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80 Percent?
I have just returned from the 
Middleware ’06 conference. The 
conference was well attended, with a 
number of high-quality papers. (Check 
out the conference proceedings for de-
tails.) I also met quite a few Ice users 
at the conference—I had fun talking 
with them and seeing Ice make inroads 
not only in industry, but also 

in academia.

As the conference papers amply demonstrated, research in the 
middleware arena is vibrant and active, and it produces useful 
results. That is a Good Thing™: as I said previously, middleware 
will continue to increase in importance. In fact, I see middleware as 
the key enabler for continued progress in computing: without ongo-
ing research and improvements for middleware, the “Global Grid” 
(remember, you heard the term here first!) simply won’t happen. 
But, sadly, very few of the research results make it into mainstream 
products. 

During the many conversations at the conference, I was struck 
with the disillusionment with web services. After years of trying, 
developers and researchers are getting increasingly disenchanted 
with WS complexity and poor performance, not to mention the 
standards mess and interoperability problems. (See Peter Lacey’s 
satire “The S Stands for Simple” for a sobering history of web 
services.) Many conference attendees expressed the opinion that 
the WS bubble will implode in the near future. Personally, I look 
forward to the release of WS-Death-Certificate: some technologies 
are simply too awful to allow them to exist.

But, for middleware as a whole, this isn’t exactly good news. 
Consider where we currently stand. On the one hand, Java RMI and 
.NET Remoting are tied to particular platforms and are of no inter-
est for heterogeneous applications. (Besides, .NET Remoting has 
just been replaced by the Windows Communication Foundation; it 
goes almost without saying that WCF has a new and incompatible 
API…) On the other hand, for heterogeneous networking, CORBA 
is getting rather long in the tooth and, while REST offers some 
attractive ideas, developers want technology, not philosophy. And, 
with this short list, we have just about exhausted the available op-
tions. If WS is about to go the way of the Dodo too, that leaves the 
industry without ubiquitous middleware, despite fifteen years of 
promises to the contrary.

And ubiquitous middleware is what the industry needs. It needs 
ubiquitous middleware because, without it, universal e-commerce 
will remain a pipe dream. “B2B everywhere” cannot happen while 
the market is fragmented among a number of competing, incompat-

ible, and technologically retarded offerings. No amount of de jure 
standardization will fix this. Here is my prediction of what will fix 
it: one product will capture a majority of the market before the rest 
of the players wake up. Then, after gaining sufficient experience, 
we’ll write the standards around that product to codify existing best 
practice (which is what standards should be doing anyway).

“One product?” you ask? Yes, I am entirely serious. I firmly 
believe that one middleware product can comfortably serve the 
needs of 80 percent of applications, without being as complicated 
and inefficient as web services. So, is Ice that product? Quite 
possibly: Ice provides everything that is needed to cover the 80-
percent bracket. With Ice, you can build efficient, reliable, and 
industrial-strength e-commerce systems today whereas, with web 
services, you count your blessings if you can exchange anything 
more complex than an integer among different implementations. 
No doubt, the industry will be ready to add yet another WS‑Some‑
thing standard to address your concerns but, while you wait for that 
standard to (maybe) fix things, you can use Ice to get on with the 
job. What do you prefer—a product without a standard that works, 
or a product with a standard that doesn’t?

And, before you know it, you may find that Ice indeed has 
captured those 80 percent. Please, when that happens, don’t be too 
smug about it. The web services devotees will know that you were 
right all along without you rubbing salt into their wounds and say-
ing “I told you so!”

 
Michi Henning 
Chief Scientist
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Ice for Ruby
Mark Spruiell, Senior Software Engineer

Introduction
Dissatisfied with currently available technology, an enterprising 
developer decides to forge his own path and create something new. 
It’s a familiar story in computing circles, and in fact it’s exactly 
how Ice came to be. In this case, though, I’m referring to Ruby, a 
language worthy of your attention. In this article, I’ll present an 
overview of the language and introduce the latest addition to the 
Ice family, Ice for Ruby.

Meet Ruby
Ruby sprang to life in Japan more than a decade ago when Yuki-
hiro Matsumoto, unhappy with existing scripting languages such as 
Perl and Python, decided to design his own language. His goal was 
to create a pure object-oriented language that was easy for pro-
grammers to learn and use, and judging by Ruby’s ever-growing 
popularity, he has succeeded remarkably well.

Everything is an object in Ruby, including strings, methods, and 
even numbers. For example, in Java you would obtain the abso-
lute value of an integer by calling a static method and passing the 
integer as an argument:

// Java 
int num = Math.abs(‑42)

In Ruby, you invoke the method directly on the number:

# Ruby 
num = ‑42.abs

Notice that I've omitted the trailing parentheses when calling the 
abs method. This is an example of Ruby’s relaxed syntax, in 
which parentheses are optional for method invocations.

Matz, as Ruby’s creator is known, borrowed heavily from other 
languages; mostly from Perl, but also from Python, Smalltalk, 
and Lisp. Many of us have undoubtedly written some completely 
unreadable Perl code in past lives, and I’m no exception. I’ll be 
the first to admit that it was difficult to resist combining magic 
symbols like $_ and complex regular expressions to accomplish a 
result in one line that would have taken dozens of lines or more in 
other languages. Although Ruby preserves some of this terseness, 
it has fallen out of favor among Ruby purists and, as of late, use of 
such cryptic expressions actually triggers warnings in the interpret-
er. I’ve learned my lesson, and Matz apparently has too.

Ruby versus Python
With my background in traditional languages such as C and C++, 
I was initially repelled by Python’s rigid indentation requirements; 
eventually I overcame that bias and learned to appreciate what 
Python had to offer. As an Ice user, you probably know that Python 
is ZeroC’s scripting language of choice; however I’m pleased that 
Python’s formatting requirement is one “feature” that Ruby does 
not emulate. For example, here is a trivial Ruby class definition:

# Ruby 
class Person 
  def initialize(first, last) 
 @first = first 
 @last = last 
  end 
 
  def name() 
 "#@first #@last" 
  end  
end

The method initialize is the constructor for an instance of 
class Person, and the @ symbol is how you refer to instance vari-
ables. The keyword end terminates blocks, methods, classes, and 
modules. The name method demonstrates some convenient string 
formatting syntax as well as Ruby’s convention of using the result 
of the last statement as the return value of a method. The equiva-
lent Python code is shown below:

# Python 
class Person: 
  def initialize(self, first, last): 
 self.first = first 
 self.last = last 
 
  def name(self): 
 return self.first + " " + self.last

They look quite similar, and both are clean and easy to read and 
understand but, personally, I prefer Ruby's syntax. You may have a 
different opinion, but that's why we have many choices in pro-
gramming languages.

Language Highlights
Getting back to our Ruby example, we have defined the Person 
class and now we want to instantiate it. Since classes are objects 
like everything else in Ruby, we simply invoke the new method on 
the class:

p = Person.new("Roger", "Seagraves")

If you like, you can also write the statement as follows:

p = Person.new "Roger", "Seagraves"

This style is a little too loose for my taste (I guess I'm just old-fash-
ioned), so I'll be using parentheses from now on.

Ice for ruby



Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 20, December 2006 Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 20, December 2006 Connections
ZeroC’s Newsletter for the Ice Community

Ruby’s object-oriented nature gives it a flexibility that you can 
exploit in a dizzying number of ways. For example, if you prefer a 
more verbose style in your expressions, you can rename the addi-
tion operator:

class Fixnum 
  alias plus + 
end

Fixnum is the name of Ruby’s built-in �2-bit integer class. (It 
really has only �� bits, but who’s counting?) Declaring the class 
again does not replace its previous definition; instead, it opens the 
existing class to be modified or extended. In this case, we have 
added another way to invoke the + method, so that the following 
statements are all equivalent:

1 + 1 
1.+(1) 
1.plus(1)

Ruby also allows you to add or redefine methods in just one in-
stance of a class:

p1 = Person.new("Roger", "Seagraves") 
p2 = Person.new("Oliver", "Stone") 
class <<p2 
  def name() 
 "#@last, #@first" 
  end 
end 
puts p1.name() 
puts p2.name()

The output of this program is shown below:

Roger Seagraves 
Stone, Oliver

All this flexibility might lead you to believe that programming in 
Ruby is a complete free-for-all, but Ruby does have some interest-
ing naming conventions that might dampen some of that rebellious 
spirit:

• The names of modules, classes, and constants begin with an 
upper-case letter.

• The names of methods and local variables begin with a lower-
case letter.

• Instance variable names begin with the @ character and are 
normally followed by a lower-case letter.

• Class variable names (such as a static variable in C++ and 
Java) begin with @@.

• Global variable names begin with the $ character.

Ruby enforces some of these conventions, while others are merely 
recommendations, as determined by the needs of the parser.

In the sections that follow, I’ll give a very brief introduction 
to Ruby’s main constructs. If you find yourself intrigued, the 
“Pickaxe” book is a great way to learn more about the language.

Built‑In Types
Ruby’s native types include the aforementioned small integer, an 
arbitrary precision integer, floating point, string, array, and an as-
sociative array type called hash. As with any untyped language, a 
Ruby program typically doesn’t need to concern itself with types; 
the type of a variable is determined by its current value, but the 
variable can be used to hold a value of another type at a later time.

A Ruby array is an indexed collection similar to Python’s list 
type:

arr = ['a', 'b', 'c'] 
arr[10] = 99

As you can see, a program can assign values of varying types to 
arbitrary locations in the array; any gaps are automatically filled 
with the value nil.

While an array can only be indexed using an integer, a hash ac-
cepts any type of value as a key:

h = { "abc" => "def", 17 => "ghi" } 
h[false] = [1, 2, 3]

True to its Perl heritage, Ruby also supports regular expressions 
as a native language feature, which makes it trivial to incorporate 
them into your own code:

class Person 
  def match(expr) 
 @first =~ expr || @last =~ expr 
  end 
end 
 
p = Person.new("Caleb", "Shaw") 
p.match(/[Cc]al/)

The value returned by match in this example is 0, representing the 
position at which the expression matched the string “Caleb”.  In 
Ruby, only the values false and nil cause a boolean expression 
to fail, therefore the following test executes as expected even when 
match returns 0:

if p.match(/[[Cc]al/) 
  puts "Found a match!" 
end

Modules
A module serves several purposes in Ruby. The most common use 
case, which should be familiar to Python programmers, is encapsu-
lating methods and classes in a unique namespace:

module Ice 
  def initialize() 
 # ... 
  end 
end

Ice for ruby
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At this point you might be thinking that the code above looks 
surprisingly like a procedural Python program, and you'd be right. 
In Ruby's object-oriented world, however, this example actually 
declares a module object and defines a method in it named ini‑
tialize. You can invoke this method using the :: scope resolu-
tion operator:

Ice::initialize()

Modules serve another important purpose in Ruby: they provide 
a convenient way to incorporate functionality into a class without 
needing to use inheritance. Although Ruby classes are restricted to 
single inheritance, modules give you the equivalent of unlimited 
multiple inheritance. Consider the following example:

module Comparable 
  def <(other) 
 self.<=>(other) < 0 
  end 
  def >(other) 
 self.<=>(other) > 0 
  end 
  # ... 
end 
 
class Person 
  include Comparable 
  def <=>(other) 
 # ... 
  end 
end

We have defined the module Comparable that supplies a number 
of comparison methods. Each method assumes that the receiving 
object has implemented the <=> method, which, by convention, 
must return ‑1, 0, or 1 to indicate its order compared with another 
object. It may seem strange at first to see methods that refer to 
self defined in a module—after all, self is normally used in 
classes. However, the module is intended to be used as a mix‑in 
by other classes. As you can see, the Person class includes the 
module, thereby adding all of the methods in the module to its own 
definition. To comply with Comparable’s protocol, Person must 
implement only <=> to get a number of useful comparison methods 
for free, without sacrificing its ability to inherit from another class.

Duck Typing
Given the power of modules shown in the previous section, it’s no 
surprise that an object’s type has less importance in Ruby than it 
does in more statically-typed languages. You can still test an object 
to determine whether it is an instance of a class:

if (p1.kind_of?(Person) && p2.kind_of?(Person)) 
  cmp = p1 < p2 # Compare two people 
end

However, an object's class (as well as its super-classes) is really 
just one source of methods you can invoke. The object's class 
might also include modules that define methods and, as we saw 

earlier, the object itself may have been extended to have additional 
methods. As a result, what really matters in many cases is whether 
an object supports the capability you need, and not whether it is an 
instance of a particular class. We could rewrite the code above as 
simply:

cmp = p1 < p2   # Equivalent to p1.<(p2)

The interpreter will raise an exception in this case if p1 fails to 
implement the < method. If you want to verify that p1 implements 
<, use the respond_to? method:

if (p1.respond_to?(:<)) 
  cmp = p1 < p2 
end

In Ruby terminology, this is known as duck typing: if it walks like 
a duck, and talks like a duck, then Ruby treats it like a duck, re-
gardless of whether it actually is a duck. Once you get used to the 
idea, you’ll find it’s a very powerful concept.

Blocks and Iterators
Speaking of powerful concepts, check this out:

arr = [1, 2, 3] 
arr.each { |i| puts i }

When executed, this code produces the following output:

1 
2 
3

We have declared an array and invoked its each method. The 
argument to each is a segment of code enclosed in braces, called 
a block in Ruby. This code is not evaluated immediately; the block 
is treated as (you guessed it) an object that each invokes for every 
element of the array, and the variable i within the vertical bars rep-
resents the block’s parameter list. The each method is known as an 
iterator because it iterates an arbitrary block over a collection.

Another example of an iterator is the upto method, which is 
often used in place of a traditional for statement:

0.upto(arr.length‑1) { |i| puts arr[i] }

This code invokes upto on the integer zero and passes the maxi-
mum value as an argument.

Blocks are used throughout Ruby’s libraries as a very convenient 
way of defining callbacks and handling transactions. For example, 
the code below opens a file, reads some text, and closes the file:

f = File.open("log.txt", "r") 
line = f.gets() 
# ... 
f.close()

We could write this another way using a block, but this time we'll 
use the do/end keywords instead of braces:

Ice for ruby
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File.open("log.txt", "r") do |f| 
  line = f.gets() 
  # ... 
end

The open method detects the presence of this block and changes 
its behavior: instead of simply returning the opened file as in the 
previous example, open now opens the file, executes our block, 
and closes the file, freeing us from having to remember to close the 
file ourselves. As an added bonus, open also ensures that the file is 
closed in case our block raises an exception.

Exceptions
Exceptions in Ruby have the same semantics as in other main-
stream languages, although the keywords can be a bit confusing 
at first. Whereas C++ and Java use the keywords try, catch, and 
throw for exception handling, Ruby’s equivalents are begin, 
rescue, and raise:

begin 
  raise "Oops!"   # Throws a runtime error 
rescue RuntimeError => ex 
  puts ex 
end

The confusion arises from the fact that the keywords catch and 
throw are also used in Ruby, but have nothing to do with excep-
tions.

Ruby supports the equivalent of Java’s finally clause, albeit 
with a different name of course:

begin 
  raise "Not again!" 
rescue => ex # Equivalent to rescue StandardError 
  # Handle exception 
ensure 
  # Clean up 
end

Ruby guarantees that the ensure clause will be executed regard-
less of whether an exception is raised; this provides the application 
with an opportunity to take action such as cleaning up resources.

Threads
Ruby’s Thread class is an example of an API that relies on the 
block concept we saw earlier:

t = Thread.new("http://www.zeroc.com", 80) do 
|url, port| 
  conn = Net::HTTP.new(url, port) 
  page = conn.fetch("/", nil) 
end 
t.join()

The Thread constructor requires the caller to define a block; any 
arguments passed to the constructor are transferred to the block’s 
parameter list. This use of blocks conveniently eliminates the need 

to define a new class for each activity that you want performed in a 
separate thread.

The main disadvantage of Ruby’s current thread implementation 
is its use of “green”, or emulated, threads. The interpreter runs in 
a single native thread and performs its own task switching among 
the threads created by the application. This strategy is portable, 
and it works fine for many situations, but it may not be appropri-
ate for applications that make a lot of system calls that can block: 
when the interpreter’s one and only thread blocks, all Ruby threads 
block. I’ll have more to say about this later.

Run Time Library
I have only touched on a few of Ruby’s built-in classes; many 
others are available that supply such core functionality as signals, 
processes, date/time, file I/O, and more. In addition, Ruby’s robust 
set of class libraries provides a wide range of services, including 
wrappers for database systems, math facilities, mutexes and moni-
tors, XML parsing, and a suite of network protocol classes such 
as HTTP and SMTP. One particularly useful library is WEBrick, 
which implements a standard HTTP server and includes support 
for servlets and CGI. For example, here is all you need to serve 
static pages from a local filesystem using WEBrick:

require 'webrick' 
include WEBrick 
server = HTTPServer.new( 
  :Port => 80, 
  :DocumentRoot => File.join(Dir.pwd, "/html") 
) 
trap("INT") { server.shutdown() } 
server.start()

There is plenty more you can do with WEBrick, as you'll see later 
in the article.

Ruby on Rails
I would be remiss in my duties if I did not at least mention Ruby 
on Rails, which is largely responsible for the tremendous growth 
that Ruby has been experiencing. The Rails framework’s success 
lies in its ability to dramatically simplify the task of creating data-
base-backed Web applications without complicated configuration 
files or even much programming. If you are in a situation where 
you need to offer Web access to database CRUD actions (create, 
read, update, delete), you should investigate what Rails can do for 
you.

The Birth of a New Mapping
The development of a new Ice language mapping requires vary-
ing degrees of effort. The compatibility of Slice and the target 
language is certainly a factor in determining how much work will 
be needed, but more significant is the implementation strategy for 
the Ice run time. There are essentially two choices: implement the 
Ice run time from the ground up in the target language, or try to 

Ice for ruby
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use an existing Ice run time as the foundation of the new product. 
We strive to do the latter whenever possible (as long as doing so 
wouldn’t negatively impact the product) because our maintenance 
duties are reduced when we can reuse an existing, well-tested run 
time. The advantages of a native implementation would have to be 
very compelling for us to consider attempting such a project.

At the time of this writing, ZeroC has only three native imple-
mentations of the Ice run time: C++, Java, and C#. All of the 
remaining language mappings are layered on top of one of these 
three products. Since the interpreters for scripting languages are 
typically written in C for maximum portability, the only sensible 
choice for the foundation of such a language mapping project is Ice 
for C++.

The disadvantage of this layered approach is that the script 
programmer must be aware of the external dependencies (such as 
shared libraries) that are necessary to use Ice. It’s a small price to 
pay, however, because it’s really the only way ZeroC could justify 
supporting the languages that we already do. Some of the Ice 
internals are pretty complex and rely heavily on low-level APIs 
for sockets and other system calls. Even if a scripting language 
provided access to all of the facilities we would need, and even if 
they worked reliably (a big if), it would still be a huge undertaking 
to reimplement the Ice run time, test it, and maintain it. If we had 
to do that for every new language mapping, it’s likely that the only 
language mappings we’d support would still be C++, Java, and C#.

Layering a new scripting language implementation on the C++ 
run time not only saves an enormous amount of time (which gets 
the product into your hands that much faster), but also results in 
a more reliable product from the start. Such a project consists of 
designing the mapping from Slice to the target language, writing 
the translator, and implementing a thin integration layer between 
the interpreter and Ice for C++. The integration layer is often the 
most challenging, since we need to get intimately familiar with the 
interpreter’s extension API. This can be a somewhat frightening 
experience, as was the case with PHP, or a relatively pleasant one.

Overall, implementing the Ruby mapping was quite straightfor-
ward. The interpreter’s C API seems to be generally well designed 
and easy to use, which made the development process much easier. 
There was really only one issue we had to face, but it was a sig-
nificant one: Ruby’s lack of support for native threads. It’s not the 
fact that the interpreter uses green threads, but that the C API is not 
thread safe. As you know, Ice uses threads extensively, so this was 
a serious limitation. As a result, we didn’t even try to implement 
support for writing an Ice server in Ruby, and it made us give up 
on asynchronous invocations. Essentially, any functionality that re-
quired the C++ Ice run time to call back into Ruby’s C API from an 
arbitrary thread had to be abandoned. What remained was support 
for synchronous outgoing invocations, which was all the project’s 
sponsor needed anyway. A future version of Ruby is planned that 
supports native threads, at which point it will become feasible for 
us to consider adding the missing functionality to Ice for Ruby.

Slice to Ruby
Slice types map quite naturally to Ruby. Rather than repeat what’s 
already described in the Ice Manual, I’ll touch on elements of the 
mapping that provide more information on the Ruby language and 
demonstrate useful idioms.

Identifiers
Earlier in the article, I described Ruby’s quirky naming conven-
tions for identifiers; you need to be familiar with these rules 
because they can affect the generated code and therefore your ap-
plication. As an example, consider the following Slice definitions:

// Slice 
module corp { 
  interface backOffice { 
 void Reconcile(); 
  }; 
};

When translated to Ruby, these identifiers are modified as shown 
below:

module Corp 
  class BackOffice 
 def Reconcile() 
   # ... 
 end 
  end 
end

As this example demonstrates, a Slice construct that maps to a 
Ruby module, class, or constant must have an identifier that begins 
with an upper-case letter, therefore the identifiers corp and back‑
Office are modified as shown. For method names such as Recon‑
cile, Ruby conventions recommend that they start with a lower-
case letter, but the interpreter doesn’t enforce that rule, and neither 
does the Slice mapping.

Primitive Types
Aside from the identifier issue, a Ruby programmer should be very 
comfortable using the Slice mapping. For example, the table below 
describes the Ruby mapping for primitive Slice types.

Slice Type Ruby Type
bool true or false
byte Fixnum

short Fixnum

int Fixnum or Bignum

long Fixnum or Bignum

float Float

double Float

string String

Ice for ruby
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Fixnum is Ruby’s ��-bit integer type, whose range can represent 
most of the Slice integer types. If an integer value requires more 
than �� bits, Ruby transparently promotes it to the arbitrary-preci-
sion type Bignum. Consider the following Slice definitions:

// Slice 
const int I1 = 1073741823; 
const int I2 = 1073741824;

In Ruby, the constant I1 is represented by a Fixnum object, while 
I2’s value can only be stored in a Bignum object. As far as the Ice 
run time is concerned, an integer’s type is irrelevant; what matters 
is whether the value is compatible with the expected Slice type. 
Let’s continue this example below:

// Slice 
const long L1 = 1; 
const long L2 = 4294967292; 
 
interface IntSender { 
  void sendInt(int i); 
};

It is legal to invoke sendInt and pass the values I1, I2, or L1. 
However, attempting to pass L2 will prompt the Ice run time to 
raise an exception because the value exceeds the range of Slice’s 
int type.

With respect to strings, Ruby’s String class represents a string 
value as an arbitrary array of bytes, therefore it’s a good match for 
the Ice protocol’s use of the UTF-8 encoding. Practically speaking, 
the Ice run time performs no translation while sending or receiving 
string values, so your strings must be properly-formatted UTF-8 
values.

User-Defined Types
User-defined Slice types such as structures, classes, enumerations, 
sequences, and dictionaries all map easily to Ruby types. The 
results should not surprise you: structures, classes, and enumera-
tions are represented by Ruby classes, sequences map to arrays, 
and dictionaries become hashes. The sections that follow present a 
brief example for each type.

Structures
We’ll begin our review with structures, as shown in the example 
below:

// Slice 
struct S { 
  string str; 
  int i; 
};

The mapping for a structure includes a constructor that accepts val-
ues for each of the data members, and definitions for the methods 
hash, ==, and inspect:

class S 
  def initialize(str='', i=0) 
 @str = str 
 @i = i 
  end 
  def hash ... 
  def ==(other) ... 
  def inspect ... 
 
  attr_accessor :str, :i 
end

The constructor provides suitable default values for the structure's 
data members and transfers its arguments to corresponding in-
stance variables. The hash method enables an application to use 
instances of this type as keys in a hash object, and the == method 
provides member-wise equality semantics. Ruby invokes inspect 
on an object to obtain its printable representation, so Ice defines 
inspect to display the object’s data members in a nice way.

More interesting is the last statement, which invokes the class 
method attr_accessor (without parentheses) and passes the 
symbols of the instance variables. This is a convenient way of 
defining accessor and mutator methods for each of the type’s data 
members, whose private visibility would otherwise make them in-
accessible outside the class. Calling attr_accessor is equivalent 
to declaring the following methods:

def str(val) 
  @str = val 
end 
def str() 
  return @str 
end 
def i(val) 
  @i = val 
end 
def i() 
  return @i 
end

Since Ruby allows us to omit parentheses when invoking methods, 
we can obtain the value of a data member in a style that looks very 
familiar:

s = S.new("my string", 5) 
puts "str = " + s.str + " and i = " + s.i

Furthermore, Ruby automatically translates assignment statements 
into invocations of a mutator method, so although we could modify 
the member i as shown below:

s.i(6)

It's much more natural to use an assignment statement and take 
advantage of Ruby's syntactic sugar:

s.i = 6

Ice for ruby
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Enumerations
Ruby doesn’t have a native enumeration type, so Ice generates a 
Ruby class that has similar semantics. Consider this example:

// Slice 
enum Color { red, green, blue };

The generated class provides several useful methods:

class Color 
  include Comparable 
 
  def Color.from_int(val) ... 
  def to_s ... 
  def to_i ... 
  def <=> ... 
  def hash ... 
  def inspect ... 
  def Color.each(&block) ... 
 
  Red = ... 
  Blue = ... 
  Green = ... 
  private_class_method :new 
end

The first aspect worth mentioning is the inclusion of the standard 
module Comparable which, as we learned earlier, extends the 
class with a number of comparison methods. The generated class 
implements the <=> method to support this functionality.

The from_int method, which allows you to convert an integer 
into an enumerator, demonstrates the syntax for defining class 
methods in Ruby.

The methods to_s and to_i have the conventional names that 
Ruby classes use for obtaining string and integer representations 
of an object, respectively. As I described in the previous section on 
structures, the hash method is provided mainly to allow instances 
to serve as hash keys, while the inspect method supplies a user-
friendly string that describes the object.

 The class method each is notable for its use of a Ruby block 
as a parameter. The leading & character indicates that a block is 
expected, and the interpreter places the block object in the named 
parameter. This method allows us to iterate over the enumerators as 
shown below:

Color.each { |e| puts e.to_i }

Next, a class constant is defined to represent each of the type's enu-
merators. In this example, you'll notice that the first letter has been 
changed to upper-case in order to comply with Ruby's identifier 
semantics for constants.

Finally, the invocation of private_class_method changes 
the visibility of the new method so that applications are prevented 
from calling Color.new; the only valid instances of Color are 
those referenced by the constants Red, Green, and Blue.

Sequences
As in most other language mappings, a Slice sequence doesn’t 
generate much code in Ruby because it uses the native array type. 
There is one exception, however, and that is for the Slice type 
sequence<byte>. Ice can transfer a value of this type much more 
efficiently when it is stored in a Ruby string rather than an array; 
therefore, Ice for Ruby always uses a string to hold values of this 
type.

Ruby’s Array class offers a lot of useful functionality. For ex-
ample, let’s define a Slice sequence of structures and look at some 
examples:

// Slice 
struct S { 
  string str; 
  int i; 
}; 
sequence<S> SArray;

In Ruby, we can create an instance of SArray and populate it us-
ing the << method:

arr = [] 
arr << S.new("red", 0) 
arr << S.new("green", 1) 
arr << S.new("blue", 2)

Next, we'll search for an element using the find iterator:

g = arr.find { |s| s.str == "green" }

The find method invokes our block for each element and stops if 
the block evaluates to true; the return value is the element at the 
current position, or nil if no match was found.

We can also use a block to selectively remove elements from the 
array:

arr.delete_if { |s| s.i > 0 }

I've only scratched the surface of an array's capabilities. If you're 
new to Ruby, you'll find a lot to like here.

Dictionaries
Let’s continue our Slice example from the previous section to dem-
onstrate that hash objects are just as powerful as arrays:

// Slice 
dictionary<string, S> SMap;

The code below constructs an instance of SMap:

map = { 
  "a" => S.new("abc", 0), 
  "d" => S.new("def", 1) 
}

The each method is also supported by the Hash class, along with 
variations named each_key and each_value that do what you’d 
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expect. In the case of each, the block receives two arguments 
representing the element’s key and value:

map.each { |k,v| puts "#{k} => #{v.str}" }

The output of this statement is shown below:

a => abc 
d => def

Exceptions
The mapping for Slice exceptions looks very similar to that for 
structures. The only significant difference is the use of inheritance, 
such that a generated class derives from a specified base class, or 
from Ice::UserException if no base exception is defined. All 
Ice exceptions ultimately derive from Ice::Exception, which 
derives from Ruby’s StandardError class.

Typically, an application catches only the exceptions of interest 
at a particular nesting depth while allowing other exceptions to 
propagate higher in the call chain:

def do_something 
  begin 
 # ... 
  rescue MyUserException => ex 
 # handle user exception 
  end 
end 
begin 
  do_something() 
rescue Ice::Exception => ex 
  # General handler 
end

Classes and Interfaces
Since Ice for Ruby does not support server-side functionality, Slice 
classes and interfaces serve only two purposes: transferring objects 
by value and invoking operations via proxies. Let’s concentrate on 
objects-by-value now; I’ll discuss proxies in the next section.

In its simplest use case, a Slice class is very much like a struc-
ture, except that it also supports inheritance:

// Slice 
class Vehicle { 
  int numPassengers; 
}; 
class Truck extends Vehicle { 
  float capacity; 
};

These are concrete classes because they do not define operations; 
therefore, you can transfer instances of these classes without any 
additional effort. Although these definitions don't look much dif-
ferent from structures, the generated Ruby code for a class differs 
quite a lot from that for a structure. In particular, the generated 
code makes use of mix-in modules for reasons I'll explain shortly:

module Vehicle_mixin 
  include ::Ice::Object_mixin 
  def ice_ids # ... 
  def ice_id # ... 
end 
 
class Vehicle 
  include Vehicle_mixin 
end

As you can see, the definition of class Vehicle is quite simple 
because it only needs to include the mix-in module.

A class becomes abstract once you define an operation. The 
generated class is no longer sufficient because there is no imple-
mentation of the operation; it becomes your responsibility to define 
a class that supplies the missing implementation. Suppose we 
modify our definition of Vehicle to add an operation:

// Slice 
class Vehicle { 
  int numPassengers; 
  void start(); 
};

We have two choices when implementing a class in Ruby: inherit 
from the generated class, or include the mix-in module:

# Approach 1: Inherit from generated class 
class VehicleImpl1 < Vehicle 
  def start 
 # ... 
  end 
end 
# Approach 2: Include the mix‑in module 
class VehicleImpl2 
  include Vehicle_mixin 
  def start 
 # ... 
  end 
end

As far as the Ice run time is concerned, both approaches are 
equally correct. In accordance with the duck typing semantics 
I described earlier, Ice does not check whether an object imple-
ments a particular type when you attempt to transfer it by value. 
All that matters to the Ice run time is that the object complies with 
the expected protocol, which it can do in either of the ways shown 
above. As a result, if you prefer to inherit from an unrelated base 
class, you need only include the mix-in module to satisfy the Ice 
run time.

Proxies
Defining an operation in a Slice class or interface automatically 
generates code that allows a Ruby program to invoke that opera-
tion remotely. These invocations are made using a proxy, which 
is a local artifact that represents a remote object. Since the Ice run 
time is responsible for implementing proxies, we don’t need to ex-
plore the generated code in any detail. All you really need to know 
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is that for an abstract Slice class or interface such as Truck, Ice 
generates a separate proxy class named TruckPrx through which 
you invoke operations. You obtain an instance of a proxy class 
from the Ice run time, either as the result of a remote invocation, or 
by calling methods on the communicator object such as string‑
ToProxy and narrowing the proxy to the desired type:

prx = communicator.stringToProxy("...") 
truck = TruckPrx::checkedCast(prx) 
truck.start()

In addition to the operations defined by your Slice interfaces, 
proxy objects offer a number of other standard methods. The Ruby 
mapping provides complete support for these methods, and you 
can find more information in "The Ice Run Time in Detail" chapter 
of the Ice Manual.

One important aspect of the Ruby mapping for proxies is the 
semantics of operation parameters. Like Python, Ruby does not 
support the notion of output arguments; therefore, Ruby and Py-
thon both handle them in the same manner. If an operation returns 
more than one value, the caller receives the values as an array. For 
example, consider the following operations:

// Slice 
int getLevel(); 
void describe(out string text); 
string query(string expr, out int numMatches);

Both getLevel and describe return only one value, although in 
a slightly different way: getLevel declares a return value, while 
describe uses an out-parameter. In Ruby, both invocations have 
the same syntax:

lev = proxy.getLevel() 
str = proxy.describe()

On the other hand, query declares both a return value and an out-
parameter, so its call syntax is slightly different. If you prefer to 
receive the values as an array, you can simply write the following:

arr = proxy.query("...")

The first element in the array is the return value, followed by the 
out-parameter. Alternatively, you can expand the array into sepa-
rate variables as shown below:

result, matches = proxy.query("...")

Although it may seem unusual at first, it's a common technique for 
returning multiple values in Ruby, and that's what really matters: 
making remote invocations in Ice is meant to be as natural as call-
ing methods on a language-native object.

Proxy invocations are affected by the threading limitations I 
mentioned earlier, in that all Ruby threads are blocked until the 
request completes. You could try to work around this issue by 
using oneway invocations instead, but that can add considerable 
complexity to your interfaces and, as this FAQ explains, doesn’t 
guarantee that the main thread won’t block.

Using Ice for Ruby
Once you’ve installed Ice for Ruby and properly configured your 
environment, you can start using it right away. If you have a Slice 
file handy, you can start the interactive Ruby interpreter (irb) and 
discover just how easy it is:

$ irb 
irb> require 'Ice' 
irb> Ice::loadSlice('Truck.ice') 
irb> comm = Ice::initialize() 
irb> p = comm.stringToProxy("truck:tcp ‑p 10000") 
irb> truck = TruckPrx::checkedCast(p) 
irb> truck.start()

There you have it — in just six commands we have managed to 
install the Ice extension, load our Slice definitions, initialize a com-
municator, create a proxy, and invoke an operation. Of course, this 
example assumes that an appropriate server is active and listening 
on the specified port.

Having all the capabilities of an Ice client at your disposal in an 
interactive environment is invaluable, not only for the educational 
experience, but also during development when you need to quickly 
test an idea or invoke a remote object. Naturally, Ruby is not only 
suited to running short scripts, but is fully capable of handling 
large and complex applications.

Translating Slice
The loadSlice method is a convenient way of translating your 
Slice definitions into Ruby code. Unlike the statically-typed 
language mappings, where an intermediate translation step is re-
quired along with the resulting generated source files, loadSlice 
generates Ruby code dynamically. Immediately after loadSlice 
completes, all of the equivalent Ruby types are installed and ready 
for use. Of course, if you prefer to generate Ruby code statically, 
the slice2rb compiler is also available and works very much like 
its counterparts for other languages.

It’s often easier to use loadSlice at first and then migrate to 
static translation later if necessary. Moving from one style of trans-
lation to another is straightforward. For example, suppose your 
program currently invokes loadSlice as shown below:

Ice::loadSlice("‑‑all ‑I#{ENV['APP_HOME']}/slice 
Account.ice")

The ‑‑all option requests that Ruby code be generated for the 
definitions in Account.ice as well as any definitions included by 
that file. To transition to static code generation, you could use the 
following command line:

$ slice2rb ‑‑all ‑I$APP_HOME/slice Account.ice

Alternatively, you can eliminate the ‑‑all option if you also stati-
cally translate the files included by Account.ice. In either case, 
slice2rb generates Ruby code into the file Account.rb, which 
your program must load in the usual manner:

Ice for ruby
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require 'Account'

As always, consult the Ice Manual for more details on Ruby code 
generation.

Our First Application
Each of the Ice language mappings defines a convenience class 
named Application that encapsulates functionality needed by 
most Ice programs. In Ruby, we can define a sub-class in just a few 
lines that replicates our prior interactive session:

require "Ice" 
Ice::loadSlice("Truck.ice") 
 
class MyApp < Ice::Application 
  def run(args) 
 comm = Ice::Application::communicator() 
 proxy = comm.stringToProxy( 
  "truck:tcp ‑p 10000") 
 truck = TruckPrx::checkedCast(p) 
 truck.start() 
 return 0 
  end 
end 
app = MyApp.new() 
exit(app.main(ARGV))

Application takes care of initializing a communicator, respond-
ing appropriately to signals, and cleaning up when the application 
terminates. Using Application certainly is not a requirement, but 
we do recommend it unless your program has special needs.

Web Services and Ruby
As much as you might like to use Ice for all of your distributed 
computing needs, there are often times when external forces com-
pel you to employ a different (and dare I say lesser?) technology. 
In situations where a “Web services” (WS) solution such as REST, 
XML-RPC, or SOAP is required, you may find that Ruby is an 
excellent development platform for integrating these technologies 
with your Ice applications.

A remote invocation using a protocol such as SOAP typically 
has much higher latency than the same invocation using Ice, so it is 
advisable to design your WS interfaces to be as coarse-grained as 
possible. In other words, creating a SOAP/Ice bridge that exports 
all of your Ice interfaces directly to SOAP clients is often undesir-
able. A better solution is to design an interface specifically to meet 
the needs of the WS client, such that completing a WS request 
might require many Ice invocations behind the scenes.

Ruby’s class libraries include support for WS protocols and, as 
you should expect by now, it’s quite easy to get started. Using the 
WEBrick HTTP server I mentioned earlier, we can build an XML-
RPC server that integrates with Ice. As a trivial example, let’s 
create a bridge to an Ice-based search engine:

require "webrick" 
require "xmlrpc/server" 
require "Ice" 
 
Ice::loadSlice("Engine.ice") 
comm = Ice::initialize() 
prx = comm.stringToProxy("server:tcp ‑p 8000") 
engine = EnginePrx::checkedCast(prx) 
 
servlet = XMLRPC::WEBrickServlet.new() 
servlet.add_handler("query") do |text| 
  engine.query(text) 
end 
 
server = WEBrick::HTTPServer.new(:Port => 80) 
server.mount("/RPC2", servlet) 
trap("INT") { server.shutdown() } 
server.start() 
comm.destroy()

After instantiating a servlet that speaks XML-RPC, we add a 
handler for the query request. By now, you should recognize the 
definition of a Ruby block; this one accepts a string representing 
the search text and returns the results of a proxy invocation on an 
Ice object. Notice that the block is able to access the local variable 
engine defined in the outer scope. The other notable aspect of 
this code is the call to mount, which associates the servlet with an 
entry point on the Web server.

In a client, we only need three lines of code to invoke the re-
quest via XML-RPC:

require "xmlrpc/client" 
server = XMLRPC::Client.new( 
 "127.0.0.1", "/RPC2", 80) 
puts server.call("query", "Camel Club")

Constructing a client requires the server's address, mount point, 
and port number. We invoke the request using the call method, 
whose first parameter identifies the name of the request; any ad-
ditional parameters are marshaled into XML and included in the 
request message.

This simple example should give you a hint of what you can do 
with Ruby. Even if you ultimately decided to deploy a Web ser-
vices integration project using a different technology, Ruby makes 
it incredibly easy to create a prototype and get an initial implemen-
tation online with minimal effort.

Summary
With its rich language, diverse class libraries, and supportive user 
community, Ruby is a rising star among modern programming 
languages. Extending its capabilities with Ice creates a uniquely 
powerful platform for creating distributed applications. Ruby 
clearly can’t be used in all situations; as in any project you have 
to pick the most appropriate tool for the job. However, its ease of 
use and functionality make a compelling case for adding it to your 
toolbox.

Ice for ruby
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Optimizing Performance of File 
Transfers

Matthew Newhook, Senior Software Engineer

Introduction
Performance is a tricky subject that is near and dear to our hearts. 
In this article, I discuss a number of performance enhancing tech-
niques for file transfer that you can adapt to your own projects. As 
you will see, it is easy to fall into the trap of prematurely chasing 
the holy grail of performance. The only way to judge the effects of 
performance improvements is to evaluate them in the context of 
the entire application; taken in isolation, performance gains can be 
meaningless and amount to no more than extra development work 
without gain. 

Client
Here is the first interface presented in the FAQ How do I transfer a 
file with Ice?

// Slice 
sequence<byte> ByteSeq; 
interface FileStore 
{ 
 ByteSeq get(string name); 
 void put(string name, ByteSeq bytes); 
};

This interface transfers the contents of a file in one fell swoop 
with a single RPC call. If you are on a reliable LAN with plenty 
of available memory, this simple interface often will do: simply 
set Ice.MessageSizeMax to a large value and let the data fly. 
However, as explained in the FAQ, there is a down-side to this ap-
proach. Whenever the potential data set is very large, it is generally 
better to segment the data and retrieve it with several RPCs instead 
of a single one. Real-world interfaces use this technique, as shown 
in the following snippet from the IcePatch2 service: 

// Slice 
interface FileServer 
{ 
 // ... 
 nonmutating Ice::ByteSeq 
 getFileCompressed( 
  string path, int pos, int num) 
  throws FileAccessException; 
};

The caller already knows which files are available, as well as the 
number of bytes in each file. The caller transfers the file in chunks 
by repeatedly calling getFileCompressed until it has retrieved 
all chunks. This avoids the problem of running out of memory if a 
file is large.

The FAQ goes on to present another interface:

// Slice 
interface FileStore 
{ 
 ByteSeq read( 
  string name, int offset, int num); 
 void write(string name, int offset, 
  ByteSeq bytes); 
};

The read operation requests a number of bytes starting at the 
specified offset. The operation returns at most num bytes (the 
server may return fewer bytes than requested, for example, if the 
requested number of bytes would exceed the server’s Messag‑
eSizeMax). The client keeps reading the file in chunks until it 
receives an empty sequence to indicate end of file.

This interface, however, introduces a performance problem be-
cause a single network invocation is split into multiple invocations, 
so latency increases. 

Note that if a file is sufficiently large, there is no getting around 
sending multiple invocations, especially if either client or server is 
short on memory For example, to send a 1GB file in a single RPC 
requires that the client have at minimum 2GB of available memory. 
Why 2GB and not �GB? Consider the invocation using the original 
FileStore interface:

// C++ 
FileStorePrx store = ...; 
ByteSeq bytes; 
// Copy 1GB of data into bytes. 
store‑>put(name, bytes);

This clearly occupies 1GB of memory. However, the actual RPC 
temporarily requires an additional gigabyte of memory because Ice 
internally creates a marshaling buffer, encodes the protocol header, 
and then copies the file data into this buffer for transmission over 
the network. Similarly, the server also temporarily requires an ad-
ditional gigabyte of memory (unless it uses zero-copy, which I will 
discuss shortly): �GB to read the encoded data into a marshaling 
buffer, plus �GB for the sequence that is passed to the put opera-
tion. Note that if your hardware has lots of virtual memory, this 
approach will be a little slow, but it will work—you need to judge 
for yourself as to whether this limitation is acceptable in your 
environment.

Now let’s see how a client might use this new FileStore inter-
face from the FAQ to read the contents of a file:

// C++ 
string name = ...; 
string output = ...; 
FileStorePrx store = ...; 
int len = 1000*1024; 
FILE* fp = fopen(output.c_str(), "wb"); 
int offset = 0;
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for(;;) 
{ 
 Ice::ByteSeq data = store‑>read( 
  name, offset, len); 
 if(data.size() == 0) 
 { 
  break; 
 } 
 if(fwrite(&data[0], 1, data.size(), fp) 
  != data.size()) 
 { 
  cerr << "error writing: " 
   << strerror(errno) << endl; 
  break; 
 } 
 offset += data.size(); 
} 
fclose(fp);

This code is quite simple: the client reads data from the store in 
chunks and writes them directly to the output file. You can try this 
client along with a simple version of the server by running the 
simple client–server demo contained in the accompanying source 
code archive.

This implementation suffers from two performance problems. 
The first, as I mentioned earlier, is network latency. The second 
and more serious issue is the time spent writing data to the file, 
during which all network activity ceases. Ideally, we want to 
exploit parallelism by having the server deliver the next chunk of 
data while the client is still writing the previous chunk. We can 
use AMI to achieve this, by sending the request for the next chunk 
before writing the data to disk. First we must modify the interface 
to add the AMI metadata directive:

// Slice 
interface FileStore 
{ 
 ["ami"] ByteSeq read( 
  string name, int offset, int num); 
};

We'll change the client's main loop as follows:

// C++ 
string name = ...; 
string output = ...; 
FileStorePrx store = ...; 
int len = 1000*1024; 
int offset = 0; 
FileStore_readIPtr cb = new FileStore_readI; 
store‑>read_async(cb, name, offset, len); 
Ice::ByteSeq bytes; 
for(;;) 
{ 
 cb‑>getData(bytes); 
 if(bytes.empty()) 
 { 
  break; 
 } 
 offset += bytes.size(); 

 store‑>read_async(cb, name, offset, len); 
 if(fwrite(&bytes[0], 1, bytes.size(), fp) 
  != bytes.size()) 
 { 
  cerr << "error writing: " 
   << strerror(errno) << endl; 
   break; 
 } 
}

The client starts the reading process by asynchronously sending the 
read request using the read_async call and then enters a read–
write loop. Inside the loop, the client calls getData on the AMI 
callback, which blocks until the data is available. Once getData 
returns, the client immediately issues a request for the next chunk 
of data so that, while it is writing the data to disk, a client-side 
thread has the opportunity to read the next reply. In theory, this 
should provide more parallelism and improve the performance of 
our application. Here is the implementation of the AMI callback.

// C++ 
class FileStore_readI 
 : public AMI_FileStore_read, 
   public IceUtil::Monitor<IceUtil::Mutex> 
{ 
public: 
 
 FileStore_readI()

  : _done(false) 
 { 
 } 
 // ... 
private: 
 
 bool _done; 
 auto_ptr<Ice::Exception> _exception; 
 Ice::ByteSeq _bytes; 
}; 
typedef IceUtil::Handle<FileStore_readI> 
 FileStore_readIPtr;

We have three member variables: _done is used to wait for pend-
ing invocations to complete, while _exception and _bytes 
store the results of the invocation. Here is the implementation of 
ice_response:

// C++ 
virtual void 
ice_response(const Ice::ByteSeq& bytes) 
{ 
 Lock sync(*this); 
 _bytes = bytes; 
 _done = true; 
 notify(); 
}

This method is called when a thread from the client-side thread 
pool receives the reply for an asynchronous invocation. The 
response (a sequence of bytes) is passed as the argument to this 
method, which saves the response in the _bytes member and then 
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notifies the monitor that a reply has arrived. Here is the implemen-
tation of ice_exception:

// C++ 
virtual void 
ice_exception(const Ice::Exception& ex) 
{ 
 Lock sync(*this); 
 _exception.reset(ex.ice_clone()); 
 _done = true; 
 notify(); 
}

This method is called if an invocation results in an exception. We 
save the results in the _exception member variable and then 
notify the monitor that a reply has arrived. Finally, getData waits 
for the asynchronous invocation to complete:

// C++ 
void 
getData(Ice::ByteSeq& bytes) 
{ 
 Lock sync(*this); 
 while(!_done) 
 { 
   wait(); 
 } 
 _done = false; 
 if(_exception.get()) 
 { 
  auto_ptr<Ice::Exception> ex = _exception; 
  _bytes.clear(); 
  ex‑>ice_throw(); 
 } 
 bytes.swap(_bytes); 
}

The method waits to be notified by ice_response or ice_ex‑
ception. If an exception occurred, getData rethrows it for 
the caller to handle. Otherwise, it swaps the byte sequences and 
returns. (We use swap to avoid copying the byte sequence.) Why 
do we pass the vector by reference instead of returning the vector? 
Consider this alternative implementation:

// C++ 
Ice::ByteSeq 
getData() 
{ 
 // ... 
 Ice::ByteSeq bytes 
 bytes.swap(_bytes); 
 return bytes; 
}

As this code stands, if the compiler does not implement  the 
Named Return Value Optimization (NRVO), it will cause an addi-
tional copy of the vector. We avoid this copy for compilers that do 
not implement NRVO by passing a reference to the vector instead. 

Is there anything we can do to further improve performance? We 
have three variables to consider:

• The amount of time it takes to marshal and send an AMI 
request, that is, the amount of time spent in read_async.

• The amount of time we block waiting for the reply to an AMI 
request, that is, the amount of time spent waiting in getData.

• The amount of time it takes to write the data to disk, that is, 
the amount of time spent waiting for fwrite to complete.

We cannot reduce the amount of time to taken to send the read_
async call, and we cannot reduce the amount of time it takes to 
write to disk. However, we can reduce the amount of time we 
block waiting for getData to return. We can reduce the effects of 
network latency by having more than one AMI call active. For this 
demo, I will use two calls but I could have used several. The first 
call retrieves the current result while the second call retrieves the 
next chunk of the file. The server is kept busier that way because, 
as soon as it has sent the reply to the first invocation, the second 
invocation most likely has arrived already and is waiting to be 
dispatched. Similar reasoning applies to the client: once the client 
has read the first reply, the second reply is likely to be available al-
ready for reading by the client-side thread pool. Of course, all this 
assumes that the network really is the bottleneck—if, instead, the 
bottleneck is the disk, interleaving the calls will not help matters.

The client loop becomes the following:

// C++ 
string name = ...; 
string output = ...; 
FileStorePrx store = ...; 
int len = 1000*1024; 
int offset = 0; 
FileStore_readIPtr curr, next; 
Ice::ByteSeq bytes; 
for(;;) 
{ 
 if(!curr) 
 { 
  curr = new FileStore_readI; 
  next = new FileStore_readI; 
  store‑>read_async( 
   curr, name, offset, len); 
 } 
 else 
 { 
  swap(curr, next); 
 } 
 store‑>read_async( 
  next, name, offset + len, len); 
 curr‑>getData(bytes); 
 if(bytes.empty()) 
 { 
  break; 
 } 
 if(fwrite(&bytes[0], 1, bytes.size(), fp) 
  != bytes.size()) 
 { 
  cerr << "error writing: " 
   << strerror(errno) << endl; 
  rc = EXIT_FAILURE; 
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 } 
 offset += bytes.size(); 
}

We have two AMI callbacks, next and curr, that we swap each 
time through the loop. The remainder of the loop remains the same, 
as does the implementation of the AMI callback.

Can we optimize things further? Consider the current implemen-
tation of ice_response:

// C++ 
virtual void 
ice_response(const Ice::ByteSeq& bytes) 
{ 
 Lock sync(*this); 
 _bytes = bytes; 
 _done = true; 
 notify(); 
}

Note that the data is being copied from the buffer bytes into the 
_bytes member variable. In addition, the Ice core copies the data 
from the marshaling buffer into bytes. As a result, �GB of data 
returned to the application briefly occupies 3GB of memory: 1GB 
for the marshaling buffer, �GB for bytes, and �GB for _bytes. 
We can use the zero-copy feature of the C++ mapping to avoid the 
copy from the marshaling buffer into the vector. Firstly, we have to 
add the zero-copy metadata to the interface:

// Slice 
interface FileStore 
{ 
 ["ami", "cpp:array"] ByteSeq read( 
  string name, int offset, int num); 
};

The AMI ice_response callback then becomes:

// C++ 
void 
ice_response(const pair<const Ice::Byte*, 
  const Ice::Byte*>& bytes)

The Ice run time passes a pair of const Ice::Byte* to the 
operation. The first pointer points to the start of the sequence and 
the second pointer points to one past the end. (These are the same 
semantics as for the begin and end methods of STL iterators.) 
These pointers refer directly to locations in the Ice marshaling buf-
fer, so we can avoid making a copy of the data when storing it in 
the _bytes member:

// C++ 
void 
ice_response(const pair<const Ice::Byte*, 
    const Ice::Byte*>& bytes) 
{ 
 Lock sync(*this); 
 Ice::ByteSeq(bytes.first, bytes.second).swap( 
  _bytes); 
 _done = true; 

 notify(); 
}

Instead of using swap, we also could have done something like 
this:

// C++ 
_bytes.resize(bytes.second – bytes.first); 
memcpy(&bytes[0], bytes.first, 
 bytes.second – bytes.first);

However, this technique is less efficient because the resize 
method zero-initializes each element of the vector, whereas the 
vector constructor does not.

With this change, the client now requires only 2GB of memory 
to receive a �GB chunk (�GB for the marshaling buffer and �GB 
for the _bytes member variable). Is there a way to avoid this 
extra copy? It actually is possible, such as by writing the file data 
directly in the ice_response callback. However, we would have 
to be very careful about doing this. For example, the following is 
incorrect:

// C++ 
void 
ice_response(const pair<const Ice::Byte*, 
 const Ice::Byte*>& bytes) 
{ 
 Lock sync(*this); 
 fwrite(bytes.first, 1, 
  bytes.second‑bytes.first, _fp); 
 _done = true; 
 notify(); 
}

Why is this incorrect? Since we have two AMI calls active at any 
one time, there is no guarantee as to the order in which the call-
backs are invoked (unless we take special precautions and make 
both client and server single–threaded). If we are running with 
more than one thread, we have to lock around the calls to seek to 
the correct offset and write the data. (Note that the code is correct: 
it is legal to seek past the end of a file.)

// C++ 
void 
ice_response(const pair<const Ice::Byte*, 
 const Ice::Byte*>& bytes) 
{ 
 Lock sync(*this); 
 fseek(_fp, _offset, SEEK_SET); 
 fwrite(bytes.first, 1, 
  bytes.second‑bytes.first, _fp); 
 _done = true; 
 notify(); 
}

Alternatively, we could open the file twice, once in each callback. 
That way, the lock is no longer necessary because each callback 
has its own file pointer. However, although this approach avoids an 
extra copy of the data, it turns out to be slower because it requires 
a separate seek for each write. Furthermore, the additional context 
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switches between the three threads (two client-side threads and the 
main thread calling read_async) is costly.

Note that the size of the chunk being transferred also plays a 
role: increasing the chunk size consumes more memory but re-
quires fewer remote invocations. For sufficiently large chunks, it is 
better to do the disk writes in the ice_response callback instead 
of copying the data.

Server
Now let’s look at the server side. Here is an initial version:

// C++ 
class FileStoreI : public FileStore 
{ 
public: 
 
 Ice::ByteSeq 
 read(const string& name, Ice::Int offset, 
   Ice::Int num, const Ice::Current&) 
 { 
  FILE* fp = fopen(name.c_str(), "rb"); 
  if(fp == 0) 
  { 
   FileAccessException ex; 
   ex.reason = "cannot open `" + name 
     + "' for reading: " 
     + strerror(errno); 
   throw ex; 
  } 
 
  if(fseek(fp, offset, SEEK_SET) != 0) 
  { 
   fclose(fp); 
   return Ice::ByteSeq(); 
  } 
 
  Ice::ByteSeq data(num); 
  ssize_t r = fread(&data[0], 1, num, fp); 
  fclose(fp); 
  if(r != num) 
  { 
   data.resize(r); 
  } 
 
  return data; 
 } 
};

This implementation is straightforward. It opens the file, seeks to 
the correct location, allocates the correct number of bytes, reads 
the data, and returns the buffer. Again, let’s consider the amount of 
memory required to send �GB of data. First, the code allocates a 
1GB buffer to hold the file data. When the Ice run time returns the 
data to the caller, it copies the data into a marshaling buffer, which 
requires an additional �GB of memory. Depending on your compil-
er’s support for NRVO, the return value may require an additional 
allocation and copy. We can avoid this overhead for compilers 
without NRVO by using asynchronous message dispatch. With 

AMD, we call into the Ice core to send the data instead of return-
ing it as the return value. As usual, we need to add the appropriate 
metadata to the interface:

// Slice 
interface FileStore 
{ 
 ["amd"] ByteSeq read( 
  string name, int offset, int num); 
};

Now the implementation becomes:

// C++ 
void 
read_async(const AMD_FileStore_readPtr& cb, 
   const string& name, 
   Ice::Int offset, Ice::Int num, 
   const Ice::Current&) 
{ 
 // ... 
 Ice::ByteSeq data(num); 
 ssize_t r = fread(&data[0], 1, num, fp); 
 fclose(fp); 
 if(r != num) 
 { 
  data.resize(r); 
 } 
 cb‑>ice_response(data); 
}

This approach is more efficient if the compiler does not support 
NRVO because the additional copy is avoided. Now only one copy 
is required, namely, the one into the marshaling buffer.

We can do a little better still. The creation of the vector requires 
initializing it with zeros. This is a little costly and can be avoided 
by using the zero-copy API (otherwise we need to pass the vector 
as an argument to the AMD callback object). First, we add the 
relevant meta-data to the interface:

// Slice 
interface FileStore 
{ 
 ["amd", "cpp:array"] ByteSeq read( 
  string name, int offset, int num); 
};

Now instead of passing a vector to the AMD callback, we pass a 
pair of const Ice::Byte* pointers. As discussed earlier, the first 
pointer in the pair points to the start of the array, and the second 
points to one element past the end of the array. Here is the revised 
implementation:

// C++ 
void 
read_async(const AMD_FileStore_readPtr& cb, 
   const string& name, 
   Ice::Int offset, Ice::Int num, 
   const Ice::Current&) 
{ 
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 // ... 
 Ice::Byte[] bytes = new Ice::Byte [num]; 
 ssize_t r = fread(bytes, 1, num, fp); 
 fclose(fp); 
 pair<const Ice::Byte*, const Ice::Byte*> ret; 
 ret.first = bytes; 
 ret.second = bytes+r; 
 cb‑>ice_response(ret); 
 delete[] bytes; 
}

Faster Still
We have made significant improvements so far, but a number of 
performance problems still remain. For each request, the server has 
to:

• open and close the file
• seek to the correct location in the file
• allocate the read buffer for each request

By making some assumptions about how the client uses the inter-
face, we can provide further performance enhancements. To do so, 
we’ll add a separate File interface:

// Slice 
interface File 
{ 
 ["ami", "amd", "cpp:array"] 
 Ice::ByteSeq next(); 
}; 
 
interface FileStore 
{ 
 File* read(string name, int num); 
};

In order to read the contents of a file, the client calls FileStore::
read and receives a proxy to a File object. The client then re-
peatedly calls next on the File object until it receives an empty 
sequence, which indicates end-of-file. (The server automatically 
destroys the File object when the client reaches EOF.) With this 
interface, chunks are retrieved sequentially by the client, that is, 
the client does not specify a file offset. In turn, this allows the 
File object to cache the file handle and avoid opening and closing 
the file for each chunk. As an added benefit, the implementation 
of next does not need to call fseek to explicitly set the file offset 
each time.

As before, we want to use AMD and the zero-copy API. We first 
must add the meta-data:

// Slice 
interface File 
{ 
 ["amd", "cpp:array"] Ice::ByteSeq next(); 
};

An initial implementation of File is as follows:

// C++ 
class FileI : public File 
{ 
public: 
 
 FileI(FILE* fp, int num) : 
  _fp(fp), 
  _num(num), 
  _bytes(new Ice::Byte[num]) 
 { 
 } 
 
 ~File() 
 { 
  delete[] _bytes;  
 }  
 
 void 
 next_async(const AMD_File_nextPtr& cb, 
  const Ice::Current& current) 
 { 
  pair <const Ice::Byte*, const Ice::Byte*> 
   ret(0, 0); 
  ssize_t r = fread(_bytes, 1, _num, _fp); 
  if(r == 0) 
  { 
   fclose(_fp); 
   current.adapter‑>remove(current.id); 
  } 
  else 
  { 
   ret.first = _bytes; 
   ret.second = _bytes + r; 
  } 
  cb‑>ice_response(ret); 
 } 
 
private: 
 
 FILE* _fp; 
 const int _num; 
 char* _bytes; 
};

The server does not support concurrent calls from the same client 
as a deliberate implementation choice. There is no benefit for a 
single client in calling the server concurrently, and adding mutex 
protection to support concurrency would extract a performance 
penalty. (Note that this still allows different clients to use the same 
server concurrently—only concurrency from within the same client 
is not supported). We’ll enforce the restriction by configuring the 
server to use the thread-per-connection concurrency model.

# config.server 
Ice.ThreadPerConnection=1

The client remains unchanged, using interleaved AMI calls to 
achieve optimal throughput.

We can add another potential optimization to the server. The 
current implementation reads data from the disk and sends it to the 
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AMD callback in the same thread of execution. This can improve 
throughput even with a single CPU, due to interleaving of disk I/O 
and network I/O. However, on multi-CPU machines, we can pos-
sibly gain a little by sending the reply from a separate work queue:

// C++ 
void 
FileI::next_async(const AMD_File_nextPtr& cb, 
 const Ice::Current& current) 
{ 
 Ice::Byte* bytes = new Ice::Byte[_num];  
 ssize_t r = fread(bytes, 1, _num, _fp); 
 if(r == 0) 
 { 
  fclose(_fp); 
  current.adapter‑>remove(current.id); 
 } 
 // _sender is the sender thread work‑queue 
 // that sends r bytes of data to the callback 
 // object cb. 
 _sender‑>add(cb, bytes, r); 
}

Note that this approach requires more memory, as each call to 
next_async must allocate a new byte buffer that is added to the 
queue for later transmission to the given callback object. Whether 
or not this actually provides a benefit depends on your hardware 
and library implementation. You need to run benchmarks to find 
out for your particular platform. (On single-CPU machines, the 
technique is almost certainly detrimental due to the extra copy and 
context switching.) You can find the full implementation in the 
source code.

It is also worth looking at these changes to examine their impact 
on the server and client. First, by creating a separate File object 
(instead of allowing the client to specify a file offset with each call 
to retrieve a chunk), we have made a previously stateless interface 
stateful. This is often undesirable because it requires the client 
and server to be in agreement as to the current state of the object. 
If anything goes wrong during the transfer of the data from the 
server to the client, the transfer must be terminated, as the client 
cannot, as the interface stands, reset the state of the File object. 
Second, we have introduced a new object that must be cleaned 
up in the event that the client misbehaves. For example, the client 
could create a File object but never use it, so the server must have 
a mechanism to clean up such abandoned objects (see Issue � of 
Connections). Certainly, both of these problems can be solved, 
however, at what cost? The initial implementation was stateless 
and certainly can be made more efficient by caching more informa-
tion. As always with optimization efforts, you have to make a judg-
ment call as to whether the performance gain is worth the cost.

Bare Wire
This is as fast as we can get with Ice. However, it is possible to 
go faster still by using straight sockets for the file transfer, which 
allows you to avoid the overhead of using Ice for the most perfor-
mance-critical parts of your application. The key idea is that Ice is 
used to facilitate the transfer, but not to do the transfer itself. (You 
can think of this in the same way as using some assembly language 
in C++ applications to speed up critical pieces of your code.) But 
why use Ice at all then? Consider the alternative: without Ice, you 
would not only have to transfer the file with sockets, you would 
also have to work out some way to organize the file transfer, send 
the file name, get the number of bytes expected, and so on. All 
of this adds up to a creating a protocol—which is precisely what 
we don’t want to have to deal with. Consider the following Slice 
definitions:

// Slice 
module Demo 
{ 
 
exception FileAccessException 
{ 
 string reason; 
}; 
 
interface FileStore 
{ 
 File* read( 
  string name, out string ip, out int port) 
  throws FileAccessException; 
}; 
};

The client calls read on the FileStore interface with the name 
of the file. The call returns a source IP address and a source port. 
The client then connects to this address and port and reads the file 
data until it has received all of the bytes. Since with straight TCP/
IP there is no maximum message size to worry about, we do not 
need to tell the server the chunk size. The server writes in whatever 
chunk size it chooses and the client reads in whatever chunk size it 
chooses—TCP/IP buffering takes care of the rest.

Now consider what the client would look like with this scheme:

// C++ 
FILE* fp = ...; 
int fd = connect(...); 
vector<char> bytes(len); 
while(true) 
{ 
 ssize_t rx = recv(fd, &bytes[0], len, 0); 
 if(rx == ‑1) 
 { 
  // Error.  
 } 
 if(rx == 0); 
 { 
  break; 
 } 
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 if(fwrite(&bytes[0], 1, rx, fp) 
  != static_cast<size_t>(rx)) 
 { 
  // Error 
 } 
}

How does the client know when to stop reading? The apparent an-
swer is when the server closes the connection. However, how does 
the server know when to close the connection? If the server closes 
the file descriptor as soon as it has sent all of the data, then any 
unsent buffered data will be lost. This means that the server and 
client must agree as to when to close the connection. Again, this 
looks remarkably like protocol design. Let's modify the interface to 
deal with this issue:

// Slice 
module Demo 
{ 
 
exception TransferException 
{ 
 string reason; 
}; 
 
interface File 
{ 
 void start(out string ip, out int port, 
  out int bytes) 
  throws TransferException; 
 void destroy(); 
}; 
 
exception FileAccessException 
{ 
 string reason; 
}; 
 
interface FileStore 
{ 
 File* read(string name) 
  throws FileAccessException; 
}; 
};

The client first calls read on the FileStore interface to obtain 
a proxy to a File object, in much the same way as the interface I 
described in Faster Still. The client then calls start on the File 
object to set up the socket connection. This returns the source IP 
address and the source port, and the total number of bytes that will 
be transferred. The client then connects to this address and port and 
starts reading data until all of the bytes have been transferred. At 
that point, the client calls destroy on the File object to complete 
the transfer.

Once again, we could optimize the reading and transmission of 
the data by using separate reader and writer threads in the server. 
However, depending on how many CPUs your machine has, this 
may introduce a performance penalty.

This last interface also introduces state into the server and is 
significantly more complex than the original stateless solution. 
Whether or not the optimization makes sense depends on the 
amount of the performance gain, and most importantly whether 
your application requires this performance gain.

Measuring Results
With performance tuning, the most important thing is benchmark-
ing. Before I go on to that, I want to point out that benchmarks 
quite often lie. For example, the two most common middleware 
benchmarks are latency and raw throughput. They measure how 
much time a single (empty) RPC consumes, and how quickly the 
middleware can pump data through the network. However, if you 
are using high-performance middleware such as Ice, for most ap-
plications, neither of these things matter in the slightest.

If latency is an issue for your application, there is a very good 
chance that the reason is not poor middleware performance, but 
incorrect design. In general, interfaces for distributed applica-
tions should be coarse grained, that is, they should not have lots of 
trivial operations that must be called many times to perform a unit 
of work. Instead, interfaces should have fewer operations that each 
do a lot of work. As an example, consider an interface that holds a 
collection of data:

// Slice 
interface Query 
{ 
 QueryResult next(); 
};

The client calls getNext once for each element in the query set. 
This is a typical example of an inefficient interface. Here is a better 
version:

// Slice 
interface Query 
{ 
 QueryResultSeq get(int offset, int len); 
};

Not only is this interface stateless, it also returns multiple results 
with a single call and so avoids the latency inherent in the earlier 
version.

With that out of the way, here is how I tested the various opti-
mizations in this article. In all cases, the client runs on a MacBook 
2.0GHz dual-core machine (OS X 10.4.x) with 2GB of memory 
and a 160GB 5200rpm hard drive, and the server runs on 3.0GHz 
machine (Fedora Core �)  with �.2�GB of memory and an 80GB 
�200rpm hard drive. I ran all tests using an optimized build of Ice 
�.�.�.

The two machines were connected with a cross-over cable. I 
used the same 266MB file for each transfer. For each test, I first 
ran the server and transferred the file to the client once before tak-
ing timings, to allow the file to be cached on the server side first. 
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To get the timings, I ran each transfer �0 times and computed the 
average of throughput in megabytes per second. For each test, the 
machines were otherwise idle.

I conducted the first test over a 100Mbps network. The table 
below shows the throughput results in MB/sec.

Client/Server Synchronous AMD AMD Zero-
Copy

Syncrhonous 8.��� 8.6�0 8.���
AMI �.�20 �.�6� �0.0��
Interleaved 
AMI

�0.8�� ��.020 ��.0��

As you can see, the synchronous tests are slowest and the AMI 
zero-copy and AMD zero-copy tests are fastest, which is the out-
come we would expect. The biggest gain comes from using simple 
AMI and AMD, while moving to interleaved invocations and using 
the zero-copy API only provides moderate performance improve-
ments. Next, how does the stateful version that uses an explicit 
File object stack up?

Stateful Client/
Server

Single Threaded Threaded

Single Threaded ��.��� ��.�2�
Threaded - ��.066

As the numbers show, that version only provides a very modest 
performance gain over the previous version. Note that the version 
that sends the replies in a second thread is actually slower than 
the non-threaded version, due to the fact that the server runs on a 
machine with a single CPU. (To try the test on your machine, you 
can control whether the server uses a dedicated sender thread with 
the SenderThread property in the config.server file.)

How about the version that uses sockets?

Socket Client/
Server

Single Threaded Threaded

Single Threaded ��.0�� ��.0�2
Threaded ��.2�2 ��.2��

Interestingly, the single-threaded version of the socket client is 
slower than the stateful version above because it reads no data 
from the network while data is written to disk. Because I ran this 
test on a dual-core machine, it is slower than the multi-threaded 
version. The socket version is also not significantly faster than the 
asynchronous versions that use Ice; however, the source code is 
significantly more complex and less portable. As with the stateful 
demo above, you can control whether the client and server use a 
separate thread for reading and writing the data to the network via 
configuration properties (see the files config.client and config.
server for details).

For comparison, I re-ran all the tests using a gigabit network. 
The results are as follows:

Client/Server Synchronous AMD AMD Zero-
Copy

Syncrhonous 2�.��8 ��.��0 28.�0�
AMI �2.��6 ��.26� ��.��2
Interleaved 
AMI

��.��2 ��.��8 ��.�2�

AMI Zero-
Copy

��.�62 ��.�2� ��.6�0

As before, the asynchronous versions are faster than the synchro-
nous versions. However, the other optimizations now no longer 
make a difference. Next, the timing for the stateful version:

Stateful Client/
Server

Single Threaded Threaded

Single Threaded ��.�6� ��.800
Threaded - ��.��8

And finally the timing information for the socket version:

Socket Client/
Server

Single Threaded Threaded

Single Threaded ��.��0 ��.022
Threaded ��.��8 ��.86�

One thing that immediately stands out is that, although this test 
uses a gigabit network that is supposedly ten times faster than a 
100-megabit network, the throughput figures are only three times 
faster! Furthermore, in contrast to the 100Mbit network, zero-copy 
and interleaving provide no performance improvement for through-
put. (Of course, this ignores the memory benefit provided by zero-
copy.) Why is this? As I mentioned earlier, we have to consider the 
following variables when it comes to performance:

• The amount of time it takes to marshal and send an AMI 
request, that is, the amount of time spent in read_async.

• The amount of time we block waiting for the reply to an AMI 
request, that is, the amount of time spent waiting in getData.

• The amount of time it takes to write the data to disk, that is, 
the amount of time spent waiting for fwrite to complete.

Moving to a gigabit network reduces the amount of time for the 
first two points. However, the time taken to write to disk is the 
same. Once that time becomes greater than the amount of time re-
quired to transfer the data over the network, reduction in latency no 
longer matters and the disk becomes the bottleneck! A few simple 
measurements show the sustained write speed of the disk on the 
MacBook to be around ��MB/sec. And that is exactly the through-
put evident in the results for the gigabit network.
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As I said earlier, for many applications, raw throughput is ir-
relevant (as long as your middleware doesn’t do something really 
stupid, such as sending the data as an XML document). Most ap-
plications are not held back by Ice—instead, they are held back by 
what they do with the data.

For the record, here are the results if I comment out the calls to 
fwrite in the code. (Keep in mind, although these numbers look 
great, they are irrelevant!) The socket version shows throughput of 
around ��MB/sec, and the stateful Ice version shows a throughput 
of around 6�MB/sec. With the disk bottleneck removed, since the 
entire file is in cache on the server side, the network becomes the 
bottleneck.

Finally, I wanted to see what happens if we send the data over a 
WAN. For this case, I measured with various transfer block sizes. 
All of these results are in KB/sec instead of MB/sec because, over 
a WAN, things are significantly slower. The file size transferred in 
all cases was �����6� bytes.

First the results for a transfer block size of �0KB:

Client/Server Synchronous AMD AMD Zero-
Copy

Synchronous ��.2� ��.�6 ��.�6
AMI ��.�6 ��.�2 ��.��
Interleaved 
AMI

��.�0 ��.�2 ��.��

AMI Zero-
Copy

��.�� ��.6� ��.2�

Next, for a transfer block size of �00KB:

Client/Server Synchronous AMD AMD Zero-
Copy

Synchronous ��.�0 ��.28 ��.6�
AMI ��.�6 ��.�� ��.��
Interleaved 
AMI

�6.�� �6.�� �6.��

AMI Zero-
Copy

�6.6� �6.�� �6.88

 Next, for a transfer block size of �000KB:

Client/Server Synchronous AMD AMD Zero-
Copy

Synchronous �6.8� �6.�6 �6.��
AMI �6.�� �6.�� �6.��
Interleaved 
AMI

�6.60 �6.8� ��.��

AMI Zero-
Copy

��.02 ��.0� �6.��

As you can see, for the �0KB block size, interleaved AMI makes 
a significant difference. This is as expected because, with such a 
small transfer size, latency becomes a big issue. By using inter-
leaved AMI, we reduce the negative effects of network latency. 
As the block size gets larger, network latency is less of an issue 
because we make fewer remote calls. Zero-copy has no effect at 
all in these tests because the network is the bottleneck and we have 
CPU cycles to spare.

The obvious question then is why you would use a small block 
size over a WAN when you might just as well use a larger block 
size and save yourself the trouble of interleaved AMI?

If the server handles many thousands of clients, a large block 
size becomes difficult due to memory limitations. For example, 
consider a �MB block size. If there are �02� clients concurrently 
transferring files, that adds up to a total 2GB in the server, 1GB 
for the data buffers, and �GB for the marshaling buffers. While 
2GB of memory for modern-day machines is not such a big deal, 
consider what happens if the load increases to �,000 or �0,000 
clients! (Of course, if we need to transfer a large number of small 
files, we cannot get away from the small block size, unless we use 
more complex algorithms to send multiple files in a single transfer 
block.)

Conclusion
As dual and multi-core machines become more and more com-
mon, designing your applications to take advantage of this extra 
processing power is important. Fortunately, Ice makes this simple. 
By using asynchronous method invocations, your applications can 
easily take advantage of multiple threads without actually having 
to write complicated threaded code yourself. Furthermore, by using 
the zero-copy API that Ice provides, it is possible to reduce the 
memory footprint and increase the performance of bulk data trans-
fers. The tests show that, even for a scenario where it should be 
very difficult for general-purpose middleware to compete (namely, 
file transfer), Ice presents essentially no overhead compared to 
an optimal implementation that uses plain sockets. More impor-
tantly, the Ice code is significantly easier to write and maintain. If 
your application runs over the internet (that is, over a WAN, not 
a LAN), zero-copy does nothing to increase throughput, but will 
reduce memory footprint. The most profitable optimization for file 
transfer is interleaved AMI because it reduces the effects of latency 
on data transfer.

optImIzIng performance of fIle transfers
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FAQ Corner
In each issue of our newsletter, we present a few frequently-asked 
questions about Ice. The questions and answers are taken from our 
support forum at http://www.zeroc.com/vbulletin/ and deal with 
specific problems that developers tend to encounter, and for which 
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this 
section useful.

Q: How can I speed up large requests?

For large requests, the network bandwidth is usually the most im-
portant factor that limits performance. However, with high-speed 
(gigabit) networks, bandwidth becomes less of an issue and mar-
shaling overhead and memory management become significant as 
well. The Ice protocol enables very efficient marshaling and does 
not require developers to do anything special to achieve optimal 
performance. However, the memory management of a program can 
have an impact on overall performance.

The performance of malloc/free varies greatly from system 
to system. Beside the obvious issue of raw hardware speed, perfor-
mance depends on the quality of implementation of the memory 
manager. But even high-quality implementations may use trade-
offs that can adversely affect the performance of your application. 
For example, different memory managers use different strategies to 
allocate blocks of different sizes. For this discussion, we will focus 
on Linux. 

A simple test to measure malloc performance is to allocate and 
free a block in a loop and divide the total time taken by the number 
of iterations:

// C++ 
const size_t blockSize = 4 * 1024 * 1024; 
IceUtil::Time t = IceUtil::Time::now(); 
int j = 0; 
for(j= 0; j < 1000000; ++j) 
{ 
 char* b = (char*)malloc(blockSize); 
 free(b); 
} 
t = IceUtil::Time::now() ‑ t; 
cout << t.toMicroSecondsDouble() / j << endl;

The following table illustrates the relationship between the time 
taken by malloc and the size of the requested block:

Size (bytes) Time (microseconds)
2�0 0.0�
��20 0.0�

Size (bytes) Time (microseconds)
�680 0.08
���60 0.08
6���0 0.08
�22�80 0.0�
2���60 6.�
��2000 6.8
6��000 �.�
�000000 �.�
2000000 �0.0
�000000 ��.0

Notice the large increase in allocation time when going from 
�22,�80 bytes to 2��,�60 bytes. This increase is due to the default 
glibc behavior. The glibc malloc is based on a successful gen-
eral-purpose memory allocator by Doug Lea known as the Lea al-
locator. The Lea allocator recycles freed memory, avoids expensive 
system calls, and vastly improves malloc/free performance. 
However, glibc’s default behavior is to treat memory requests 
above a certain size differently—blocks above a certain size are 
allocated via mmap instead of using recycled blocks. Calls to mmap 
are more expensive than using the recyclable memory already held 
by the allocator. To make things worse, malloc continuously trims 
unused memory in order to reduce the amount of recyclable mem-
ory. This has the benefit of reducing the overall memory footprint 
of the process, but is costly if an application repeatedly triggers 
trimming by frequently allocating and freeing large blocks. 

The objective then is to configure  malloc so that it treats allo-
cations up to Ice.MaxMessageSize in the most efficient manner 
possible. The configuration options we will use are M_MMAP_MAX 
and M_TRIM_THRESHOLD. Setting M_MMAP_MAX to 0 disables 
allocating large buffers through mmap. We also need to alter the 
default trimming settings. We will disable trimming entirely for 
our purposes here, but you may want to experiment to see whether 
there are values that are more appropriate for your application. You 
configure malloc either through the mallopt call or via environ-
ment variables.

To disable use of mmap and trimming, you can make the follow-
ing two calls to mallopt in your code:

// C++ 
mallopt(M_MMAP_MAX, 0); 
mallopt(M_TRIM_THRESHOLD, ‑1);

Alternatively, you can set corresponding environment variables:

MALLOC_MMAP_MAX_=0 
export MALLOC_MMAP_MAX_ 
MALLOC_TRIM_THRESHOLD_=‑1 
export MALLOC_TRIM_THRESHOLD_

Here are the timings for malloc with blocks of different size 
with the default settings, and with mmap and trimming disabled:

faQ corner
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Size Default malloc 
parameters 
(microseconds)

mmap and trimming 
disabled 
(microseconds)

2�0 0.0� 0.08
��20 0.08 0.08
���60 0.08 0.08
6���0 0.08 0.08
�22�80 0.0� 0.08
2���60 6.� 0.08
��2000 6.8 0.08
6��000 �.� 0.08
�000000 �.� 0.08
2000000 �0.0 0.08
�000000 ��.0 0.08

For buffers that would normally be trimmed or allocated through 
mmap, the difference is staggering and, for large requests, has a 
direct impact on throughput performance. Using the Ice throughput 
test, we can see the impact of tuning on throughput.

default mal‑
loc() parameters 
MB per second

mmap() and trim-
ming disabled 
MB per second

throughput byte 
sequence 
�00,000 elements

��0 260

System specs: 3 GHz Pentium 4 with HT, 1 GB RAM, CentOS 4.4

With Linux, you can use mallopt to configure memory manage-
ment behavior. If your target system uses an allocator without 
similar options, you might consider a drop-in malloc replacement, 
such as the Hoard allocator or SmartHeap.

Q: Why do I get an 
UnmarshalOutOfBoundsException?

Consider the following interface:

// Slice 
interface Example { 
 void op(int i, int j); 
};

When a client invokes operation op, it supplies two integer 
parameters. The Ice run time marshals the parameters into the 
request that it sends on the wire. The request is preceded by a 
protocol header that, among other things, tells the server the total 
request size (including the ��-byte header). The server uses this 
information to read the appropriate number of bytes: it first reads 
the ��-byte header and checks the total request size. For example, 
that size might be �� bytes. The server then reads the remainder 
of the request, namely, 31−14=17 bytes and places these 17 bytes 
into a buffer for subsequent unmarshaling. The buffer keeps track 
of how many bytes of the payload are available for reading and 
prevents attempts to read more data than was actually contained in 
the request.

The ��-byte payload of the request contains 8 bytes for the two 
integer parameters. (The remainder of the payload contains other 
details about the request, such as the object identity and request 
ID, among other things.) Once the server has identified the correct 
target operation, it dispatches the incoming request to the Slice-
generated skeleton, which contains the code to unmarshal the 
two integer parameters. The skeleton retrieves 8 bytes from the 
unmarshaling buffer and converts them back into integers, and then 
passes these two integers to the implementation of operation op.

If the unmarshaling code in the skeleton tries to retrieve more 
data from the buffer than is actually available, the buffer raises 
an UnmarshalOutOfBoundsException. In plain language, 
the exception means “I expected a certain amount of data for the 
parameters of an invocation, but there wasn’t as much data avail-
able as there should be.” (Similar arguments apply when a client 
unmarshals the results of an invocation. In that case, the code goes 
through much the same actions, except that the unmarshaling is 
done by a proxy instead of a skeleton, and the data is contained in 
a reply instead of a request.)

So, how can this exception happen? Unless you are using the dy-
namic invocation or dispatch interfaces, the cause of this exception 
is invariably a mismatch in the Slice definitions that are used by 
client and server. For example, suppose that, originally, the preced-
ing interface looked as follows:

// Slice 
interface Example {  // Earlier version 
 void op(int i); 
};

faQ corner
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During development, you decided to add the second parameter, 
to turn the interface into the two-integer version we saw earlier. 
Suppose you faithfully updated the server with the new version 
of the interface but, for some reason, you forgot to update the cli-
ent. When you run client and server, the client runs with the old 
interface, but the server runs with the new interface. Of course, 
this means that the client will send only a single integer when it 
invokes op, but the server expects to receive two integers. This 
results in an UnmarshalOutOfBoundsException on the server 
side. (If we reverse the situation, such that the client expects two 
out-parameters, but the server sends only one, you would see the 
same exception on the client side instead.)

So, in short, UnmarshalOutOfBoundsException is invariably 
caused by mis-matched Slice definitions, unless you are using the 
dynamic invocation or dispatch interfaces (in which case your code 
contains the mismatch).

Note that you can easily catch Slice mismatches at run time by 
adding the ‑‑checksum option when you compile your Slice defi-
nitions. This option creates a dictionary in the generated code that 
contains a checksum for each Slice type. You can add an operation 
to the server that returns the dictionary to the client and verify in 
the client that the checksums for corresponding Slice types are the 
same; if they differ, you have mismatched Slice definitions. (Please 
see the Ice Manual for more details on Slice checksums.)

faQ corner
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