytes.second‑bytes.first, _fp);
 _done = true;
 notify();
}

Why is this incorrect? Since we have two AMI calls active at any
one time, there is no guarantee as to the order in which the call-
backs are invoked (unless we take special precautions and make
both client and server single–threaded). If we are running with
more than one thread, we have to lock around the calls to seek to
the correct offset and write the data. (Note that the code is correct:
it is legal to seek past the end of a file.)

// C++
void
ice_response(const pair<const Ice::Byte*,
 const Ice::Byte*>& bytes)
{
 Lock sync(*this);
 fseek(_fp, _offset, SEEK_SET);
 fwrite(bytes.first, 1,
 bytes.second‑bytes.first, _fp);
 _done = true;
 notify();
}

Alternatively, we could open the file twice, once in each callback.
That way, the lock is no longer necessary because each callback
has its own file pointer. However, although this approach avoids an
extra copy of the data, it turns out to be slower because it requires
a separate seek for each write. Furthermore, the additional context

optImIzIng performance of fIle transfers

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue 20, December 2006 Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

switches between the three threads (two client-side threads and the
main thread calling read_async) is costly.

Note that the size of the chunk being transferred also plays a
role: increasing the chunk size consumes more memory but re-
quires fewer remote invocations. For sufficiently large chunks, it is
better to do the disk writes in the ice_response callback instead
of copying the data.

Server
Now let’s look at the server side. Here is an initial version:

// C++
class FileStoreI : public FileStore
{
public:

 Ice::ByteSeq
 read(const string& name, Ice::Int offset,
 Ice::Int num, const Ice::Current&)
 {
 FILE* fp = fopen(name.c_str(), "rb");
 if(fp == 0)
 {
 FileAccessException ex;
 ex.reason = "cannot open `" + name
 + "' for reading: "
 + strerror(errno);
 throw ex;
 }

 if(fseek(fp, offset, SEEK_SET) != 0)
 {
 fclose(fp);
 return Ice::ByteSeq();
 }

 Ice::ByteSeq data(num);
 ssize_t r = fread(&data[0], 1, num, fp);
 fclose(fp);
 if(r != num)
 {
 data.resize(r);
 }

 return data;
 }
};

This implementation is straightforward. It opens the file, seeks to
the correct location, allocates the correct number of bytes, reads
the data, and returns the buffer. Again, let’s consider the amount of
memory required to send �GB of data. First, the code allocates a
1GB buffer to hold the file data. When the Ice run time returns the
data to the caller, it copies the data into a marshaling buffer, which
requires an additional �GB of memory. Depending on your compil-
er’s support for NRVO, the return value may require an additional
allocation and copy. We can avoid this overhead for compilers
without NRVO by using asynchronous message dispatch. With

AMD, we call into the Ice core to send the data instead of return-
ing it as the return value. As usual, we need to add the appropriate
metadata to the interface:

// Slice
interface FileStore
{
 ["amd"] ByteSeq read(
 string name, int offset, int num);
};

Now the implementation becomes:

// C++
void
read_async(const AMD_FileStore_readPtr& cb,
 const string& name,
 Ice::Int offset, Ice::Int num,
 const Ice::Current&)
{
 // ...
 Ice::ByteSeq data(num);
 ssize_t r = fread(&data[0], 1, num, fp);
 fclose(fp);
 if(r != num)
 {
 data.resize(r);
 }
 cb‑>ice_response(data);
}

This approach is more efficient if the compiler does not support
NRVO because the additional copy is avoided. Now only one copy
is required, namely, the one into the marshaling buffer.

We can do a little better still. The creation of the vector requires
initializing it with zeros. This is a little costly and can be avoided
by using the zero-copy API (otherwise we need to pass the vector
as an argument to the AMD callback object). First, we add the
relevant meta-data to the interface:

// Slice
interface FileStore
{
 ["amd", "cpp:array"] ByteSeq read(
 string name, int offset, int num);
};

Now instead of passing a vector to the AMD callback, we pass a
pair of const Ice::Byte* pointers. As discussed earlier, the first
pointer in the pair points to the start of the array, and the second
points to one element past the end of the array. Here is the revised
implementation:

// C++
void
read_async(const AMD_FileStore_readPtr& cb,
 const string& name,
 Ice::Int offset, Ice::Int num,
 const Ice::Current&)
{

optImIzIng performance of fIle transfers

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue 20, December 2006 Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

 // ...
 Ice::Byte[] bytes = new Ice::Byte [num];
 ssize_t r = fread(bytes, 1, num, fp);
 fclose(fp);
 pair<const Ice::Byte*, const Ice::Byte*> ret;
 ret.first = bytes;
 ret.second = bytes+r;
 cb‑>ice_response(ret);
 delete[] bytes;
}

Faster Still
We have made significant improvements so far, but a number of
performance problems still remain. For each request, the server has
to:

• open and close the file
• seek to the correct location in the file
• allocate the read buffer for each request

By making some assumptions about how the client uses the inter-
face, we can provide further performance enhancements. To do so,
we’ll add a separate File interface:

// Slice
interface File
{
 ["ami", "amd", "cpp:array"]
 Ice::ByteSeq next();
};

interface FileStore
{
 File* read(string name, int num);
};

In order to read the contents of a file, the client calls FileStore::
read and receives a proxy to a File object. The client then re-
peatedly calls next on the File object until it receives an empty
sequence, which indicates end-of-file. (The server automatically
destroys the File object when the client reaches EOF.) With this
interface, chunks are retrieved sequentially by the client, that is,
the client does not specify a file offset. In turn, this allows the
File object to cache the file handle and avoid opening and closing
the file for each chunk. As an added benefit, the implementation
of next does not need to call fseek to explicitly set the file offset
each time.

As before, we want to use AMD and the zero-copy API. We first
must add the meta-data:

// Slice
interface File
{
 ["amd", "cpp:array"] Ice::ByteSeq next();
};

An initial implementation of File is as follows:

// C++
class FileI : public File
{
public:

 FileI(FILE* fp, int num) :
 _fp(fp),
 _num(num),
 _bytes(new Ice::Byte[num])
 {
 }

 ~File()
 {
 delete[] _bytes;
 }

 void
 next_async(const AMD_File_nextPtr& cb,
 const Ice::Current& current)
 {
 pair <const Ice::Byte*, const Ice::Byte*>
 ret(0, 0);
 ssize_t r = fread(_bytes, 1, _num, _fp);
 if(r == 0)
 {
 fclose(_fp);
 current.adapter‑>remove(current.id);
 }
 else
 {
 ret.first = _bytes;
 ret.second = _bytes + r;
 }
 cb‑>ice_response(ret);
 }

private:

 FILE* _fp;
 const int _num;
 char* _bytes;
};

The server does not support concurrent calls from the same client
as a deliberate implementation choice. There is no benefit for a
single client in calling the server concurrently, and adding mutex
protection to support concurrency would extract a performance
penalty. (Note that this still allows different clients to use the same
server concurrently—only concurrency from within the same client
is not supported). We’ll enforce the restriction by configuring the
server to use the thread-per-connection concurrency model.

config.server
Ice.ThreadPerConnection=1

The client remains unchanged, using interleaved AMI calls to
achieve optimal throughput.

We can add another potential optimization to the server. The
current implementation reads data from the disk and sends it to the

optImIzIng performance of fIle transfers

Connections
ZeroC’s Newsletter for the Ice Community

Page �8 Issue 20, December 2006 Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

AMD callback in the same thread of execution. This can improve
throughput even with a single CPU, due to interleaving of disk I/O
and network I/O. However, on multi-CPU machines, we can pos-
sibly gain a little by sending the reply from a separate work queue:

// C++
void
FileI::next_async(const AMD_File_nextPtr& cb,
 const Ice::Current& current)
{
 Ice::Byte* bytes = new Ice::Byte[_num];
 ssize_t r = fread(bytes, 1, _num, _fp);
 if(r == 0)
 {
 fclose(_fp);
 current.adapter‑>remove(current.id);
 }
 // _sender is the sender thread work‑queue
 // that sends r bytes of data to the callback
 // object cb.
 _sender‑>add(cb, bytes, r);
}

Note that this approach requires more memory, as each call to
next_async must allocate a new byte buffer that is added to the
queue for later transmission to the given callback object. Whether
or not this actually provides a benefit depends on your hardware
and library implementation. You need to run benchmarks to find
out for your particular platform. (On single-CPU machines, the
technique is almost certainly detrimental due to the extra copy and
context switching.) You can find the full implementation in the
source code.

It is also worth looking at these changes to examine their impact
on the server and client. First, by creating a separate File object
(instead of allowing the client to specify a file offset with each call
to retrieve a chunk), we have made a previously stateless interface
stateful. This is often undesirable because it requires the client
and server to be in agreement as to the current state of the object.
If anything goes wrong during the transfer of the data from the
server to the client, the transfer must be terminated, as the client
cannot, as the interface stands, reset the state of the File object.
Second, we have introduced a new object that must be cleaned
up in the event that the client misbehaves. For example, the client
could create a File object but never use it, so the server must have
a mechanism to clean up such abandoned objects (see Issue � of
Connections). Certainly, both of these problems can be solved,
however, at what cost? The initial implementation was stateless
and certainly can be made more efficient by caching more informa-
tion. As always with optimization efforts, you have to make a judg-
ment call as to whether the performance gain is worth the cost.

Bare Wire
This is as fast as we can get with Ice. However, it is possible to
go faster still by using straight sockets for the file transfer, which
allows you to avoid the overhead of using Ice for the most perfor-
mance-critical parts of your application. The key idea is that Ice is
used to facilitate the transfer, but not to do the transfer itself. (You
can think of this in the same way as using some assembly language
in C++ applications to speed up critical pieces of your code.) But
why use Ice at all then? Consider the alternative: without Ice, you
would not only have to transfer the file with sockets, you would
also have to work out some way to organize the file transfer, send
the file name, get the number of bytes expected, and so on. All
of this adds up to a creating a protocol—which is precisely what
we don’t want to have to deal with. Consider the following Slice
definitions:

// Slice
module Demo
{

exception FileAccessException
{
 string reason;
};

interface FileStore
{
 File* read(
 string name, out string ip, out int port)
 throws FileAccessException;
};
};

The client calls read on the FileStore interface with the name
of the file. The call returns a source IP address and a source port.
The client then connects to this address and port and reads the file
data until it has received all of the bytes. Since with straight TCP/
IP there is no maximum message size to worry about, we do not
need to tell the server the chunk size. The server writes in whatever
chunk size it chooses and the client reads in whatever chunk size it
chooses—TCP/IP buffering takes care of the rest.

Now consider what the client would look like with this scheme:

// C++
FILE* fp = ...;
int fd = connect(...);
vector<char> bytes(len);
while(true)
{
 ssize_t rx = recv(fd, &bytes[0], len, 0);
 if(rx == ‑1)
 {
 // Error.
 }
 if(rx == 0);
 {
 break;
 }

optImIzIng performance of fIle transfers

http://www.zeroc.com/newsletter/issue20/performance.zip
http://www.zeroc.com/newsletter/issue3.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �8 Issue 20, December 2006 Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

 if(fwrite(&bytes[0], 1, rx, fp)
 != static_cast<size_t>(rx))
 {
 // Error
 }
}

How does the client know when to stop reading? The apparent an-
swer is when the server closes the connection. However, how does
the server know when to close the connection? If the server closes
the file descriptor as soon as it has sent all of the data, then any
unsent buffered data will be lost. This means that the server and
client must agree as to when to close the connection. Again, this
looks remarkably like protocol design. Let's modify the interface to
deal with this issue:

// Slice
module Demo
{

exception TransferException
{
 string reason;
};

interface File
{
 void start(out string ip, out int port,
 out int bytes)
 throws TransferException;
 void destroy();
};

exception FileAccessException
{
 string reason;
};

interface FileStore
{
 File* read(string name)
 throws FileAccessException;
};
};

The client first calls read on the FileStore interface to obtain
a proxy to a File object, in much the same way as the interface I
described in Faster Still. The client then calls start on the File
object to set up the socket connection. This returns the source IP
address and the source port, and the total number of bytes that will
be transferred. The client then connects to this address and port and
starts reading data until all of the bytes have been transferred. At
that point, the client calls destroy on the File object to complete
the transfer.

Once again, we could optimize the reading and transmission of
the data by using separate reader and writer threads in the server.
However, depending on how many CPUs your machine has, this
may introduce a performance penalty.

This last interface also introduces state into the server and is
significantly more complex than the original stateless solution.
Whether or not the optimization makes sense depends on the
amount of the performance gain, and most importantly whether
your application requires this performance gain.

Measuring Results
With performance tuning, the most important thing is benchmark-
ing. Before I go on to that, I want to point out that benchmarks
quite often lie. For example, the two most common middleware
benchmarks are latency and raw throughput. They measure how
much time a single (empty) RPC consumes, and how quickly the
middleware can pump data through the network. However, if you
are using high-performance middleware such as Ice, for most ap-
plications, neither of these things matter in the slightest.

If latency is an issue for your application, there is a very good
chance that the reason is not poor middleware performance, but
incorrect design. In general, interfaces for distributed applica-
tions should be coarse grained, that is, they should not have lots of
trivial operations that must be called many times to perform a unit
of work. Instead, interfaces should have fewer operations that each
do a lot of work. As an example, consider an interface that holds a
collection of data:

// Slice
interface Query
{
 QueryResult next();
};

The client calls getNext once for each element in the query set.
This is a typical example of an inefficient interface. Here is a better
version:

// Slice
interface Query
{
 QueryResultSeq get(int offset, int len);
};

Not only is this interface stateless, it also returns multiple results
with a single call and so avoids the latency inherent in the earlier
version.

With that out of the way, here is how I tested the various opti-
mizations in this article. In all cases, the client runs on a MacBook
2.0GHz dual-core machine (OS X 10.4.x) with 2GB of memory
and a 160GB 5200rpm hard drive, and the server runs on 3.0GHz
machine (Fedora Core �) with �.2�GB of memory and an 80GB
�200rpm hard drive. I ran all tests using an optimized build of Ice
�.�.�.

The two machines were connected with a cross-over cable. I
used the same 266MB file for each transfer. For each test, I first
ran the server and transferred the file to the client once before tak-
ing timings, to allow the file to be cached on the server side first.

optImIzIng performance of fIle transfers

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue 20, December 2006 Page 2�Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

To get the timings, I ran each transfer �0 times and computed the
average of throughput in megabytes per second. For each test, the
machines were otherwise idle.

I conducted the first test over a 100Mbps network. The table
below shows the throughput results in MB/sec.

Client/Server Synchronous AMD AMD Zero-
Copy

Syncrhonous 8.��� 8.6�0 8.���
AMI �.�20 �.�6� �0.0��
Interleaved
AMI

�0.8�� ��.020 ��.0��

As you can see, the synchronous tests are slowest and the AMI
zero-copy and AMD zero-copy tests are fastest, which is the out-
come we would expect. The biggest gain comes from using simple
AMI and AMD, while moving to interleaved invocations and using
the zero-copy API only provides moderate performance improve-
ments. Next, how does the stateful version that uses an explicit
File object stack up?

Stateful Client/
Server

Single Threaded Threaded

Single Threaded ��.��� ��.�2�
Threaded - ��.066

As the numbers show, that version only provides a very modest
performance gain over the previous version. Note that the version
that sends the replies in a second thread is actually slower than
the non-threaded version, due to the fact that the server runs on a
machine with a single CPU. (To try the test on your machine, you
can control whether the server uses a dedicated sender thread with
the SenderThread property in the config.server file.)

How about the version that uses sockets?

Socket Client/
Server

Single Threaded Threaded

Single Threaded ��.0�� ��.0�2
Threaded ��.2�2 ��.2��

Interestingly, the single-threaded version of the socket client is
slower than the stateful version above because it reads no data
from the network while data is written to disk. Because I ran this
test on a dual-core machine, it is slower than the multi-threaded
version. The socket version is also not significantly faster than the
asynchronous versions that use Ice; however, the source code is
significantly more complex and less portable. As with the stateful
demo above, you can control whether the client and server use a
separate thread for reading and writing the data to the network via
configuration properties (see the files config.client and config.
server for details).

For comparison, I re-ran all the tests using a gigabit network.
The results are as follows:

Client/Server Synchronous AMD AMD Zero-
Copy

Syncrhonous 2�.��8 ��.��0 28.�0�
AMI �2.��6 ��.26� ��.��2
Interleaved
AMI

��.��2 ��.��8 ��.�2�

AMI Zero-
Copy

��.�62 ��.�2� ��.6�0

As before, the asynchronous versions are faster than the synchro-
nous versions. However, the other optimizations now no longer
make a difference. Next, the timing for the stateful version:

Stateful Client/
Server

Single Threaded Threaded

Single Threaded ��.�6� ��.800
Threaded - ��.��8

And finally the timing information for the socket version:

Socket Client/
Server

Single Threaded Threaded

Single Threaded ��.��0 ��.022
Threaded ��.��8 ��.86�

One thing that immediately stands out is that, although this test
uses a gigabit network that is supposedly ten times faster than a
100-megabit network, the throughput figures are only three times
faster! Furthermore, in contrast to the 100Mbit network, zero-copy
and interleaving provide no performance improvement for through-
put. (Of course, this ignores the memory benefit provided by zero-
copy.) Why is this? As I mentioned earlier, we have to consider the
following variables when it comes to performance:

• The amount of time it takes to marshal and send an AMI
request, that is, the amount of time spent in read_async.

• The amount of time we block waiting for the reply to an AMI
request, that is, the amount of time spent waiting in getData.

• The amount of time it takes to write the data to disk, that is,
the amount of time spent waiting for fwrite to complete.

Moving to a gigabit network reduces the amount of time for the
first two points. However, the time taken to write to disk is the
same. Once that time becomes greater than the amount of time re-
quired to transfer the data over the network, reduction in latency no
longer matters and the disk becomes the bottleneck! A few simple
measurements show the sustained write speed of the disk on the
MacBook to be around ��MB/sec. And that is exactly the through-
put evident in the results for the gigabit network.

optImIzIng performance of fIle transfers

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue 20, December 2006 Page 2�Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

As I said earlier, for many applications, raw throughput is ir-
relevant (as long as your middleware doesn’t do something really
stupid, such as sending the data as an XML document). Most ap-
plications are not held back by Ice—instead, they are held back by
what they do with the data.

For the record, here are the results if I comment out the calls to
fwrite in the code. (Keep in mind, although these numbers look
great, they are irrelevant!) The socket version shows throughput of
around ��MB/sec, and the stateful Ice version shows a throughput
of around 6�MB/sec. With the disk bottleneck removed, since the
entire file is in cache on the server side, the network becomes the
bottleneck.

Finally, I wanted to see what happens if we send the data over a
WAN. For this case, I measured with various transfer block sizes.
All of these results are in KB/sec instead of MB/sec because, over
a WAN, things are significantly slower. The file size transferred in
all cases was �����6� bytes.

First the results for a transfer block size of �0KB:

Client/Server Synchronous AMD AMD Zero-
Copy

Synchronous ��.2� ��.�6 ��.�6
AMI ��.�6 ��.�2 ��.��
Interleaved
AMI

��.�0 ��.�2 ��.��

AMI Zero-
Copy

��.�� ��.6� ��.2�

Next, for a transfer block size of �00KB:

Client/Server Synchronous AMD AMD Zero-
Copy

Synchronous ��.�0 ��.28 ��.6�
AMI ��.�6 ��.�� ��.��
Interleaved
AMI

�6.�� �6.�� �6.��

AMI Zero-
Copy

�6.6� �6.�� �6.88

 Next, for a transfer block size of �000KB:

Client/Server Synchronous AMD AMD Zero-
Copy

Synchronous �6.8� �6.�6 �6.��
AMI �6.�� �6.�� �6.��
Interleaved
AMI

�6.60 �6.8� ��.��

AMI Zero-
Copy

��.02 ��.0� �6.��

As you can see, for the �0KB block size, interleaved AMI makes
a significant difference. This is as expected because, with such a
small transfer size, latency becomes a big issue. By using inter-
leaved AMI, we reduce the negative effects of network latency.
As the block size gets larger, network latency is less of an issue
because we make fewer remote calls. Zero-copy has no effect at
all in these tests because the network is the bottleneck and we have
CPU cycles to spare.

The obvious question then is why you would use a small block
size over a WAN when you might just as well use a larger block
size and save yourself the trouble of interleaved AMI?

If the server handles many thousands of clients, a large block
size becomes difficult due to memory limitations. For example,
consider a �MB block size. If there are �02� clients concurrently
transferring files, that adds up to a total 2GB in the server, 1GB
for the data buffers, and �GB for the marshaling buffers. While
2GB of memory for modern-day machines is not such a big deal,
consider what happens if the load increases to �,000 or �0,000
clients! (Of course, if we need to transfer a large number of small
files, we cannot get away from the small block size, unless we use
more complex algorithms to send multiple files in a single transfer
block.)

Conclusion
As dual and multi-core machines become more and more com-
mon, designing your applications to take advantage of this extra
processing power is important. Fortunately, Ice makes this simple.
By using asynchronous method invocations, your applications can
easily take advantage of multiple threads without actually having
to write complicated threaded code yourself. Furthermore, by using
the zero-copy API that Ice provides, it is possible to reduce the
memory footprint and increase the performance of bulk data trans-
fers. The tests show that, even for a scenario where it should be
very difficult for general-purpose middleware to compete (namely,
file transfer), Ice presents essentially no overhead compared to
an optimal implementation that uses plain sockets. More impor-
tantly, the Ice code is significantly easier to write and maintain. If
your application runs over the internet (that is, over a WAN, not
a LAN), zero-copy does nothing to increase throughput, but will
reduce memory footprint. The most profitable optimization for file
transfer is interleaved AMI because it reduces the effects of latency
on data transfer.

optImIzIng performance of fIle transfers

Connections
ZeroC’s Newsletter for the Ice Community

Page 22 Issue 20, December 2006 Page 2�Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner
In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: How can I speed up large requests?

For large requests, the network bandwidth is usually the most im-
portant factor that limits performance. However, with high-speed
(gigabit) networks, bandwidth becomes less of an issue and mar-
shaling overhead and memory management become significant as
well. The Ice protocol enables very efficient marshaling and does
not require developers to do anything special to achieve optimal
performance. However, the memory management of a program can
have an impact on overall performance.

The performance of malloc/free varies greatly from system
to system. Beside the obvious issue of raw hardware speed, perfor-
mance depends on the quality of implementation of the memory
manager. But even high-quality implementations may use trade-
offs that can adversely affect the performance of your application.
For example, different memory managers use different strategies to
allocate blocks of different sizes. For this discussion, we will focus
on Linux.

A simple test to measure malloc performance is to allocate and
free a block in a loop and divide the total time taken by the number
of iterations:

// C++
const size_t blockSize = 4 * 1024 * 1024;
IceUtil::Time t = IceUtil::Time::now();
int j = 0;
for(j= 0; j < 1000000; ++j)
{
 char* b = (char*)malloc(blockSize);
 free(b);
}
t = IceUtil::Time::now() ‑ t;
cout << t.toMicroSecondsDouble() / j << endl;

The following table illustrates the relationship between the time
taken by malloc and the size of the requested block:

Size (bytes) Time (microseconds)
2�0 0.0�
��20 0.0�

Size (bytes) Time (microseconds)
�680 0.08
���60 0.08
6���0 0.08
�22�80 0.0�
2���60 6.�
��2000 6.8
6��000 �.�
�000000 �.�
2000000 �0.0
�000000 ��.0

Notice the large increase in allocation time when going from
�22,�80 bytes to 2��,�60 bytes. This increase is due to the default
glibc behavior. The glibc malloc is based on a successful gen-
eral-purpose memory allocator by Doug Lea known as the Lea al-
locator. The Lea allocator recycles freed memory, avoids expensive
system calls, and vastly improves malloc/free performance.
However, glibc’s default behavior is to treat memory requests
above a certain size differently—blocks above a certain size are
allocated via mmap instead of using recycled blocks. Calls to mmap
are more expensive than using the recyclable memory already held
by the allocator. To make things worse, malloc continuously trims
unused memory in order to reduce the amount of recyclable mem-
ory. This has the benefit of reducing the overall memory footprint
of the process, but is costly if an application repeatedly triggers
trimming by frequently allocating and freeing large blocks.

The objective then is to configure malloc so that it treats allo-
cations up to Ice.MaxMessageSize in the most efficient manner
possible. The configuration options we will use are M_MMAP_MAX
and M_TRIM_THRESHOLD. Setting M_MMAP_MAX to 0 disables
allocating large buffers through mmap. We also need to alter the
default trimming settings. We will disable trimming entirely for
our purposes here, but you may want to experiment to see whether
there are values that are more appropriate for your application. You
configure malloc either through the mallopt call or via environ-
ment variables.

To disable use of mmap and trimming, you can make the follow-
ing two calls to mallopt in your code:

// C++
mallopt(M_MMAP_MAX, 0);
mallopt(M_TRIM_THRESHOLD, ‑1);

Alternatively, you can set corresponding environment variables:

MALLOC_MMAP_MAX_=0
export MALLOC_MMAP_MAX_
MALLOC_TRIM_THRESHOLD_=‑1
export MALLOC_TRIM_THRESHOLD_

Here are the timings for malloc with blocks of different size
with the default settings, and with mmap and trimming disabled:

faQ corner

http://www.zeroc.com/vbulletin/
http://gee.cs.oswego.edu/

Connections
ZeroC’s Newsletter for the Ice Community

Page 22 Issue 20, December 2006 Page 2�Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Size Default malloc
parameters
(microseconds)

mmap and trimming
disabled
(microseconds)

2�0 0.0� 0.08
��20 0.08 0.08
���60 0.08 0.08
6���0 0.08 0.08
�22�80 0.0� 0.08
2���60 6.� 0.08
��2000 6.8 0.08
6��000 �.� 0.08
�000000 �.� 0.08
2000000 �0.0 0.08
�000000 ��.0 0.08

For buffers that would normally be trimmed or allocated through
mmap, the difference is staggering and, for large requests, has a
direct impact on throughput performance. Using the Ice throughput
test, we can see the impact of tuning on throughput.

default mal‑
loc() parameters
MB per second

mmap() and trim-
ming disabled
MB per second

throughput byte
sequence
�00,000 elements

��0 260

System specs: 3 GHz Pentium 4 with HT, 1 GB RAM, CentOS 4.4

With Linux, you can use mallopt to configure memory manage-
ment behavior. If your target system uses an allocator without
similar options, you might consider a drop-in malloc replacement,
such as the Hoard allocator or SmartHeap.

Q: Why do I get an
UnmarshalOutOfBoundsException?

Consider the following interface:

// Slice
interface Example {
 void op(int i, int j);
};

When a client invokes operation op, it supplies two integer
parameters. The Ice run time marshals the parameters into the
request that it sends on the wire. The request is preceded by a
protocol header that, among other things, tells the server the total
request size (including the ��-byte header). The server uses this
information to read the appropriate number of bytes: it first reads
the ��-byte header and checks the total request size. For example,
that size might be �� bytes. The server then reads the remainder
of the request, namely, 31−14=17 bytes and places these 17 bytes
into a buffer for subsequent unmarshaling. The buffer keeps track
of how many bytes of the payload are available for reading and
prevents attempts to read more data than was actually contained in
the request.

The ��-byte payload of the request contains 8 bytes for the two
integer parameters. (The remainder of the payload contains other
details about the request, such as the object identity and request
ID, among other things.) Once the server has identified the correct
target operation, it dispatches the incoming request to the Slice-
generated skeleton, which contains the code to unmarshal the
two integer parameters. The skeleton retrieves 8 bytes from the
unmarshaling buffer and converts them back into integers, and then
passes these two integers to the implementation of operation op.

If the unmarshaling code in the skeleton tries to retrieve more
data from the buffer than is actually available, the buffer raises
an UnmarshalOutOfBoundsException. In plain language,
the exception means “I expected a certain amount of data for the
parameters of an invocation, but there wasn’t as much data avail-
able as there should be.” (Similar arguments apply when a client
unmarshals the results of an invocation. In that case, the code goes
through much the same actions, except that the unmarshaling is
done by a proxy instead of a skeleton, and the data is contained in
a reply instead of a request.)

So, how can this exception happen? Unless you are using the dy-
namic invocation or dispatch interfaces, the cause of this exception
is invariably a mismatch in the Slice definitions that are used by
client and server. For example, suppose that, originally, the preced-
ing interface looked as follows:

// Slice
interface Example { // Earlier version
 void op(int i);
};

faQ corner

http://www.hoard.org/
http://www.microquill.com/

Connections
ZeroC’s Newsletter for the Ice Community

Page 2� Issue 20, December 2006 Page PBIssue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

During development, you decided to add the second parameter,
to turn the interface into the two-integer version we saw earlier.
Suppose you faithfully updated the server with the new version
of the interface but, for some reason, you forgot to update the cli-
ent. When you run client and server, the client runs with the old
interface, but the server runs with the new interface. Of course,
this means that the client will send only a single integer when it
invokes op, but the server expects to receive two integers. This
results in an UnmarshalOutOfBoundsException on the server
side. (If we reverse the situation, such that the client expects two
out-parameters, but the server sends only one, you would see the
same exception on the client side instead.)

So, in short, UnmarshalOutOfBoundsException is invariably
caused by mis-matched Slice definitions, unless you are using the
dynamic invocation or dispatch interfaces (in which case your code
contains the mismatch).

Note that you can easily catch Slice mismatches at run time by
adding the ‑‑checksum option when you compile your Slice defi-
nitions. This option creates a dictionary in the generated code that
contains a checksum for each Slice type. You can add an operation
to the server that returns the dictionary to the client and verify in
the client that the checksums for corresponding Slice types are the
same; if they differ, you have mismatched Slice definitions. (Please
see the Ice Manual for more details on Slice checksums.)

faQ corner

http://www.zeroc.com/Ice-Manual.pdf

