
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 21, February 2007

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 21, February 2007

Ice 3.2 Beta
When you read this, we will have
released Ice version 3.2 “beta”. In con-
trast to past releases, we have decided
to first release a beta version, shortly
followed by a final release. This will
give you some time to test the new
release and to report problems that can
only be solved in a binary-incompat-
ible way. In our past release history we

only had one such case, but one is too many.

There have been no changes to the Ice protocol for years, and
you won’t find any major changes in the rest of the Ice core either.
By all standards, the Ice core has become a mature technology. This
is important, because it gives you peace of mind when you upgrade.

The bulk of the enhancements are in our add-ons (or “Ice
services”). This reflects the natural development cycle of quality
middleware and computing frameworks: once there is a mature
base technology, the focus shifts towards using this technology in
components that provide specialized services to mission-critical
applications.

One example is the continued development of IceGrid. Ice ap-
plications are growing in complexity and size, with many such
applications deployed on computing systems that use a very large
number of nodes. IceGrid dramatically simplifies the deployment
and management of such applications. Among many other enhance-
ments, a major new feature of IceGrid is the ability to deploy re-
dundant application registries. Removing this last remaining single
point of failure has been one of the most requested features, and we
are happy to finally offer a solution, delivered with the quality you
have come to expect from ZeroC.

The best tools are useless without excellent documentation.
Apart from making many improvements to the contents of the Ice
manual, we went a step further: our manual is now available not
only as a single PDF download, but you can browse the complete
manual online as well. In addition, we have a completely rede-
signed Slice reference available for you.

This issue of Connections is fully dedicated to our new release.
Read on, and I’m sure you’ll find something that will benefit your
application!

Marc Laukien
President
ZeroC, Inc.

Issue Features

What’s New in Ice 3.2?
Michi Henning explains changes and additions to the Ice core
for release 3.2.

IceGrid Replication
IceGrid now offers a replicated registry to eliminate single-
point-of-failure scenarios. Benoit Foucher shows you how to
take advantage of this new feature.

IceStorm 3.2
Matthew Newhook gives you the run-down on all the improve-
ments to IceStorm, ZeroC’s publish–subscribe service.

Contents
What’s New in Ice 3.2? ... 2

IceGrid Replication ... 7

IceStorm 3.2 .. 12

FAQ Corner ... 20

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 21, February 2007 Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

What’s New in Ice 3.2?
Michi Henning, Chief Scientist

Introduction
The articles by Benoit Foucher and Matthew Newhook in this is-
sue detail the changes and new features in IceGrid and IceStorm,
respectively. This article looks at what else has been added and
changed in the 3.2 release—you will probably want to take advan-
tage of at least some of these changes in your code. As always, the
3.2 release also fixes a number of bugs and tweaks Ice in minor
ways, which I will not specifically mention here—please see the
CHANGES file in the Ice distribution for full details.

In the final section, I provide details on changes in documenta-
tion, installation, build environment, and supported platforms.

Mapping Changes

C++
The C++ mapping now allows you to map Slice structures to C++
classes (instead of C++ structures). Here is an example:

// Slice
["cpp:class"] struct Employee
{
	 long number;
	 string firstName;
	 string lastName;
};

By default, slice2cpp generates a C++ structure for this defini-
tion. The cpp:class metadata directive instructs the compiler to
generate a C++ class instead:

// C++
class Employee : public IceUtil::Shared
{
public:
	 Employee();
	 Employee(::Ice::Long,
			 const ::std::string&,
			 const ::std::string&);

	 ::Ice::Long number;
	 ::std::string firstName;
	 ::std::string lastName;

	 bool operator==(const Employee&) const;
	 bool operator!=(const Employee&) const;
	 bool operator<(const Employee&) const;
	 bool operator<=(const Employee&) const;
	 bool operator>(const Employee&) const;
	 bool operator>=(const Employee&) const;
};

As for the structure mapping, the generated class contains a public
data member for each member of the Slice structure. In addition,
the class provides a default constructor as well as a “one-shot”
constructor that allows you to instantiate and initialize the class in
a single statement:

// C++
EmployeePtr e =
	 new Employee(1234, "John", "Smith");

The class also provides comparison operators that behave like the
corresponding operators for the structure mapping: comparisons
are performed using the fields of the structure, going from major
to minor sort criterion in the order of definition of the structure
members.

The motivation for this mapping is that, on occasion, classes
can actually be more efficient than structures. This may seem
surprising, given that classes require heap allocation and are more
complex to marshal than structures. However, if you need to pass a
structure by value in many places in your code, you incur the cost
of copying the structure whenever it is passed to another function.
This copying can be rather expensive, especially for structures
with many members of complex type (such as string or sequence
members).

The class mapping for Slice structures solves the problem
neatly: you can pass a C++ const reference to a smart pointer
(EmployeePtr) for such a class instance, which, conceptually,
is the same as passing the instance by value. This is extremely
efficient at run time and, because smart pointers provide reference
counting, there are no life time issues: the class instance will be de-
leted once the last smart pointer to the instance goes out of scope.

Another change to the C++ mapping is that all exceptions now
derive from ::std::exception, so you can catch both standard
exceptions and Ice exceptions with a single catch handler.

Non-abstract Slice classes now have a protected default con-
structor, which makes it impossible to accidentally allocate a class
instance on the stack or in static storage.

Stream classes now support the zero-copy API.

Finally, Ice::initialize is now overloaded to accept a
string sequence instead of an argc/argv pair. (The same is true
for Ice::Application::main and Ice::Service::main.)
This is more convenient if you use application-specific configura-
tion properties because it avoids an extra conversion of the string
sequence returned by parseCommandLineOptions back into an
argc/argv pair.

What’s New in Ice 3.2?

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 21, February 2007 Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

C# and Visual Basic
We have added “one-shot” constructors for exceptions. Here is an
example:

// Slice
exception Error
{
	 string msg;
	 int val;
};

Here is an excerpt of the generated C# code for this exception:

// C#
public class Error : Ice.UserException
{
	 public int val;
	 public string msg;

	 public Error();
	 public Error(System.Exception ex__);
	 public Error(string msg, int val);
	 public Error(string msg, int val,
			 System.Exception ex__);
	 // ...
};

Note that the class has four constructors. The first two of these con-
structors were present in Ice 3.1, but the second two constructors
are new. Both are one-shot constructors that accept one parameter
for each data member of the exception, so you can initialize and
throw an exception in a single statement:

// C#
throw new Error("Good thinking", 99);

The second version of the one-shot constructor has a trailing
parameter that initializes the InnerException property of the
System.ApplicationException base class that all user excep-
tions derive from. Note that it is no longer possible to initialize the
Message property of ApplicationException. We removed the
ability to do this because a trailing string parameter for one-shot
constructors would have caused ambiguities for structures that con-
tain string members (possibly as a combination of base and derived
members).

If an exception has a base exception, you still get the one-shot
constructors. In this case, they accept one parameter for all data
members of the base and derived part, in base-to-derived order.

For Visual Basic, we updated the mapping correspondingly, so
you will find the new one-shot constructors there as well.

Core Changes

Improved Configuration
Prior to this release, an IceBox service automatically inherited the
property settings of IceBox. For example, if you set Ice.Trace.
Network for IceBox, any service started by IceBox would inherit
that setting. As of release 3.2, this is no longer the case—IceBox
services only receive the settings specified by their correspond-
ing service property. For example, assume that we have an IceBox
Weather service and run IceBox with the following configuration:

IceBox Configuration
IceBox.Service.Weather=WeatherI --Ice.Config=Weath
er.cfg
IceBox.ServiceManager.Endpoints=...
Ice.Trace.Network=1

With release 3.1, the weather service would run with network trac-
ing whereas, with release 3.2, the weather service only receives the
configuration specified in Weather.cfg. For backward-compat-
ibility reasons, you can re-establish the old behavior by setting
IceBox.InheritProperties. If you have existing services
running with IceBox 3.1, it is likely that you will need to set this
property to retain their current behavior.

The Ice.Logger.Timestamp property is deprecated as of this
release—time stamps are now always added to log messages.

A new property, Ice.Default.EndpointSelection, allows
you to specify an endpoint selection policy for a communicator.

You can use <adapter-name>.ThreadPerConnection and
Ice.ThreadPerConnection to configure the thread-per-connec-
tion model for an adapter or communicator.

Thread-per-Connection for Proxies
You can require the connection used by a particular proxy to use
a thread-per-connection model, by calling a new method, ice_
threadPerConnection on a proxy. This method returns a new
proxy; the replies to invocations on that proxy are processed using
the thread-per-connection model. The
ice_isThreadPerConnection method on proxies allows you to
test whether a proxy is configured in this way.

You can also enable this feature via per-proxy configuration
properties, as explained in the following section.

Converting Properties to Proxies
The Communicator interface provides a new operation,
propertyToProxy, that makes it easy to create proxies from a
group of property settings. For example, you could set the follow-
ing properties for your application:

What’s New in Ice 3.2?

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 21, February 2007 Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Node Configuration
MyApp.Proxy=id:tcp –h hostA –p 1207
MyApp.Proxy.PreferSecure=1
MyApp.Proxy.EndPointSelection=Ordered

With these settings, calling
propertyToProxy("MyApp.Proxy")
on a communicator returns a proxy with the specified settings. This
makes configuration of clients more flexible.

Nonmutating Operations
We have deprecated the nonmutating keyword. As of this re-
lease, you should use idempotent instead to mark nonmutating
operations. For C++, if you want to map read-only operations
to C++ const member functions, you can do so by adding the
["cpp:const"] metadata directive to the corresponding opera-
tion.

Note that, if a 3.2 client must interoperate with a 3.1 server
that uses nonmutating for an operation, but you have re-
placed nonmutating with idempotent only in the client-side
Slice definitions, you will get an unmarshaling error on the
server side. To provide backward compatiblity, you can add the
["nonmutating"] metadata directive to an operation’s Slice defi-
nition on the client side, which ensures that the correct mode flag is
sent on the wire to prevent the unmarshaling error.

For Freeze, we have added the ["freeze:read"] and
["freeze:write"]metadata directives, which you can attach to
either an interface (in which case the directive applies to all opera-
tions), or to a specific operation (in which case the directive over-
rides the directive attached to the interface, if any). The directives
inform Freeze evictors whether an operation modifies its object,
so the evictor can adjust its save behavior accordingly. Without
any directive, the evictors assume that all operations are write
operations. For backward compatibility, you can set the Freeze.
Evictor.UseNonmutating property which causes Freeze to
assume that nonmutating operations do not modify the state of the
target object.

Contexts
We have made changes to the way contexts are established and
propagated. (The 3.1 APIs still exist, but are deprecated.) Firstly,
the core contains a new interface ImplicitContext:

local interface ImplicitContext
{
	 Context getContext();
	 void setContext(Context newContext);
	 string get(string key);
	 string put(string key, string value);
	 string remove(string key);
	 bool containsKey(string key);
};

In addition, the Communicator interface has a new operation:

// Slice
local interface Communicator
{
	 ImplicitContext getImplicitContext();
	 // ...
};

The ImplicitContext interface allows you to get and set a
context dictionary that is associated with a communicator, as well
as manipulate individual entries in that dictionary. If you establish
an implicit context on a communicator, that context is sent by the
Ice run time with every operation invocation you make via a proxy
that was created by that communicator. This replaces the per-com-
municator default context of Ice 3.1.

The new mechanism is more powerful because you can con-
trol the scope of the implicit context by setting a property, Ice.
ImplicitContext. You can set this property to one of three
values:

•	None
•	Shared
•	PerThread

Setting the property to None (or leaving it unset) means that the
communicator has no implicit context, so no context is sent with
each invocation (unless you explicitly provide a context at the
point of call, or attach a context to a specific proxy).

Setting the property to Shared creates a single implicit con-
text, whose contents are sent with every operation invocation. In
addition, the operations on the ImplicitContext interface are
interlocked in this case, so you can manipulate the implicit context
from different threads without risking race conditions or data
corruption.

Setting the property to PerThread creates a separate implicit
context for each execution thread that makes invocations. (In
effect, there are as many contexts as there are invocation threads
in the client, with each context held in thread-specific storage.)
This allows you to propagate context values that differ for each
thread, which is necessary, for example, to implement distributed
transactions.

As with Ice 3.1, you can still pass a context explicitly by sup-
plying an additional context parameter to an individual invocation,
and you can still attach a context to an individual proxy. However,
the semantics of how contexts interact have changed. Here are the
complete rules for Ice 3.2:

•	 Whenever you supply an explicit context at the point of call,
only that context is sent with the invocation; the implicit
context (if any) and the per-proxy (if any) context are simply
ignored in that case.

What’s New in Ice 3.2?

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 21, February 2007 Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

•	 If you have set an implicit context on a communicator and
invoke on a proxy without a per-proxy context, the implicit
context on the communicator is sent. Changes to the implicit
context immediately become visible to all invocations made
via proxies created by that communicator. (In effect, if a
proxy does not have a per-proxy context, and the invocation
was not supplied with an explicit context, the current implicit
context on the communicator provides the default.)

•	 If you set a per-proxy context on a proxy, that per-proxy con-
text is stored by the proxy and, thereafter, used for all invoca-
tions via that proxy (unless overridden by an explicit context
at the point of call). Because proxies are immutable, such a
per-proxy context, once set on a proxy, cannot be modified.

•	 If you have an implicit context on a communicator as well as
a per-proxy context on an individual proxy, the two contexts
are combined, so both the implicit context and the per-proxy
context are sent with invocations via the proxy. If the implicit
context and the per-proxy context contain name–value pairs
with the same keys but different values, the name–value pairs
of the per-proxy context take precedence.

Logging
Ice has always allowed you to attach a logger to a communicator.
However, if your code used multiple communicators, you needed
to attach a logger to each communicator. With Ice 3.2, we have
added a per-process logger that applies to all communicators (un-
less a specific communicator uses a separate logger). You establish
this per-process logger by calling Ice::setProcessLogger, and
Ice::getProcessLogger returns the current per-process logger
(and creates a default logger that logs to stderr if no per-process
logger has been set previously). Once you have called
Ice::setProcessLogger, all communicators created after that
point automatically use the per-process logger (unless you specify
a different logger at communicator creation time).

User-Defined Signal Handlers
The Ice::Application class makes it easy to correctly initial-
ize the Ice run time, and to correctly finalize it again, even in the
presence of signals. Prior to release 3.2, however, there was no
way to do application-specific clean-up on receipt of signal. This
release fixes this by providing an interruptCallback method
that you can override to add application-specific clean-up code that
is executed when a signal is received.

Improved Configuration Checking
You can set Ice and Ice service properties on the command line
or in a configuration file. Misspelling a property name has always
been caught by the Ice run time, provided that the property name
starts with one of the recognized prefixes, such as Ice or IceBox.
However, properties that are targeted at an object adapter were not

checked for spelling errors prior to this release, so a property set-
ting such as MyAdapter.AdapterID=1 was not caught as errone-
ous. As of this release, such a configuration error is reported with
a warning. (If you are finding it hard to see what is wrong with
the preceding setting, you now know why we made this change—
AdapterId must have a lower-case ‘d’.)

Similarly, prior to release 3.2, it was easy to misspell the
name of an object adapter, resulting in no configuration of the
adapter. For example, an error such as MyAdater.AdapterId=1
went undetected. As of this release, if you create a named ob-
ject adapter without any configuration, the run time raises an
InitializationException.

Another potential source of error was accidental creation of an
object adapter without endpoints due to such a spelling mistake.
With release 3.2, the run time prints a trace message for object
adapters without endpoints if you set Ice.Trace.Network to 2,
making it easier to diagnose such a problem.

Testing for Run Time Finalization
The Communicator interface now contains an operation
isShutdown, and the ObjectAdapter interface now contains an
operation isDeactivated. With these operations, you can write
code that must be aware of finalization without having to track the
state of the run time in separate variables.

Flushing Batched Message
In releases prior to 3.2, it was easy to exceed the maximum al-
lowable message size of a batch before flushing the batch. With
Ice 3.2, batch messages are flushed automatically once the addition
of another message to the batch would cause the batch to exceed
the maximum message size, so you no longer need to worry about
flushing explicitly before the maximum is exceeded. You disable
this behavior by setting Ice.BatchAutoFlush to zero. Explicit
flushing is useful if you need to guarantee in-order dispatch of
messages across groups of batches—see the Ice Manual for details.

Selection of Secure Endpoints
If you set the property Ice.Default.PreferSecure, the run
time attempts to contact an object via its SSL endpoints before try-
ing any TCP (or UDP) endpoint. You can also set this behavior on
a per-proxy basis by calling ice_preferSecure on a proxy, and
test whether a proxy is configured that way by calling
ice_isPreferSecure.

You can also set Ice.Override.Secure, in which case the run
time will ignore all non-SSL endpoints in a proxy.

What’s New in Ice 3.2?

http://www.zeroc.com/Ice-Manual.html

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 21, February 2007 Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Documentation
With this release, we provide the full Ice documentation, includ-
ing a Slice API reference, as a set of online HTML pages. You
can find the latest version of the Ice documentation at http://www.
zeroc.com/Ice‑Manual.html, and the latest version of the Slice
API reference at http://www.zeroc.com/Slice‑Reference.html. The
documentation and reference also provide a search feature, so you
can quickly locate a topic.

Of course, you can still download the Ice Manual as a PDF file,
either from our download area, or by following the link in this
paragraph.

Installation
This release adds binary install packages for Red Hat Enterprise
Linux 4 and SUSE Linux Enterprise Server 10.

We have also added example /etc/init.d scripts for SUSE
Linux Enterprise and Red Hat Enterprise Linux, as well as an
example configuration file for Windows. This makes it easier to
start Ice services as a daemon on Linux or as a service on Windows
when their host machine is booted.

Build Environment
On Windows, we no longer provide Visual Studio project files.
Unfortunately, these files turned out to be very brittle and created
an unacceptable maintenance burden. If you want to build Ice from
source, please use nmake instead.

Of course, there is nothing to stop you from using Visual Studio
project files to build your own Ice applications—you need to use
nmake only if you want to build Ice itself from source code. We
also still ship Visual Studio project files for the demo code; you
can use these project files as a starting point for creating your own
project files.

Platform Support
Release 3.2 supports the following new platforms:

•	 Microsoft Windows Vista
•	 Sun Solaris 10
•	 SUSE Linux Enterprise Server 10
•	 Microsoft Windows Server 2003 (new for Ice for C# and

Visual Basic)

Note that, for example, Ice for Ruby is likely to work on Windows
Server 2003 too. However, we do not specifically test Ice for Ruby
on this platform. (If you need explicit and guaranteed support for a
particular platform, please contact us at info@zeroc.com.)

As Ice has increased in sophistication and features, so has the
amount of work involved for us to create, test, document, and
package each new release. As a result, we have dropped official
support for a number of platforms. Of course, this does not mean
that Ice does not work on these platforms (mostly likely, it will).
However, we no longer explicitly test new releases on these
platforms:

•	 Red Hat Fedora Core
•	 IBM AIX
•	 Sun Solaris 9
•	 Microsoft Windows 2000

We have also removed support for Microsoft .NET 1.1—Ice 3.2 C#
and Visual Basic applications must use .NET 2.0.

What’s New in Ice 3.2?

http://www.zeroc.com/Ice-Manual.html
http://www.zeroc.com/Ice-Manual.html
http://www.zeroc.com/Slice-Reference.html
http://www.zeroc.com/Ice-Manual.pdf
mailto:info@zeroc.com

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 21, February 2007 Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

IceGrid Replication
Benoit Foucher, Senior Software Engineer

Introduction
With the Ice 3.2 release, we have added a much asked-for feature
to Ice: the replication of the IceGrid registry. With replication, it is
now possible to deploy multiple registries, both to spread the load
of client queries, and to provide high availability and fault toler-
ance. In this article, I will give you an in-depth look at IceGrid
registry replication, and I will review other new features that we
are providing with this release.

Replication

Presentation
The IceGrid registry uses master–slave replication: one registry
runs as the master and one or more other registries run as slaves. It
is possible to upgrade a slave to a master by restarting the slave.

The IceGrid registry provides a number of different services.
Most of these services are replicated and accessible through the
master as well as the slave registries. However, some services are
accessible only through the master, while other services are acces-
sible through slaves, but are limited in functionality. Let’s review
the services provided by the registry and how their functionality is
affected depending on whether the registry is a master or a slave.

The most important service provided by the IceGrid registry is
the location service. Similar to the DNS, it enables Ice clients to
locate objects and object adapters in Ice servers without having to
hard-code host names and port numbers. Like the DNS, the loca-
tion service is vital to distributed applications and must be highly
available; it should come as no surprise that the location service
is fully replicated and provides full functionality regardless of
whether the registry is a master or a slave.

Similarly, the IceGrid::Query interface is replicated and
accessible on all registry instances. Invocations on the IceGrid/
Query well-known object can be sent to any of the replicated
registries.

The location service and the Query interface rely on a persis-
tent database that contains the deployment information of IceGrid
applications. A deployment can be modified only on the master
registry; the master takes care of notifying the slaves of updates to
the database and replicating that state in all the slaves. Whenever
a slave starts up, it re-synchronizes its database with the master
database (provided the master is up) to ensure that updates while
the slave was down are retrieved.

The deployment information contained in the registry database
is updated via the IceGrid::Admin interface. The IceGrid GUI
and the icegridadmin command-line utility use this interface
to deploy and manage applications. Both master and slave regis-
tries provide the Admin interface; however, when contacted on a
slave, the Admin interface is limited to read-only functionality so,
on a slave, you can view the deployed applications, adapters, and
objects, but you cannot modify them. To make updates, you must
connect to the master registry.

The administrative interface also enables you to view and shut
down IceGrid registries and nodes. However, you can see the run-
ning registries only when looking at the master—slave registries
are connected only to their master and are not aware of any other
slaves.

Finally, the resource allocation system of the IceGrid registry is
only accessible via the master. You cannot create client sessions to
allocate objects via slave registries.

Here is a summary of the different features available in master
and slave registries.

Master Slave
Query Interface Yes Yes
Location service Yes Yes
Client sessions (resource
allocation system)

Yes No

Administrative sessions
(Admin interface)

Yes (read/write) Yes (read-only)

Configuration
Configuring multiple instances of a registry is the same as config-
uring a single registry, with the addition of setting an extra prop-
erty, IceGrid.Registry.ReplicaName. This property must be
set to “Master” (or can be left unset) for the master registry; for
slave registries, the property must be set to a unique replica name.
Of course, the slaves must be able to contact the master registry.
However, nothing special is required for this—as for all applica-
tions that use IceGrid, the Ice.Default.Locator property sup-
plies a proxy that the slaves can use to locate the master.

Is that it? Yes, you really do not need to do anything else to con-
figure the master and slave registries! (As we will see shortly, we
could improve the value of the Ice.Default.Locator property,
but let us first take a look at master and slave configuration files
and then look at how to configure nodes and clients.)

Here is the configuration file of a master registry:

Master Registry Configuration
IceGrid.InstanceName=DemoIceGrid
IceGrid.Registry.Client.Endpoints=default ‑p 12000
IceGrid.Registry.Server.Endpoints=default
IceGrid.Registry.Internal.Endpoints=default
IceGrid.Registry.Data=db/master

IceGrid Replication

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 21, February 2007 Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

IceGrid.Registry.PermissionsVerifier=DemoIceGrid/
NullPermissionsVerifier
IceGrid.Registry.AdminPermissionsVerifier=DemoIceG
rid/NullPermissionsVerifier

And here is the configuration file of a slave registry:

Slave Registry Configuration
Ice.Default.Locator=DemoIceGrid/Locator:default ‑p
12000
IceGrid.Registry.Client.Endpoints=default ‑p 12001
IceGrid.Registry.Server.Endpoints=default
IceGrid.Registry.Internal.Endpoints=default
IceGrid.Registry.Data=db/replica1
IceGrid.Registry.ReplicaName=Replica1
IceGrid.Registry.PermissionsVerifier=DemoIceGrid/
NullPermissionsVerifier
IceGrid.Registry.AdminPermissionsVerifier=DemoIceG
rid/NullPermissionsVerifier

Note that it is not necessary to specify the IceGrid.
InstanceName property in the slave configuration file because the
slave registry gets the instance name from the identity of the loca-
tor proxy. (The master and all slaves use the same instance name.)

The IceGrid nodes need to be connected to all active registry
replicas. On start-up, a node tries to find the active registries and
establishes a session with each of them. It is through this session
that a registry can retrieve information on the state of the node’s
servers and eventually activate a server on the node. Without this
session, a registry cannot obtain the endpoints of an object adapter
deployed on the node and therefore may be unable to respond
to locate requests. So, how does the node find all of the active
registries? With the location service of course! As you can see in
the sample configuration file below, the node configuration has not
changed:

Node Configuration
Ice.Default.Locator=DemoIceGrid/Locator:default ‑p
12000
IceGrid.Node.Name=node1
IceGrid.Node.Endpoints=default
IceGrid.Node.Data=db/node1

If you would like to see the interactions between the master and
slaves, or between the nodes and registry replicas, you can enable
tracing using the following properties:

•	IceGrid.Registry.Trace.Replica controls tracing
about session lifecycle between the master and slaves.

•	IceGrid.Registry.Trace.Node and IceGrid.Node.
Trace.Replica control tracing about session lifecycle be-
tween the nodes and registry replicas.

Now, you may wonder how to configure Ice clients to take advan-
tage of a replicated registry. You simply specify the endpoints of
each registry in the Ice.Default.Locator property, as shown
below:

Ice.Default.Locator=DemoIceGrid/Locator:default –p

12000:default –p 12001

With this proxy, the client randomly selects a location service from
the registry replicas listening on ports 12000 and 12001. If one of
the replicas becomes unavailable, the client transparently connects
to the other.

You might also wonder if the Ice.Default.Locator proxy
specified in the configuration files of the slave registry and node
should contain multiple endpoints. The answer is yes, but to under-
stand the reasons we need to take a closer look at the interactions
between the registries and nodes.

The diagram below illustrates the process I described earlier:
when a node starts up, it tries to find all active registries and estab-
lishes a session with each of them.

Figure 1: Initial Deployment

The node contacts the registries using the default locator proxy
from its configuration. If this proxy contains the endpoints of only
one registry and that registry is unavailable, the node cannot find
the other registries and therefore cannot connect to them. Including
the endpoints of multiple registries in the locator proxy gives the
node a better chance of finding an active registry.

The same is also true for slave registries. When a slave registry
starts up, it uses the locator proxy to find the master registry. If the
proxy contains the endpoints of only one replica and that replica is
currently unavailable, the slave won’t be able to contact the master
registry. Although slaves do not communicate with one another,
one of the slaves could be promoted to be the master at any time.
In that situation, configuring each slave’s locator proxy with the
endpoints of all other registries provides the greatest amount of
redundancy. As you can see, the best strategy is to configure the
Ice.Default.Locator proxy for a slave, node, or client with the
endpoints of all registry replicas.

Using a Replicated Registry
Now that we have learned how to properly configure a locator
proxy, we can discuss other aspects of using a replicated registry.

IceGrid Replication

Master

Slave-1

Node-1

Node-2

Node 1

Node 2

Slave

Master

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 21, February 2007 Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

No modifications are necessary for an application that uses the
IceGrid::Query interface: when the Ice run time resolves the
identity IceGrid/Query, the location service returns the end-
points of all active registry replicas.

To create an administrative session via the IceGrid::
Registry interface, you can continue to use the IceGrid/
Registry well-known object. This object is not replicated and
is hosted by the master registry. You should use this object if you
intend to create an administrative session to modify the registry’s
deployment information. To connect to the IceGrid::Registry
interface of a specific replica, you can use the identity IceGrid/
Registry‑<replica‑name>, where <replica‑name> is the
name of the desired replica. Remember that, if you create an ad-
ministrative session with a slave registry, you are given read-only
access to the deployment information.

To create client and administrative sessions through a Glacier2
router, the IceGrid master registry still provides the IceGrid/
SessionManager and IceGrid/AdminSessionManager well-
known objects, respectively. Slave registries provide a well-known
object with the identity IceGrid/AdminSessionManager‑<rep
lica‑name> to allow the creation of administrative sessions with
the slave named <replica‑name>. Again, an administrative ses-
sion established with a slave is restricted to read-only access.

The following table summarizes the identities of the objects
hosted by the registry replicas.

Identity on the master Identity on slave
name

Locator IceGrid/Locator IceGrid/Locator

Query IceGrid/Query IceGrid/Query

Registry IceGrid/Registry IceGrid/Registry
-name

Client session
manager

IceGrid/SessionMa
nager

N/A

Admin session
manager

IceGrid/AdminSess
ionManager

IceGrid/AminSess
ionManager-name

Slave Promotion
You may need to promote a slave to be the new master if the cur-
rent master becomes unavailable. For example, this situation can
occur when the original master cannot be restarted immediately
due to a hardware problem, or when your application requires a
feature that is only accessible via the master, such as the resource-
allocation mechanism or the ability to modify the deployment data.

To promote a slave to become the new master, you need
to shut down the slave and change its IceGrid.Registry.
ReplicaName property to “Master” (or comment out that setting).
On restart, the new master notifies the nodes and registries that
were active before it was shut down. An inactive registry or

node will eventually connect to the new master if its default loca-
tor proxy contains the endpoint of the new master registry, or the
endpoint of a slave that is connected to the new master.

If you cannot afford any down-time of the registry and want
to minimize the down-time of the master, you should run at least
two slaves. That way, if the master becomes unavailable, there
will always be one registry available while you promote one of the
slaves.

If a master registry fails and cannot be restarted for some time,
you might need to update the node and registry configuration files
to remove the master’s endpoints from the default locator proxy.
While the original master was inactive, modifications may have
been recorded in the temporary master’s database; restarting the
original master with an obsolete database can cause an application
to fail. To synchronize the original master’s database, you should
initially restart the original master registry as a slave. At start-up,
it will synchronize its database with the temporary master registry.
Then you can shut down both registries and switch the roles of
master and slave.

Note that there is nothing to prevent you from running two
masters. If you start two masters and these two masters contain
different versions of the deployment information, some slaves and
nodes might get updated with out-of-date deployment information
(causing some of your servers to be deactivated). You can correct
the problem by shutting down the faulty master, but it is important
to keep this issue in mind when you restart a master since it might
disrupt your applications.

Other new features

Standard Error, Standard Output, Log Viewing
The IceGrid administrative tools now support remote access to the
following files:

•	 registry standard error and standard output,
•	 node standard error and standard output,
•	 server standard error and standard output, as well as user-de-

fined log files.

To access the output of a registry or node, you must configure them
to redirect to a file. The Ice.StdErr and Ice.StdOut properties
define the path names of the output files. You can also define these
properties for servers managed by an IceGrid node, or you can let
the node generate these properties automatically for all of its serv-
ers by defining the IceGrid.Node.Output property to the path
name of a directory in which to store the files.

For servers, you are not limited to viewing only standard error
and standard output. You can also specify in a server’s descriptor
the path names of additional log files that administrative tools are
allowed to access. Of course, if an administrative user has write-
access to the deployment information, he could modify the server’s

IceGrid Replication

Master

Slave-1

Node-1

Node-2

Connections
ZeroC’s Newsletter for the Ice Community

Page 10 Issue 21, February 2007 Page 11Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 11Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

descriptor to gain access to any file on the node’s host. However,
with the introduction of registry replication, you can run a read-
only registry by running it as a slave.

Ordered Load Balancing Policy
The replica group load balancing policy None is removed in this
release. Instead, setting the number of replicas to 0 for any load
balancing policy causes the locator to return the endpoints of all
the object adapters in the replica group. (Previously, setting the
number of replicas to 0 was equivalent to setting it to 1.) The
load balancing policy None is now equivalent to the Random
policy with the number of replicas set to 0. If your XML descrip-
tors explicitly set the n‑replicas attribute to 0, you should
update them to set it to 1. (The registry database upgrade script
upgradeicegrid.py automatically makes this change for de-
ployed applications.)

We also added a new load balancing policy. The Ordered policy
is useful when you want endpoints to be returned in order of prior-
ity. You specify priority as an integer value using the priority
attribute of an object adapter’s descriptor, as shown in the follow-
ing example:

<application name="OrderedApp ">
 <server‑template id="SimpleServer">
	 <parameter name="name"/>
	 <parameter name="priority"/>
	 <server id="${name}" exe="./server"
 activation="on‑demand">
	 <adapter name="Hello"
		 endpoints="tcp"
		 register‑process="true"
		 replica‑group="OrderedReplicaGroup"
		 priority="${priority}"/>
	 <property name="Identity" value="hello"/>
	 </server>
 </server‑template>
 <replica‑group id="OrderedReplicaGroup">
	 <load‑balancing type="Ordered"
	 n‑replicas="2"/>
 </replica‑group>
 <node name="fast‑node">
	 <server‑instance template="SimpleServer"
	 name="Main" priority="1"/>
 </node>
 <node name="slow‑node">
	 <server‑instance template="SimpleServer"
	 name="Backup" priority="2"/>
 </node>
</application>

When a client resolves the endpoints of the
OrderedReplicaGroup replica group, the locator returns the
endpoints of both servers such that the endpoint of Main appears
before the endpoint of Backup.

For a client to use these endpoints in the proper order, you must
configure its proxy with the Ordered endpoint selection type:

// C++
ObjectPrx proxy = communicator‑>stringToProxy(
	 "hello@OrderedReplicaGroup");
proxy = proxy‑>ice_endpointSelection(Ordered);
proxy‑>ice_ping();

In this example, the ice_ping request is always sent to the Main
server unless it is unavailable, in which case the request is sent to
the Backup server.

Service Property Sets
Property sets were introduced in Ice 3.1 and provide a convenient
way to define additional properties for server instances, especially
when you want to define a property for a particular server instance
without having to modify the template.

However, it was not possible to define additional properties for
a specific service instance of an IceBox server instance; you could
only define additional properties for the IceBox server instance and
inherit these properties in all of its services. With Ice 3.2, IceBox
services no longer inherit from the IceBox server properties by
default, so unless you explicitly configure the IceBox server to
continue to behave as in 3.1, server instance properties will not be
inherited by services.

Service property sets address this issue by allowing you to
configure additional properties for a specific service of an IceBox
server instance. In the following example, we define the additional
property Ice.Trace.Network for the IceStorm service of the
IceStorm server instance:

<application name="Sample"
 import‑default‑templates="true">
 <node name="localhost">
	 <server‑instance template="IceStorm"
	 name="IceStorm">
	 <properties service="IceStorm">
		 <property name="Ice.Trace.Network"
		 value="1"/>
	 </properties>
 </node>
</application>

Note that the IceStorm server template is imported from the
registry’s default templates, which are defined in the templates.
xml file included with your Ice distribution.

Administrative changes
The IceGrid.Registry.Admin endpoints no longer exist in
Ice 3.2. These endpoints used to provide access to the administra-
tive interface and the Glacier2 session managers. A new (and op-
tional) set of endpoints now supports the Glacier2 session manag-
ers: IceGrid.Registry.SessionManager. The administrative
interface now can only be accessed in an administrative session,

IceGrid Replication

Connections
ZeroC’s Newsletter for the Ice Community

Page 10 Issue 21, February 2007 Page 11Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 11Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

which is created by the IceGrid::Registry interface on the
endpoints defined in IceGrid.Regisrty.Client.Endpoints.

The icegridadmin utility was changed to support the creation
of administrative sessions. It now accepts the following options to
configure a session:

•	‑u, ‑‑username: login with the given user name.
•	‑p, ‑‑password: login with the given password.
•	‑S, ‑‑ssl: authenticate through SSL.

You can also specify these settings using the properties
IceGridAdmin.Username, IceGridAdmin.Password, and
IceGridAdmin.AuthenticateUsingSSL.

The icegridadmin utility also lets you connect to a spe-
cific registry replica using the –R or ‑‑replica option or the
IceGridAdmin.Replica property. We also improved the help
command to provide help by command categories, and you will
find new commands to list the running registries (which are avail-
able only if you are connected to the master registry) and to get in-
formation about each registry. Finally, you can now view registry,
node, and server standard error and standard output files as well as
server log files.

Predefined Variable Changes
On Windows, the value of the node.machine variable now de-
pends on the machine architecture. It can take the values x86, x64,
or IA64.

Locate Requests During Server Deactivation
Previously, a client could receive Ice::NoEndpointException
if a locate request was made for an object adapter while its server
was being deactivated, or Ice::ConnectionRefusedExcepti
on if the object adapter was deactivated but the server process had
not terminated yet. The IceGrid node considered the server active
as long as the process was still running.

This is no longer the case with Ice 3.2. The
wait‑for‑activation server descriptor attribute has been
replaced with the server‑lifetime attribute. This new attri-
bute retains the semantics of wait‑for‑activation and adds
new semantics with respect to server deactivation. A server is still
considered active when all of its registered object adapters having
the server‑lifetime attribute set to true are activated, but the
server is now considered to be deactivated as soon as one of its ob-
ject adapters having the server‑lifetime attribute set to true
is deactivated. In other words, a server is active only when all of its
“server lifetime” object adapters are active.

As a result, as soon as one of these object adapters is deactivat-
ed, the server is now considered to be deactivated. Locate requests
issued for the server’s object adapters are queued instead of

resulting in Ice::NoEndpointException or Ice::Connect
ionRefusedException. The queued locate requests cause the
server to be reactivated as soon as the process is terminated and are
answered when the object adapter is activated again.

API Changes
The getApplicationDescriptor operation in the IceGrid::
Admin interface has been replaced by the getApplicationInfo
operation. This operation returns an ApplicationInfo structure
that contains the application descriptor as well as new information
about the application, such as the user that created the application,
the creation time, the last user that modified the application, the
modification time, and some versioning information.

The IceGrid::RegistryObserver interface has been split
into three interfaces: IceGrid::ApplicationObserver,
the IceGrid::AdapterObserver, and IceGrid::
ObjectObserver. The new interface IceGrid::
RegistryObserver supports the monitoring of registry replicas.

On-the-Wire Compatibility and Upgrading to 3.2
Due to numerous changes in the IceGrid interfaces for Ice 3.2, Ice-
Grid components are not backward-compatible with previous re-
leases. IceGrid 3.2 is not on-the-wire compatible with IceGrid 3.1,
so you cannot run an IceGrid 3.2 registry with an IceGrid 3.1 node
and vice versa. (Beginning with Ice 3.2, we intend to maintain
on-the-wire compatibility with future releases so that it will be pos-
sible to mix IceGrid registries and nodes from different versions.)
Note that this limitation only applies to compatibility between Ice-
Grid registries and nodes—clients and servers built with previous
versions of Ice can work with IceGrid 3.2 without change.

To upgrade to IceGrid 3.2, you must upgrade your IceGrid
registry and nodes simultaneously. You also must upgrade the
registry database with the upgradeicegrid.py script provided
with your Ice distribution (in the /usr/share/Ice‑3.2b direc-
tory for RPM distributions and in the config directory for other
distributions).

Summary
A highly-available registry was the most-frequently requested
feature for IceGrid. With Ice 3.2, the registry no longer repre-
sents a single point of failure and applications that rely on it gain
greater reliability. If you would like to experiment with this new
feature, we have provided a C++ example in the demo/IceGrid/
replication directory.

As usual with each release, the other new features were added
based on the feedback from our customers and the members of our
developer forum. We look forward to hearing your opinions about
this new release and your suggestions on how we can continue to
improve IceGrid in future releases!

IceGrid Replication

http://www.zeroc.com/vbulletin

Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 21, February 2007 Page 13Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 13Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

IceStorm 3.2
Matthew Newhook, Senior Software Engineer

Introduction
With Ice 3.2, we have made many changes and additions to IceS-
torm to make the service more robust and efficient. This article
provides details on these changes, as well as some background
information that will help you to understand our motivation for the
changes.

Subscriber Pool
In Ice 3.1, threads from the publisher thread pool forwarded events
to connected subscribers. A consequence of this was that a blocked,
slow, or malicious subscriber could cause an IceStorm thread to
block for some time, or even forever, if no timeout was configured.

Figure 1: Ice 3.1
thread pool

Subscriber

Subscriber

Event send

send

Note that, once all of the threads in the thread pool were con-
sumed, a 3.1-based IceStorm could neither forward events to con-
nected subscribers, nor process new events from publishers.

With Ice 3.2, IceStorm is significantly more resilient in this re-
spect because it uses a separate subscriber thread pool. The threads
in this pool forward events to subscribers, thereby
decoupling the receiving side of IceStorm from
the sending side.

To understand the need for the subscriber
thread pool, we first need to look at the types
of failures that caused problems in Ice 3.1. In
particular, event forwarding could stop due to
IceStorm’s TCP/IP transport buffers filling up on
the sending side or due to connection timeouts.
As of release 3.2, Ice still does not guarantee that
invocations will never block the caller, even for
AMI and oneway invocations—see this FAQ
and previous Connections articles for details.
The subscriber thread pool is an effective way to

avoid blocking despite this. Furthermore, if correctly configured,
the subscriber thread pool also ensures that one misbehaved sub-
scriber does not affect other subscribers. (Note that IceStorm 3.2
is still subject to operating system limits on the number of threads
and available memory—if either of these is exhausted, IceStorm is
still vulnerable to denial of service.)

The subscriber thread pool is configured by a number of
properties:

•	IceStorm.Trace.SubscriberPool. A non-zero value
enables tracing for the subscriber thread pool.

•	IceStorm.SubscriberPool.Size. The initial size of the
thread pool, with 1 as the default.

•	IceStorm.SubscriberPool.SizeMax. The maximum size
of the thread pool. The default is 0, which means no limit.

•	IceStorm.SubscriberPool.SizeWarn. If the size of the
thread pool exceeds this value, IceStorm logs a warning. The
default value is 0, which disables the warning.

•	IceStorm.SubscriberPool.Timeout. If a thread stalls
(see below) in the preceding number of milliseconds, IceS-
torm adds a new thread to the subscriber thread pool (up to
a limit of IceStorm.SubscriberPool.SizeMax). The
default value is 1000 milliseconds.

Initially the pool is created with IceStorm.SubscriberPool.
Size worker threads. These threads push events to the subscribers
using the subscribers’ requested quality of service (QoS).

To determine if there are problems in delivering events, IceS-
torm looks at the threads in the subscriber thread pool once every
IceStorm.SubscriberPool.Timeout * 10 milliseconds.
A thread is deemed to be stalled if, at this time, the thread has
taken longer than IceStorm.SubscriberPool.Timeout mil-
liseconds to deliver an event. IceStorm adds an extra thread to
the subscriber thread pool if all threads in the pool are stalled and
there are pending events waiting to be delivered to subscribers.
Threads are added up to the maximum specified by IceStorm.
SubscriberPool.SizeMax. (If the number of threads exceeds
IceStorm.SubscriberPool.SizeWarn, IceStorm also logs a
warning.)

IceStorm 3.2

Figure 2: IceStorm SubscriberPool

subscriber poolthread pool

Subscriber

Subscriber

Event send

send

Event

Subscribersend

http://www.zeroc.com/faq/onewaysBlock.html

Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 21, February 2007 Page 13Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 13Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

If the number of stalls in the preceding IceStorm.
SubscriberPool.Timeout * 10 milliseconds is less than the
number of threads above IceStorm.SubscriberPool.Size, Ic-
eStorm removes one of the extra threads from the pool. This means
that extra threads are kept only while they are needed and that a
temporary slow-down does not cause extra threads to hang around
needlessly (thereby conserving resources). In effect, the subscriber
pool dynamically adjusts itself to the load on the service and the
speed of subscribers as appropriate.

Selection of a suitable timeout value is important. If the timeout
value is too low, IceStorm will unnecessarily create extra threads.
In addition, if subscribers slow down briefly but periodically, too
low a timeout value can create a yoyo effect where extra threads
are continuously created and destroyed. If the timeout value is
too high, throughput is compromised because it takes longer for
IceStorm to detect a stall. The choice of a timeout value depends
on how well your application can tolerate latency of event delivery,
the size of the events being sent, and the speed of the network. For
most applications, the default configuration will be suitable; how-
ever, I recommend that you enable subscriber pool tracing to verify
that the timeout is indeed appropriate for your application.

If IceStorm runs on a dedicated machine, with little or no load
from other applications or services, I recommend that you set the
publisher thread pool size to 1, and set the subscriber thread pool
size to the number of CPUs of the machine. This configuration
ensures optimal use of resources.

Performance
IceStorm’s performance depends on the load placed on the service.
Load is determined by several factors:

•	 the number of subscribers
•	 the number of publishers
•	 the rate of event publishing
•	 the size of event data

As an example, consider a sensor that publishes updates to a single
topic at a rate of one event per second. If there is one subscriber
to this topic, IceStorm must process one incoming invocation and
one outgoing invocation per second. If the number of subscribers
rises to ten, IceStorm must process one incoming invocation plus
ten outgoing invocations. If we raise the number of sensors to ten
as well, IceStorm now must process ten incoming invocations per
second, plus one-hundred outgoing invocations (ten for each sub-
scriber). Therefore, the total number of invocations is:

subscribers * publishers * publishRatePerSecond

The total bandwidth is

subscribers * publishers * publishRatePerSecond *
averageEventSize

You can use the throughput demo in the Ice distribution to bench-
mark the maximum throughput and use the latency demo to
benchmark the maximum number of messages per second for your
hardware and network. With these figures, you can use the preced-
ing calculations for a back-of-the-envelope estimate of the maxi-
mum load you can impose on IceStorm. If you run IceStorm on a
multi-CPU machine, you can assume that the maximum load scales
more or less linearly with the number of available CPUs (provided
that you are not limited by network bandwidth), so the maximum
load is roughly the number of available CPUs multiplied by the
number of events per second.

Delivery Method
Apart from basic load considerations, there are other factors that
affect throughput. On IceStorm’s receiving side, publishers control
how events are sent to the service by using a twoway, oneway,
datagram, batch oneway, or batch datagram proxy. In addition,
IceStorm can provide any of the available transports (UDP, TCP,
and SSL) on its endpoints. For benchmarking purposes, we assume
that subscribers can supply events at a high enough rate to prevent
IceStorm from running out of events to deliver to subscribers, so
event delivery to subscribers (not event receipt from publishers) is
the dominant factor that limits overall throughput.

On IceStorm’s sending side, subscribers control how events are
sent by IceStorm via the proxy and the quality-of-service setting
(ordered or unordered) they subscribe with. The following options
are possible: batch oneway, batch datagram, oneway, datagram,
twoway, and twoway-ordered. For the time being, I will concen-
trate only on the performance aspect of these options; I will discuss
their effect on delivery semantics shortly.

In terms of overall throughput, batch is fastest, followed by
oneway, twoway, and twoway-ordered. Batch delivery improves
overall throughput (events per second) because IceStorm com-
bines multiple events into a single message on the wire. However,
the performance improvement comes at a cost, namely increased
latency because IceStorm flushes batches only at regular inter-
vals, therefore events arrive in bursts. Moreover, if, for example,
a subscriber publishes an event just after the beginning of a flush
interval followed by an event just before the end of the same inter-
val, neither event is forwarded until the interval ends.

Oneway delivery is slower than batch delivery because, typi-
cally, it requires more invocations. (IceStorm optimizes oneway
delivery by forwarding events in batches if it has more than one
pending event for a subscriber, instead of sending every event as a
separate oneway invocation.) On the up-side, oneway delivery is
less “bursty” than batch oneway delivery because it reduces overall
latency.

Twoway delivery is slower than oneway delivery because it
incurs return traffic on the wire. A benefit of twoway delivery is
that it enables IceStorm to detect non-functional subscribers (such
as non-existent subscribers and subscribers that have subscribed

IceStorm 3.2

Connections
ZeroC’s Newsletter for the Ice Community

Page 14 Issue 21, February 2007 Page 15Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 15Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

to a topic with the wrong interface) and cancel their subscriptions;
with oneway delivery, IceStorm cannot detect such errors and will
cancel a subscription only when the connection to a subscriber
becomes non-functional.

Finally, twoway-ordered delivery is slower than twoway deliv-
ery because it forces IceStorm to delay sending an event until it
has received the reply for the preceding event. On the other hand,
twoway-ordered delivery guarantees that events will be received
by the subscriber in the same order as they were received by IceS-
torm. (I will return to the advantages of twoway-ordered delivery
shortly.)

We extensively profiled and benchmarked IceStorm; the 3.2 ver-
sion provides improved performance for all subscription types.
Interestingly, the biggest gain came from forwarding oneway mes-
sages in batches and immediately flushing the batch. This approach
is more efficient in memory and CPU consumption, and it also
reduces lock contention and network load. (See the Ice Manual—
as of this release also available as an online version—for a general
discussion of batch messages.)

Configuring the Publisher Adapter
For IceStorm’s publisher adapter, you can either use a thread pool
or configure it to use a separate thread for each publisher. (You can
set Ice.ThreadPool.Server.Size to increase the number of
threads in the pool, or set Ice.ThreadPerConnection to a non-
zero value to run a separate thread for each publisher.) By default,
IceStorm uses a thread pool with one thread.

As a rule, you will want to leave the publisher adapter in its
default configuration, at least for applications that have many more
subscribers than publishers. In that case, increasing the publisher
adapter’s thread pool size or using a separate thread for each sub-
scriber is unlikely to improve performance because there will be
no need for IceStorm to process incoming events concurrently (but
increased concurrency also increases overhead). Only if you have
more publishers than subscribers might you see an improvement
in throughput or latency; however, you should run benchmarks
for your specific application scenario to verify any changes to the
default configuration.

Note that this advice differs considerably from what is appro-
priate for IceStorm 3.1—when you migrate to IceStorm 3.2, you
should keep this mind.

Instance Name
The property IceStorm.InstanceName is now used to produce
unique identities for each IceStorm topic. IceStorm 3.1 used the
following identities:

•	 topic-name
•	 topic-name/publish
•	 topic-name/link

In IceStorm 3.2, the corresponding identities are:

•	 instance-name/topic.topic-name
•	 instance-name/publisher.topic-name
•	 instance-name/link.topic-name

This identity format change affects the IceStorm database. We
have provided a Python script, config/upgradeicestorm.py,
that you can use to upgrade an IceStorm 3.1 database to the new
format. This upgrade does not change existing identities to the new
format so that everything remains fully backward-compatible.

Federation
We have made several changes to IceStorm federation to make
federation of IceStorm topics both easier to use and more reliable.
Firstly, what exactly is federation and why is it necessary?

Federation is a core strategy for distributing load. The basic idea
is to connect an IceStorm topic to several other IceStorm topics by
making several IceStorm topics a subscriber of the same topic in a
different IceStorm instance.

Figure 3: Federation

As can be seen from this diagram, IceStorm topics B, C, and D are
downstream from topic A. Conversely, topic A is upstream from B,
C, and D. By connecting subscribers to topics B, C, and D it is pos-
sible to handle three times as many subscribers as was previously
possible because each topic resides in a different IceStorm server.

This topography supports increased load in a fan-out fashion.
You can also federate using a fan-in arrangement, such that a single
topic subscribes to the same topic in several IceStorm servers.
However, such a topography does not provide any increase in the
overall maximum load because the downstream topic limits overall
throughput.

Prior to release 3.2, IceStorm ignored delivery failures to a
federated topic. This meant that when a federated topic became
unavailable, IceStorm continued to attempt delivery of events to
the downstream topic. This caused performance problems because,
in absence of the subscriber thread pool, threads in the publisher
thread pool were consumed at a high rate if the failure lasted for

IceStorm 3.2

A

B C D

http://www.zeroc.com/Ice-Manual.html

Connections
ZeroC’s Newsletter for the Ice Community

Page 14 Issue 21, February 2007 Page 15Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 15Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

some time. Starting with Ice 3.2, IceStorm now detects when a
downstream topic becomes unavailable. Once IceStorm diagnoses
a link to a downstream topic as non-functional, it discards events
for that topic. Periodically, it checks whether the downstream
topic has become functional again and, if so, re-enables delivery
of events to that topic. You can configure the amount of time in
between attempts to re-enable delivery by setting IceStorm.
Discard.Interval. The units are milliseconds, with a default of
one minute.

We also updated icestormadmin to simplify the management
of topic federations. Because the XML file format made it impossi-
ble to create federations of multiple IceStorm servers, we removed
the graph command. Instead, you can use the program’s link
command to create federations. The link command allows you
to specify a particular IceStorm server by providing the instance
name of its topic manager.

You can provide an instance name with other commands as
well, so you can administer any number of IceStorm servers from
a single location. To enable this feature, each server must have
a unique instance name. You make the instance names known
to icestormadmin by setting the property IceStormAdmin.
TopicManager.<name> to the proxy of the topic manager of
each server. For example, suppose we have the following IceStorm
deployment:

Figure 4: Initial Deployment

With this deployment, you would use the following configuration:

icestormadmin configuration
IceStormAdmin.TopicManager.A=IceStormA/TopicManage
r:tcp –h host-a –p 10000
IceStormAdmin.TopicManager.B=IceStormB/TopicManage
r:tcp –h host-b –p 10000
IceStormAdmin.TopicManager.C=IceStormC/TopicManage
r:tcp –h host-c –p 10000
IceStormAdmin.TopicManager.D=IceStormD/TopicManage
r:tcp –h host-d –p 10000

The various icestormadmin commands take the topic manager
as an optional part of the arguments. For example, to create a topic
named time on topic manager IceStormA you would use:

> create IceStormA/time

Note that the instance name is used to identify a particular Ic-
eStorm server, not the <name> suffix in the IceStormAdmin.
TopicManager.<name> configuration property.

icestormadmin provides a current command that sets a
default topic manager. For example, to create the above time topic
in IceStormA, you could also write:

> current IceStormA
> create time

The property IceStormAdmin.TopicManager.Default sets
the initial default topic manager. (For backward-compatibil-
ity, icestormadmin also continues to recognize the property
IceStorm.TopicManager.Proxy, which serves the same
purpose.)

The list command now also accepts an instance name, allow-
ing you to target it at a specific IceStorm instance. Creating two
topics in different servers and federating them is now as easy as:

> create IceStormA/time
> create IceStormB/time
> link IceStormA/time IceStormB/time

Per-Subscriber Publisher Objects
With Ice 3.2, IceStorm now supports per-subscriber publisher
objects. An event published using such an object is forwarded only
to one specific subscriber. Consider a typical IceStorm application
that obtains a publisher and publishes events:

// C++
ClockPrx clock = ClockPrx::uncheckedCast(
	 topic->getPublisher());
clock->tick();

This code publishes a tick event to all subscribers to the topic. To
publish an event to only one specific subscriber, you can use the
following code:

IceStorm 3.2

host-a

instance name

IceStormA

host-d

instance name

IceStormD

host-c

instance name

IceStormC

host-b

instance name

IceStormB

Connections
ZeroC’s Newsletter for the Ice Community

Page 16 Issue 21, February 2007 Page 17Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 17Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

// C++
ClockPrx clock = ClockPrx::uncheckedCast(
	 topic->subscribeAndGetPublisher(
		 IceStorm::QoS(), subscriber));
clock->tick();

This publishes the event only to the subscriber specified by the
subscriber argument. To see why this is useful, consider the
observer pattern. For example, we might have a list of users whose
contents change over time, and an observer of the list. Without us-
ing IceStorm, a canonical interface for this would look something
like the following:

// Slice
interface ListObserver
{
 void update();
};

interface List
{
	 void attach(ListObserver* observer);
	 void detatch(ListObserver* observer);
	 StringSeq getContent();
};

A specific observer would look something like:

// C++
void
ListI::addUser(const string& user)
{
 // call update on each observer
}

void
ListObserverI::update()
{
	 StringSeq users = _list->getContent();
	 // Do whatever
}

Via IceStorm, the list can publish to a given topic and the list
observer can subscribe and unsubscribe to that topic by calling
attach and detach. Note that the above code calls back from the
observer to the list to get the updated state. This is not all that scal-
able because, with many observers, the list must handle the load of
returning the new state to all the observers. Instead, it is better to
broadcast the new state over the topic:

// Slice
interface ListObserver
{
 void add(string user);
 void remove(string user);
};

This avoids the need for the callback and makes the system more
scalable. However, with this design, updates to the list are broad-
cast incrementally, one change at a time, so the observers must be

informed of the initial state of the list when they attach. Typically
this is done with an init method:

// Slice
interface ListObserver
{
 void init(StringSeq users);
 // ...
};

attach is coded something like this:

// C++
void
ListI::attach(const ListObserverPrx& observer)
{
	 observer->init(getContent());
	 _topic->subscribe(IceStorm::QoS(), observer);
}

However, this code has a problem. What if the state changes
between the call to init and the subscription? In this case, the
observer gets an inconsistent view of the list because it misses one
or more updates. (Changing the order of initialization and subscrip-
tion does not help because then the observer can get updates before
it gets the initial dataset.) Here is a possible solution:

// C++
void
ListI::attach(const ListObserverPrx& observer)
{
	 IceUtil::Mutex::Lock sync(*this);
	 observer->init(getContent());
	 _topic->subscribe(IceStorm::QoS(), observer);
}

void
ListI::addUser(const string& user)
{
 IceUtil::Mutex::Lock sync(*this);
 ListObserverPrx pub = ListObserverPrx::
uncheckedCast(_topic->getPublisher());
 pub->addUser(user);
 _content.push_back(user);
}

This solves the problem with synchronization but creates its own
problem because of the twoway call in the attach method: the
entire list remains locked for the duration of the init call, so a
misbehaved observer can block further updates to the list (poten-
tially indefinitely). (Note that making invocations on the IceStorm
service with the mutex locked is not a problem because IceStorm
will not block the caller for any length of time.) There are various
other ways to solve this problem, such as sending the init call
through IceStorm itself; however, they are all somewhat complex
and incur additional overhead. IceStorm makes it easy to deal with
this problem through its per-subscriber publisher object:

IceStorm 3.2

Connections
ZeroC’s Newsletter for the Ice Community

Page 16 Issue 21, February 2007 Page 17Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 17Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

// C++
void
ListI::attach(const ListObserverPrx& observer)
{
	 IceUtil::Mutex::Lock sync(*this);
	 ListObserverPrx subPub =
		 ListObserverPrx::uncheckedCast(
			 _topic->subscribeAndGetPublisher(
				 IceStorm::QoS(), observer));
	 subPub->init(getContent());
}

void
ListI::addUser(const string& user)
{
	 IceUtil::Mutex::Lock sync(*this);
	 ListObserverPrx pub =
		 ListObserverPrx::uncheckedCast(
			 _topic->getPublisher());
 pub->addUser(user);
 _content.push_back(user);
}

In this example, the attach method uses the per-subscriber
publisher object to send the init call to the observer via IceS-
torm, instead of calling the observer directly. Because the updates
received by the topic publisher and per-subscriber publisher ob-
jects are serialized, we can guarantee that the observer will get the
state of the list before it receives any updates. Notice that the code
still makes twoway invocations with the mutex locked; however,
in contrast to the previous implementation, there is no danger of
blocking because IceStorm mediates these calls.

Subscription Changes
If you call Topic::subscribe, you will get the same behavior
as with IceStorm 3.1. However, we have deprecated subscribe;
instead, you should call Topic::subscribeAndGetPublisher.
This method has semantics that differ from those of subscribe.
Firstly, if you try to subscribe a proxy with the same identity as
an already-subscribed proxy, subscribeAndGetPublisher
throws an AlreadySubscribed exception (instead of silently
replacing the subscription, as subscribe does). Secondly, the
allowable values of IceStorm::QoS differ. With subscribe,
the reliability QoS could contain the values oneway, batch,
twoway, or twoway ordered. With subscribeAndGetPublis
her, the only allowable value is ordered (or the empty string). To
select oneway, batch, or twoway subscription with IceStorm 3.2,
subscribers simply pass a proxy of the appropriate type. Also note
that the default subscription mode is now twoway (since that is the
default mode of a proxy), whereas, previously, it was oneway.

Here are a few examples that compare IceStorm 3.1 and IceS-
torm 3.2 code:

// C++
// Old
IceStorm::QoS qos;
// Subscribe with oneway sematics
qos["reliability"] = "oneway";
topic->subscribe(qos, subscriber);
// New
topic->subscribeAndGetPublisher(
	 IceStorm::QoS(), subscriber->ice_oneway());

// Old
IceStorm::QoS qos;
// Subscribe with oneway datagram sematics
qos["reliability"] = "oneway";
topic->subscribe(qos, subscriber->ice_datagram());
// New
topic->subscribeAndGetPublisher(
	 IceStorm::QoS(), subscriber->ice_datagram());

// Old
IceStorm::QoS qos;
// Subscribe with oneway batch sematics
qos["reliability"] = "batch";
topic->subscribe(qos, subscriber);
// New
topic->subscribeAndGetPublisher(
	 IceStorm::QoS(),
	 subscriber->ice_batchOneway());

// Old
IceStorm::QoS qos;
// Subscribe with oneway batch datagram sematics
qos["reliability"] = "batch";
topic->subscribe(qos, subscriber->ice_datagram());
// New
topic->subscribeAndGetPublisher(
	 IceStorm::QoS(),
	 subscriber->ice_batchDatagram());

// Old
IceStorm::QoS qos;
// Subscribe with twoway sematics
qos["reliability"] = "twoway";
topic->subscribe(qos, subscriber);
// New
topic->subscribeAndGetPublisher(
	 IceStorm::QoS(), subscriber->ice_twoway());

// Old
IceStorm::QoS qos;
// Subscribe with twoway ordered sematics
qos["reliability"] = "twoway ordered";
topic->subscribe(qos, subscriber);
// New
qos["reliability"] = "ordered";
topic->subscribeAndGetPublisher(
	 qos, subscriber->ice_twoway());

IceStorm 3.2

Connections
ZeroC’s Newsletter for the Ice Community

Page 18 Issue 21, February 2007 Page 19Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 19Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Ordering Semantics
When developing an application that uses IceStorm, you need to
select a QoS when publishing messages and subscribing to IceS-
torm. As previously discussed, the selected QoS affects perfor-
mance. However, QoS also affects ordering.

What do we mean by ordering? Ordering is relevant only in
the context of a single event publisher, that is, it refers to relative
ordering of events that originate from a single publisher, not to
absolute ordering of events that originate from several publish-
ers. Ordering is the guarantee (or lack thereof) that a subscriber
receives events from a particular publisher in the same order as the
publisher sent them. In the list example we saw earlier, ordering
clearly is important: an observer definitely must receive add and
remove events for a user in the original order, otherwise it gets a
view that is inconsistent with the real state of the list.

If you want events to be ordered, not only is the QoS impor-
tant, but also the concurrency model that is used by the publisher,
IceStorm, and the subscriber—doing the right thing only in the
publisher is not good enough.

Publisher
On the publisher side, the simplest option to ensure ordering is to
use twoway invocations to IceStorm. For example:

// C++
ListObserverPrx observer =
	 ListObserverPrx::uncheckedCast(
		 topic‑>getPublisher());
observer->addUser("matthew");
observer->removeUser("matthew");

Another option is to use oneway invocations to IceStorm, and
configure an appropriate concurrency model for IceStorm, either
thread-per-connection or a thread pool with a single thread. Both
of these models ensure that invocations cannot be dispatched out of
order. (I also recommend reading the section The Ice Run Time in
Detail—Oneway Invocations in the Ice Manual, or this FAQ.)

Alternatively, if you only care about ordering within a group of
events, you can use batch oneway. For example, you might have
two groups of events A, B, C and D, E, F. In this case, you can
put A, B, and C in one batch and flush, and then D, E, and F into
another batch and flush. This maintains ordering within each group
because messages in a batch are dispatched in order (but there is
no such guarantee for messages in different batches, unless there is
only one thread in the server-side thread pool, or you use thread-
per-connection). Note that, starting with Ice 3.2, Ice automatically
flushes batches once they reach the maximum message size (which
could be quite small if UDP is being used)—if you decide to use
batch events to maintain ordering, you should disable automatic
flushing by setting Ice.BatchAutoFlush to 0.

Subscriber
For subscribers with more than one thread in their thread pool, the
simplest option to maintain ordering is to use twoway-ordered QoS
when subscribing. For example:

// C++
IceStorm::QoS qos;
qos["reliability"] = "ordered";
topic->subscribeAndGetPublisher(
	 qos, subscriber->ice_twoway());

Note that selecting only the twoway QoS is not enough:

// C++. No ordering guarantee!
topic->subscribeAndGetPublisher(
	 IceStorm::QoS(), subscriber->ice_twoway());

The key difference between twoway and twoway-ordered is that
with twoway–ordered, IceStorm waits for a reply from the sub-
scriber before publishing another event to the same subscriber.
This means that, even if the subscriber uses several threads for
message dispatch, events will be processed by the subscriber in the
same order as they were sent. In contrast, with only twoway deliv-
ery (without the ordered QoS), IceStorm sends an event as soon as
it becomes available (without waiting for a reply to the previous
event), meaning that events can be dispatched out of order in the
subscriber if the subscriber uses multiple threads in its server-side
thread pool. With respect to ordering, twoway delivery is very
similar to oneway delivery; however, oneway messages can be lost
without IceStorm ever noticing, whereas twoway messages cannot.
(See this FAQ for details.)

The following table summarizes the ordering semantics, assum-
ing that dispatch uses multiple threads.

QoS Semantics
Oneway Unordered, fast. Can lose

events in the case of server-
side ACM on the subscriber.

Oneway batch Unordered, higher throughput,
but high latency. Can lose
events in the case of server-
side ACM on the subscriber.

Twoway Unordered. Cannot lose events
in the case of server-side ACM.
Slower than oneway.

Twoway ordered Ordered. All events strictly
serialized.

IceStorm 3.2

http://www.zeroc.com/Ice-Manual.html
http://www.zeroc.com/faq/onewaysOutOfOrder.html
http://www.zeroc.com/faq/onewaysLost.html

Connections
ZeroC’s Newsletter for the Ice Community

Page 18 Issue 21, February 2007 Page 19Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 19Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Oneway Subscription Caveats
If you use oneway subscription, you should be aware of a couple
of things.

With oneway subscription, IceStorm is limited in its ability to
clean up dysfunctional subscriptions. If IceStorm detects a failure
when it forwards an event, it automatically cancels the subscription
of the offending subscriber. However, with oneway subscription,
IceStorm may not detect a failure. For example, this can occur
when the subscriber process dies and then subsequently restarts
before more events are delivered by IceStorm. If the subscriber’s
endpoint uses a persistent port, but the subscriber object is not
re-added to the subscriber’s object adapter, IceStorm will not (and
cannot) notice the failure and will continue to attempt to deliver
events. For this reason, if you use oneway subscriptions, it is a
good idea to use a transient port for the subscriber’s object adapter.
That way, IceStorm will notice that the connection no longer works
and cancel the stale subscription.

Be aware that, if you use UDP to deliver events to subscribers,
there is no way at all for IceStorm to detect that a subscriber has
disappeared. In that case, you need to make sure that subscribers
unsubscribe before they disappear, otherwise stale subscriptions
will accumulate in IceStorm and eventually cause the service to
bog down.

Summary
IceStorm 3.2 provides improved performance, better control
over resource consumption, more reliable federation, centralized
administration, publishing to single subscribers, better isolation of
subscribers from failures of other subscribers, improved resilience
in the face of misbehaved subscribers, and automatic adjustment to
load. We hope that you will find these improvements worthwhile—
as always, we welcome your feedback in our developer forum.

IceStorm 3.2

http://www.zeroc.com/vbulletin

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue 21, February 2007 Page 21Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 21Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner
In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: How do JVM settings affect the performance of my
Ice-for-Java applications?

Ice produces many short-lived objects during request processing,
so giving some thought to how the Java run-time garbage collec-
tion works is worthwhile. There are many documents available on
the internet that discuss performance tuning as well as memory and
garbage collection of the Java virtual machine (JVM). We’ll sum-
marize some of the relevant issues here.

There are basically two ways you can alter the JVM’s behavior
to improve performance. Firstly, you can influence memory use
by changing how memory is allocated and organized by the JVM.
Secondly, you can influence how garbage collection is performed.
(A third mechanism, just-in-time (JIT) compilation, increases per-
formance by compiling the byte-code of frequently-used methods
to native code; however, JIT is enabled by default and is not tun-
able, so we ignore it for this discussion.) This discussion focuses
on the Sun Java HotSpot JVM; other JVMs may provide similar
options or additional tuning features.

First, let’s consider how objects are allocated and destroyed. The
HotSpot JVM implements a multi-generational garbage collector.
New objects are initially allocated in a young generation space.
After a while, an object that survives collections in the young
generation space is moved to the tenured generation space. When
a collection occurs on the young generation space, it is called a mi-
nor collection. If there isn’t sufficient free memory in the tenured
generation space, a major collection occurs. Major collections are
relatively expensive as they involve all live objects.

The young generation space is optimized for objects that have
short life times. If your application creates lots of objects that live
for a relatively short time, you can decrease the frequency of col-
lections in the young generation space by increasing the amount
of memory allocated to it. Unfortunately, this can also increase
the time it takes for the young generation collection to complete.
Optimal performance will involve getting the young generation to
the “right” size.

A few additional notes on the young generation space:

•	 If you are setting an upper bound for the Java heap (see the
‑Xmx option), you need to be careful not to set the young
generation space to more than half of the upper bound. This
is especially important when using the serial collector (the
default garbage collector on single-CPU machines). With
the serial collector, the JVM reserves enough memory in the
tenured generation space to ensure that a minor collection
will succeed when the young generation is full of live objects.
However, if there is not enough memory available in the ten-
ured generation space, a full collection is triggered instead.

•	 There are other options that affect the behavior of collec-
tions in the young generation space, such as configuring the
survivor space ratios. We won’t discuss these here. However,
if you want to change these options, you need to consider how
Ice works before doing so.

By default, the tenured generation is sized relative to the maximum
Java heap size and the size of the young generation space. If you
have somehow configured the JVM such that there insufficient
tenured space, you will know because you will get java.lang.
OutOfMemoryExceptions.

Apart from the young and tenured spaces, there is also a third
space, known as the permanent generation space. The permanent
generation space is intended for objects that live for the lifespan of
the application. If your application has a large number of classes,
you may want to turn on GC logging for a period of time and see
if the collector collects anything in the permanent generation. If
it does, you should consider increasing the size of the permanent
generation space. Some useful GC logging options are:

-verbose:gc Enable verbose GC logging.
-XX:+PrintGCDetails Provide detailed statistics about

collections.
-XX:+PrintTenuringDis
tribution

Give details about young gen-
eration survivor spaces and how
many objects are promoted to the
tenured space.

Here are some of the options for controlling how the JVM allo-
cates and organizes memory (please see Sun’s documentation for
details):

-Xms Configure the initial Java heap
size.

-Xmx Configure the maximum Java
heap size.

-Xmn Configure the maximum size
for the young generation space.

FAQ Corner

http://www.zeroc.com/vbulletin/

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue 21, February 2007 Page 21Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 21Issue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

-XX:+AggressiveHeap Instructs the VM to analyze
the current operating environ-
ment and attempt to optimize
settings for memory-intensive
applications. This option also
enables implicit garbage col-
lection and adaptive memory
sizing. It is intended for ma-
chines with large amounts of
memory and multiple CPUs.

-XX:NewRatio Configure the relative size of
the young generation space.

-XX:NewSize Configure the initial size of the
young generation space.

-XX:MaxNewSize Configure the maximum size of
the young generation space.

So how is this relevant to Ice? Besides application-specific issues,
there are some details of how Ice is implemented that affect how
the JVM will behave. For example, the size of the young genera-
tion is relevant to Ice because processing a request often involves
creation of transient objects. Complex types, sequences of types,
and rapid-fire requests can fill up the young generation space
quickly. If a request is very complex, it may result in the young
generation space filling before a single request is completed. In
turn, this causes some of the transient objects to spill over into the
tenured space. Eventually, the tenured space fills up and you end
up with an expensive major collection pass. Profiling typical load
scenarios will help you determine a good size for the Java heap and
young generation size.

Also of relevance is Ice’s per-connection buffer caching feature.
Marshaling buffers live for the duration of a connection between
a client and server communicator. Because these buffers can be
large, they can quickly fill the young generation space and cause
a collection. On the other hand, with buffer caching, the buffer
objects are quickly moved to the tenured space. This is a “good
thing” in that this leaves more room in the young generation space
for transient objects used during marshaling and unmarshaling.
However, if you create and close many connections, such as in a
heavily-loaded server, the tenured space may fill more quickly,
causing an expensive major collection pass. Ice 3.2 includes a new
configuration property, Ice.CacheMessageBuffers, that per-
mits you to disable the per-connection buffering feature, thereby
allowing most of the transient request data to remain completely in
the young generation space. Naturally, your Ice for Java applica-
tions (especially servers) will be happier with loads of memory.

By the way, if you have read somewhere that calling System.
gc() is a bad idea, here is why: System.gc() forces a major col-
lection, so all of your careful tuning goes out the window if an ap-
plications calls System.gc(). Fortunately, if an application does
this, you can run it with ‑XX:+DisableExplicitGC to make the
call a no-op.

Another area that affects performance is what the garbage col-
lector does when it needs to reclaim memory. The following col-
lectors are available in J2SE 5.0:

•	 The default (serial) collector
•	 Throughput collector (-XX:+UseParallelGC)
•	 Concurrent low pause collector

(-XX:+UseConcMarkSweepGC)
•	 Incremental collector (-XX:+UseTrainGC)

The default collector is a serial collector that pauses the applica-
tion during minor and major collections. If the host machine has a
single CPU, the serial collector will likely be as fast or faster as the
other collectors.

Pausing the entire application during garbage collection wastes
one or more CPUs for the duration of a collector run so, on hosts
with multiple CPUs, the throughput and concurrent low-pause
collectors are worth looking at. The throughput collector uses the
same collection mechanism as the serial collector for major col-
lections, but implements a parallel minor collector for the young
generation space. On the other hand, the concurrent low-pause col-
lector attempts to perform most of the work of a major collection
without interrupting your application. (Your application may still
pause briefly during collection, but not as long as with the serial
collector.) As with the throughput collector, the concurrent low-
pause collector collects objects in the young generation space in
parallel. Finally, the incremental collector tries to perform part of
the work of a major collection each time it does a minor collection
to amortize the cost of a major collection. However, the incremen-
tal collector is deprecated and will eventually be removed.

Which collector works best for your application depends on the
load of the application and the host system. However, unless you
have a system with multiple CPUs, tuning memory configuration
rather than garbage collection is likely to yield performance gains.
Let’s look at the Ice throughput demo as an example.

Running on a Dell Dimension 8250 (Intel P4 with HT enabled,
1GB of RAM, with CentOS 4.4 Linux), we get the following
results:

Configuration Throughput in Mbps
byte sequence send 785
byte sequence echo 795
string sequence send 41
variable length struct send 59
fixed length struct send 103

If we specify the heap size and increase the size of the young gen-
eration using the options ‑Xms250m ‑Xmx250m ‑Xmn100m:

FAQ Corner

Connections
ZeroC’s Newsletter for the Ice Community

Page 22 Issue 21, February 2007 Page PBIssue 21, February 2007 Connections
ZeroC’s Newsletter for the Ice Community

Configuration Throughput in Mbps
byte sequence send 870
byte sequence echo 885
string sequence send 94
variable length struct send 104
fixed length struct send 126

 So by just tweaking the memory configuration a little bit, we can
get a fairly sizable increase in throughput.

This machine only has a single CPU (hyper-threading notwith-
standing), so let’s see what happens if we throw a parallel collector
(‑XX:+UseParallelGC) into the mix.

Configuration Throughput in Mbps
byte sequence send 840
byte sequence echo 860
string sequence send 90
variable length struct send 100
fixed length struct send 125

The parallel garbage collection doesn’t appear to help here.
However, on a machine with several CPUs, you should see some
benefits by enabling parallel collection.

References:
Sun Microsystems. Tuning Garbage Collection with the Java™
Virtual Machine. http://java.sun.com/docs/hotspot/gc5.0/gc_
tuning_5.html.

Sun Microsystems. Ergonomics in the Java™ Virtual Machine.
http://java.sun.com/docs/hotspot/gc5.0/ergo5.html.

Sun Microsystems. Java 2 Platform, Standard Edition (J2SE Plat-
form), version 1.4.2, Performance White Paper. http://java.sun.
com/j2se/1.4.2/reference/whitepapers/index.html#3.

ZeroC, Inc. 2007. Distributed Programming with Ice. http://www.
zeroc.com/Ice-Manual.html.

FAQ Corner

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/gc5.0/ergo5.html
http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

