
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 22, April 2007

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 22, April 2007

Good Programmers
are Rare
This issue represents something of
a milestone for Connections: for the
first time, we are publishing an article
that was not written by one of ZeroC’s
staff, but by a customer. In this issue,
you will find An Autonomous Ve-
hicle Using Ice and Orca, by Alexei

Makarenko, Alex Brooks, and Ben Upcroft, who are members of
the Orca Project. In November, the Orca project will send a real car
into a competition that requires the car, by itself, to drive for sixty
miles through a cityscape complete with traffic signs, lane mark-
ings, obstacles, and other moving traffic. Now if that isn’t cool, I
don’t know what is... And the mind boggles at the complexity of
the task: the car has to “see”, plan a route, and follow the route
without bumping into other cars, all while obeying traffic rules—
Orca obviously has some first-rate programmers, and we wish them
good luck!

On the subject of programmers, we all know that there are good
and not so good programmers: it is not unusual to hear reports of
programmers who are ten times more productive than their col-
leagues on the same team. These are the programmers who are akin
to miracle workers—the much-fabled “super-hackers”. So, what is
it that these programmers have that their colleagues don’t?

Most programmers would agree that much of their work is fun-
damentally a creative activity. Coming up with good solutions to
tricky problems requires creativity, lateral thinking, being adven-
turous, and finding that new angle on a problem that other people
cannot see. In other words, being a good programmer requires
flair and, at the top level, is more of an art than a craft. (I believe
it is no coincidence that Donald Knuth called his famous series of
books The Art of Computer Programming.) In terms of the Myers-
Briggs Type Indicator, people with such artistic and lateral-thinking
qualities are known as STPs. About 10% of all people fall into this
category—not that many.

Another quality that good programmers require is fanatic atten-
tion to detail. Programs are supremely unforgiving, and the most
innocent omission or inaccuracy can have catastrophic conse-
quences. For example, in 1999, the Mars Climate Orbiter was lost
because a program produced thrust data in imperial units; that data
was passed to a trajectory calculation program that expected metric
units. Similarly, in 1996, an Ariane 5 was lost because the code
converted a 64‑bit floating-point number into a 16‑bit integer, caus-
ing overflow. (The story about Mariner 1 being lost due to a period
instead of a comma in a FORTRAN DO‑loop is fun to tell, but not
true.) These incidents show rather dramatically that programs have

zero tolerance for “Oh, come on, you know what I meant!” So,
good programmers are perfectionists. They cross all the t’s and dot
all the i’s, and they have the stamina to keep going long after mere
mortals have decided things are good enough. In terms of Myers-
Briggs again, people with such meticulous attention to detail are
known as NTJs. About 4% of all people fall into this category—not
many.

What are the chances of finding a good programmer? There are
not that many STPs, and there are even fewer NTJs. But the real
problem is that the two qualities that are required for good pro-
gramming are diametrically opposed to each other. People who are
artistic and creative lateral thinkers are usually not terribly good at
putting the lid back on the tube of toothpaste after brushing their
teeth. And, similarly, people who have the ability to check, test,
and re-check everything several times before they are satisfied are
usually not inclined to paint beyond the edge of the canvas. In other
words, the intersection of the sets of STPs and NTJs is very close
to empty. Or, to put it bluntly, how many creative, lateral-thinking,
anal-retentive perfectionists do you know? I don’t know many—
good programmers are a rare breed indeed!

Michi Henning
Chief Scientist

Issue Features

An Autonomous Vehicle Using Ice and Orca
The Orca team discuss how they use Ice in the urban challenge
competition.

Teach Yourself Glacier2 in 10 Minutes
In this article, Michi Henning gives a concise overview of how
to use Glacier2.

Contents
An Autonomous Vehicle Using Ice and Orca .................. 2

Teach Yourself Glacier2 in10 Minutes ............................ 7

FAQ Corner ... 13

mailto:a.makarenko@cas.edu.au
mailto:a.makarenko@cas.edu.au
mailto:a.brooks@cas.edu.au
mailto:b.upcroft@cas.edu.au
http://orca-robotics.sf.net
http://www.darpa.mil/grandchallenge/index.asp
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://en.wikipedia.org/wiki/Myers-Briggs
http://en.wikipedia.org/wiki/Myers-Briggs
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf
http://www.ima.umn.edu/~arnold/455.f96/disasters.html
http://en.wikipedia.org/wiki/Mariner_1
http://en.wikipedia.org/wiki/Mariner_1

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 22, April 2007 Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

An Autonomous Vehicle Using Ice
and Orca

Alexei Makarenko, BSD Team Software Architect,
Orca Project Administrator

Alex Brooks, Orca Project Administrator
Ben Upcroft, BSD Team Co-Leader

Australian Centre for Field Robotics

Introduction
The Urban Challenge sponsored by the US Defense Advanced
Research Projects Agency (DARPA) is today’s largest competition
in the field of mobile robotics. This year’s challenge is to build an
autonomous vehicle capable of traversing 60 miles of mock urban
area as fast as possible while obeying speed limits and other traffic
rules. Aside from emergency shutdown, no human intervention is
allowed once the car is on its way. The competition will be held on
the west coast of the US in November 2007.

This article is about the software used in the robotic car being
built by one of over sixty registered teams. The Berkeley-Sydney
Driving Team brings together researchers and students from Aus-
tralia and the United
States. The Australian
side is headed by the
Australian Centre for
Field Robotics from
the University of
Sydney and the Amer-
ican side is represent-
ed by University of
California, Berkeley.

Figure 1 shows our
team’s car, a modi-
fied Toyota RAV4
sports utility vehicle.
Custom actuators
were installed to allow
computer control of
accelerator position,
braking, and steering.
Environmental sen-
sors such as cameras
and lasers are placed
on the roof. The com-
puter rack is located
in the back of the car.

The goal of the competition is to navigate through a series of
checkpoints specified with GPS coordinates. This has to be done
while driving safely and obeying traffic rules such as staying in
lanes, not exceeding speed limits, safely passing other cars, cross-
ing intersections, etc.

Algorithmically, this task translates into the ability to make and
execute plans that bring the car from point A (the current location)
to point B. In order to make that happen, we must extract infor-
mation from the on-board sensors about the environment and the
vehicle itself. Some of the representative sub-tasks include tracking
the vehicle location relative to the map; identifying street boundar-
ies, buildings and other cars; controlling vehicle motion; reasoning
about traffic rules, and many others.

The Software Architecture
Building reliable robotic hardware is a difficult task in itself, but
the major challenge of this competition is in software. The main
difficulties arise from the task’s complexity and its dynamic real-
time nature. Other contributing factors include the distributed
and cross-platform computing environment, the large number of
software contributors, and the need to use existing code.

Our software is built using a Component-Based Software
Engineering (CBSE) approach. This offers modularity, software
reuse, and flexibility in deployment, all of which are necessary to
address the problems listed above. Applied to a robotic application,

An Autonomous Vehicle using Ice and Orca

Figure 1: The customized Toyota RAV4 during initial field trials.

mailto:a.makarenko@cas.edu.au
mailto:a.brooks@cas.edu.au
mailto:b.upcroft@cas.edu.au
http://www.cas.edu.au
http://www.darpa.mil/grandchallenge/index.asp
http://www.darpa.mil/
http://www.darpa.mil/
http://www.acfr.usyd.edu.au/projects/development/dgc/index.html
http://www.acfr.usyd.edu.au/projects/development/dgc/index.html
http://www.acfr.usyd.edu.au/projects/development/dgc/index.html
http://www.acfr.usyd.edu.au/projects/development/dgc/index.html
http://www.usyd.edu.au/
http://www.usyd.edu.au/
http://www.berkeley.edu/
http://www.berkeley.edu/
http://en.wikipedia.org/wiki/Software_componentry
http://en.wikipedia.org/wiki/Software_componentry

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 22, April 2007 Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

CBSE means that the algorithms mentioned in the introduction are
mapped to a set of components. Components run asynchronously
and exchange information through communication.

We use Ice middleware extensively in our system: for compo-
nent interface definition, inter-component communication, com-
ponent deployment, location, activation services, etc. We also use
Orca—an open source project that customizes Ice to robotic appli-
cations and provides an on-line repository of reusable components.
In the remainder of the article we focus on two areas:

•	 what Orca is and what it adds to Ice, and
•	 how we use the Ice/Orca combination in the control of an

autonomous vehicle.

The Orca Project
Lack of reliable reusable software for robotics is a well-recognized
problem as evidenced by several active standardization efforts in
robotic software, particularly in academia. The Orca project traces
its roots to one of them: the EU-funded OROCOS project, which
was started in 2001 to develop open robot control software. At that
time, the component model was implemented with CORBA using
ACE/TAO. Since then, the source code has been re-written several
times, the project has moved to SourceFORGE, the project’s name
has changed, and the center of the development effort has moved
from Europe to Australia. Work on porting Orca to Ice 2.1.2 began
in March 2005.

Source code size
gives a sense of a
project’s activity
and trends. Figure 2
shows the history of
line-count statistics
for the Orca proj-
ect, generated using
David A. Wheeler’s
SLOCCount. This fig-
ure helps to illustrate
Orca’s main objective:
we are interested in a
large “superstructure”
(blue, representing
useful components)
and do not want to
“dig a deep founda-
tion” (orange, the
infrastructure neces-
sary to allow compo-
nents to talk to each
other). This was the
main motivation for
switching to Ice at the
end of 2005. Doing so
not only reduced the
size of the Orca infra-
structure, but it also

stopped a troublesome trend of infrastructure growth driven by the
need for features beyond basic communication. Projecting this plot
into the future, we hope to see the current trend continue: keeping
our infrastructure code very thin, while increasing the repository of
reusable components.

Given the fact that Orca is based on Ice, what does Orca actually
add to the infrastructure? There are three main areas of contribu-
tion: common Slice definitions; an optional convenience library
in C++; and a repository of reusable components, libraries, and
utilities. Here we list and illustrate some of the useful things found
in the Orca distribution.

1.	Slice definitions for data types frequently encountered in
robotics such as time, coordinate frames, kinematic and
dynamic elements, etc.

// Slice
module orca
{
		 // Unix time
		 struct Time
		 {
			 int seconds;
			 int useconds;
		 };

		 // 2D position in Cartesian coordinate
		 // system [m]

An Autonomous Vehicle using Ice and Orca

Figure 2: Source code size of the Orca project. Projection into the future illustrates our goal
of concentrating on writing robotic software and relying entirely on Ice for all middleware
functions.

http://orca-robotics.sourceforge.net/
http://en.wikipedia.org/wiki/Robot_software
http://en.wikipedia.org/wiki/Robot_software
http://www.orocos.org/
http://www.corba.org/
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://sourceforge.net/
http://www.dwheeler.com/sloccount/

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 22, April 2007 Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

		 struct CartesianPoint2d
		 {
			 double x;
			 double y;
		 };

		 // 2D Cartesian coordinate frame: origin
		 // and orientation [m,rad]
		 struct Frame2d
		 {
			 CartesianPoint2d p;
			 double o;
		 };
};

These definitions are extremely simple, that is, anyone can
write them with minimum effort. The real value of such defi-
nitions is that they provide common representations and make
interoperability between components possible.

2.	Slice definitions of interfaces that are frequently encoun-
tered in robotics. As an example, we show Odometry2d—
an interface to the vehicle motion data in two dimensions,
typically collected by measuring wheel rotation. Here we use
the Slice structures defined above. (Exception definitions are
not shown.)

// Slice
module orca
{
		 struct Odometry2dData
		 {
			 Time timeStamp;
			 Frame2d pose;
			 // ...
		 };

		 interface Odometry2d
		 {
			 idempotent Odometry2dData getData()
				 throws DataNotExistException,
					 HardwareFailedException;
			 // ...
		 };
};

Slice definitions of interfaces are a key to interoperability,
both inside and outside the Orca framework. For example, it
would be quite possible to write software without using Orca
(by using Ice directly, for example) that would still be fully
compatible with existing and future Orca components, as long
the same interface definitions are used.

3.	An optional C++ library that contains convenience classes
and macro-like functions to simplify common usage. For
example, there are two commonly used component container
classes: orcaice::Application (derives from Ice::
Application) and orcaice::Service (derives from
IceBox::Service). Both contain a pointer to orcaice::
Component. If an Orca developer implements a new compo-

nent by deriving from orcaice::Component, then, with the
help of libOrcaIce, the component can be easily deployed
either as a stand-alone application or as an IceBox service.

4.	Optional tools and utilities, such as a data visualization
GUI, a data log/replay facility, and so on. These tools can
be thought of as domain-specific services that operate on the
level of Orca interfaces. Because of this, new components
using standard interfaces can take advantage of the tools that
have already been written. For example, a new component
that represents an eight-wheel vehicle and provides the stan-
dard Odometry2d interface can display and log its data with-
out any additional effort. The benefit of this type of software
reuse is reflected in Figure 2—the expected rate of growth in
the Orca utility code is lower than the rate of growth of the
components.

The Urban Challenge Software
Let us return to the software implementation of the autonomous
vehicle. The total number of components that will comprise our
final system is still unknown. (For reference, the winner of the pre-
vious competition had about thirty.) The on-board computer system
currently has four hosts (not counting diagnostic laptops that are
often connected to the system), and this number is likely to grow.
The on-board computers use two operating systems: Ubuntu Linux
and QNX. The software is written by about a dozen people from
four organizations (this number is higher if we count the authors of
the existing components used directly in our system).

The computing hardware uses off-the-shelf rack-mounted PCs
with Intel dual-core processors. The hosts are connected with a
standard 1‑Gigabit Ethernet hub. We have done some performance
tests with this setup; the Orca web site provides these latency
figures.

Some but not all parts of our system require real-time features.
For example, there is a strong need for accurate time-stamping of
sensor data. A vehicle in the competition moves at speeds of up to
30mph (48km/h) and small sporadic delays in the standard Linux
kernel can have significant negative impact, particularly in naviga-
tion. We use a dedicated host running the real-time QNX Neutrino
operating system for all interactions with sensor and actuator
hardware. Our own (partial, unsupported) port of Ice to QNX is
available through the ZeroC developer forums.

Figure 3 illustrates the current deployment strategy. The master
host executes an instance of an IceGrid node with a collocated Ice-
Grid registry. Every other host runs an IceGrid node. One host runs
QNX Neutrino, the remaining hosts run Ubuntu Linux. The QNX
host executes low-level actuator and sensor components. Deploy-
ment of other components has not been finalized; however, the
flexible nature of a component-based architecture does not require
us to make difficult deployment decisions a priori.

Some components that we use in the vehicle are currently
publicly available, such as the laser range-finder, the inertial

An Autonomous Vehicle using Ice and Orca

http://www.ubuntu.com/
http://www.qnx.com/
http://orca-robotics.sf.net/orca_doc_performance.html
http://orca-robotics.sf.net/orca_doc_performance.html
http://www.zeroc.com/forums

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 22, April 2007 Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

navigation system, and others; due to the competitive nature of this
project, other components, such as the Car component in Figure 3,
are not publicly available. However, we intend to release most of
these components through the Orca project in the future.

Our system uses several Ice services. Here we give brief notes
on our experiences and the lessons we have learned.

Software Deployment
For software deployment, we rely heavily on IceGrid. The ability
to manage the entire system from a single XML file greatly simpli-
fies configuration management. The IceGrid GUI is invaluable
in providing feedback about the state of the system. We find that,
when testing the car, the GUI is on the screen of the test engineer’s
laptop the entire time. For an added measure of reliability, we are
also planning to use the registry fall-back functionality that became
available in Ice version 3.2.

Software
distribution
Software updates are
frequent during the de-
velopment of a system
such as ours, which
makes software distri-
bution a frequent (and
tedious) task. We use
the following process:
the software source
is updated from CVS
and compiled on the
master host (see Fig-
ure 3); then the new
binaries are pushed
out to all Linux hosts
using IcePatch2. QNX
binaries are compiled
separately.

Data distribution
Many low-level robot-
ic components fall into
the category of device
drivers that interact
with hardware such as
lasers, wheel encoders,
GPS receivers, and so
on. The data gener-
ated by these devices
typically needs to be
distributed to several
clients—exactly the
function that IceStorm

is designed to provide. One design decision we had to make is how
to direct clients to the correct IceStorm server and topic. We could
have done this with additional configuration parameters on the cli-
ent side or by using similar conventions. However, we found that
the following pattern is a cleaner option: the device interface (the
server side) performs the subscription for the clients. To illustrate,
let us continue the example of the Odometry2d interface:

// Slice
module orca
{
	 interface Odometry2dConsumer
	 {
		 void setData(Odometry2dData obj);
	 };

An Autonomous Vehicle using Ice and Orca

Figure 3. Deployment diagram illustrating how the on-board computer system is configured
with IceGrid, include the use of IceStorm for data distribution.

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 22, April 2007 Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

	 interface Odometry2d
	 {
		 // ...
		 void subscribe(
			 Odometry2dConsumer* subscriber)
			 throws SubscriptionFailedException;
		 idempotent void unsubscribe(
			 Odometry2dConsumer* subscriber);
	 };
};

In our implementation, the Odometry2d::subscribe function
simply contacts the appropriate IceStorm server and subscribes the
client to the appropriate topic. The location of the IceStorm server,
the particular naming convention for the topic, and the quality of
service settings are all chosen by the server. All of this information
(and even the fact that we are actually using IceStorm) is trans-
parent to the client. The pattern is illustrated in Figure 3. Several
clients connect to the Odometry2d interface of the Car compo-
nent and subscribe themselves to the data stream. (They have to
implement the Odometry2dConsumer interface, of course.) The
Car component subscribes the clients to a topic whose name and
server is determined by the component. The published data then
flows from the Car component through the IceStorm server to the
clients.

Summary
Among many challenges presented by the DARPA competition,
software complexity is one of the most difficult. (This statement
may also be true for the field of mobile robotics as a whole.) The
component-based approach helps manage this complexity by
breaking up a monolithic implementation into manageable parts.

While the advantages of modularization are widely recognized,
it is also true that the details of inter-component communication
are far from trivial and result in extra complexity that can eas-
ily outweigh the benefits of the modular solution. In this context,
we find that Ice middleware is a great enabling technology that
unburdens the component developer from the nitty-gritty details of
communication.

The DARPA Urban Challenge is a good motivator for the field
of robotics in general, and for the Orca community in particular.
Through the experience we gained in this project, we have already
improved the Orca framework; beyond the competition, we hope
that the Orca project will lead to more cooperation among academ-
ic institutions. The project may even provide a bridge to the robust
commercial solutions that we feel are necessary for continuing
progress in this field.

An Autonomous Vehicle using Ice and Orca

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 22, April 2007 Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Teach Yourself Glacier2 in
10 Minutes

Michi Henning, Chief Scientist

Introduction
Issue 19 of Connections contained Teach Yourself IceGrid in
10 Minutes, which provides a gentle introduction to getting started
with IceGrid. We received a fair amount of positive feedback on
that article so, seeing that I’m onto a good thing, I decided to con-
tinue in the same vein for other features of Ice. Of course, all this is
despite me, in the same article, having slagged off books that claim
to be able to teach something worthwhile in ten minutes. I stand
by my opinion: if you want to learn anything non-trivial about a
computing topic, you will have to invest more than ten minutes,
and Glacier2 is no exception, despite the title of this article. But
getting acquainted with Glacier2 really does take only a few min-
utes. (Well, yes, OK, a little more than ten minutes, maybe twenty
or thirty…)

So, I will continue to live in a state of schizophrenia and write
articles entitled Teach Yourself <Something> in 10 Minutes, while
preaching that people cannot learn anything worthwhile in that
time—go figure… (And, yes, I will get around to writing that
editorial eventually!)

What is Glacier2?
Glacier2, in a nutshell, is a firewall traversal service for Ice: it al-
lows Ice servers to sit behind a corporate firewall, such that clients
in the outside world can use these servers. Glacier2 is a simple pro-
gram; at its core, Glacier2 is an Ice server that receives incoming
requests from clients and passes them on as blobs of bits to servers.
This is quite similar to the functioning of an IP router that receives
packets on one interface and forwards them via another interface.
This simplicity not only makes Glacier2 easy to configure, but it
also makes it much more likely that Glacier2 is secure. (Lower
complexity means fewer bugs, not to mention better performance.)
In particular, Glacier2 does not depend for its security on the
integrity and correct configuration of other components, such as a
web server. (Web services, anyone?) Glacier2 can also enforce that
clients can connect to servers only via SSL, but not via insecure
TCP connections. (Glacier2 does not support UDP.)

Feature Highlights
Here are some of the main distinguishing features of Glacier2:

•	 You only need to open a single port in the corporate firewall
for any number of Ice servers behind the firewall.

•	 Glacier2 can be configured to only accept SSL connections.

•	 Glacier2 does not require any configuration that would need
to change as applications change. In particular, Glacier2 does
not require knowledge of the Slice definitions used by the
back-end servers.

•	 Clients require only minimal source code changes in order to
work with Glacier2.

•	 Servers do not require any source code changes in order to
work with Glacier2.

•	 Callbacks from servers to clients do not require the client’s
firewall to permit incoming connections.

In addition to the above highlights, Glacier2 also offers a number
of advanced features:

•	 Access control, which allows you to add additional security
controls beyond those provided by SSL, such as authentica-
tion with passwords or SSL certificates.

•	 Integration hooks for custom authentication mechanisms.
•	 Filters that allow you to restrict which addresses and ports

a client can access on the internal network. Filters can also
be used to limit client requests to specific object adapters or
objects.

•	 Session management, which allows Glacier2 to recover
resources associated with clients that do not disconnect in an
orderly fashion. This includes hooks that you can use to inte-
grate Glacier2’s session management with application-specific
functionality, for example, to establish and clean up per-client
contextual information.

As befits an introductory article, I will focus on getting started with
Glacier2 and will leave you to check the Ice Manual for details on
the advanced features.

Getting Started

Configuring Your Firewall
Chances are that you will already have a firewall that is configured
to disallow incoming connections (except for a number of selected
services, such as web and email traffic). To allow Glacier2 to
work with your firewall, you must configure the firewall to open a
single TCP port and forward all traffic for that port to the machine
on which Glacier2 runs. Exactly how you achieve this depends
on your firewall. However, most firewalls have an administrative
interface that allows you to easily add a rule that essentially says
“forward all incoming TCP traffic on port 4064 to port 4064 on
machine glacier2.zeroc.com.” Figure 1 illustrates this situation.

We suggest that you use port 4064 as the incoming SSL port
for Glacier2 and, if you want to allow client access via TCP, that
you use port 4063 as the incoming TCP port for Glacier2. These
two ports are reserved for Glacier2 by IANA (Internet Assigned
Numbers Authority), so you can be reasonably sure that they are
not used by some other service. For this article, I will assume that
the firewall (firewall.zeroc.com) forwards incoming connections on

Teach Yourself Glacier2 in 10 Minutes

http://www.zeroc.com/newsletter/issue19.pdf
http://www.urbandictionary.com/define.php?term=slagged+off
http://www.zeroc.com/Ice-Manual.pdf
http://www.iana.org/assignments/port-numbers
http://www.iana.org

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 22, April 2007 Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

ports 4063 and 4064 to the same ports on the internal machine
glacier2.zeroc.com, which runs Glacier2. (The internal machine
need not run Glacier2 on these ports but, seeing that they are re-
served for Glacier2, you might as well use them.)

Running Glacier2
Glacier2 is provided as the command glacier2router in the Ice
distribution. The simplest way to run Glacier2 is as follows:

glacier2router ‑‑Glacier2.Client.Endpoints="tcp ‑h
 glacier2.zeroc.com ‑p 4063" ‑‑Glacier2.Permission
sVerifier=Glacier2/NullPermissionsVerifier

The property Glacier2.Client.Endpoints configures the
port at which Glacier2 listens for client TCP requests. In this case,
it listens only on the interface bound to glacier2.zeroc.com’s IP
address on port 4063. As I mentioned earlier, Glacier2 can also
be configured to require authentication from clients. The property
Glacier2.PermissionsVerifier determines the authenti-
cation mechanism. Glacier2 ships with a built-in null permis-
sions verifier that allows anyone to connect—the object identity
Glacier2/NullPermissionsVerifier selects this “allow any-
one” verifier. (I will discuss other authentication options shortly.)

Running the Server
On the server side, no configuration is required at all: to use a
server with Glacier2, you simply start the server with the same
configuration as you would without Glacier2.

Running the Client
For the client, we need to make minor source code changes to al-
low the client to use Glacier2. Specifically, clients must establish a
session with Glacier2 to have their requests forwarded to servers.
On start-up, the client needs to execute the following code:

// C++
Ice::RouterPrx r =
	 communicator()‑>getDefaultRouter();
Glacier2::RouterPrx router =
	 Glacier2::RouterPrx::checkedCast(r);
Glacier2::SessionPrx session;

try
{
	 router->createSession("", "");
}
catch(const Ice::Exception& ex)
{
	 cerr << "Cannot create session: " << ex
		 << endl;
}

The call to createSession expects a user name and password.
Because (for the moment), we are using the null permissions veri-
fier, any user name and password will do, so the code passes empty
strings. This code establishes the session that allows the client to
communicate with the server via Glacier2.

Before the client terminates, it should destroy the session again:

//C++
try
{
	 router->destroySession();
}
catch(const Ice::ConnectionLostException&)
{
	 // Expected: Glacier2 destroyed the session.
}
catch(const Ice::Exception& ex)
{
	 cerr << "Cannot destroy session: " << ex
		 << endl;
}

You must catch ConnectionLostException when calling
destroySession because Glacier2 closes the connection in re-
sponse to this call, causing the exception to be raised in the client.

You can also make Glacier2 destroy sessions that have been idle
for a while, by setting the property Glacier2.SessionTimeout
to the idle time in seconds. It is strongly recommended to set this
property to ensure correct cleanup in the event of a client crash.
Regardless, it is a good idea to explicitly destroy the session to
ensure timely clean-up of resources inside Glacier2. (And, if you
do not configure a session timeout, sessions last indefinitely.)

The above code is all that is necessary to make a client cooper-
ate with Glacier2. You can bundle this code into utility functions
and then reuse it in your clients such that they automatically use
Glacier2. For example, you can create a simple class that, in its
constructor, establishes the session (and prompts the user for a user
name and password, if appropriate) and in its destructor destroys
the session. Client code changes are then limited to simply instan-
tiating the class. As a refinement, the constructor of the class can
check whether getDefaultRouter returns a null proxy; if so, the
client is not configured to use Glacier2 and the constructor simply
returns without establishing a session.

Teach Yourself Glacier2 in 10 Minutes

Master

Slave-1

Node-1

Node-2

Figure 1: Glacier2 behind a Firewall

Client Firewall Firewall Glacier2 Server

firewall.zeroc.com glacier2.zeroc.com
4063, 4064 4063, 4064

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 22, April 2007 Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

This allows you to use the same binary client with and without
Glacier2—you can control whether the client communicates with
its servers via Glacier2 by adjusting the client’s configuration.

To get the client to use Glacier2, we need a minimum of
configuration:

Client configuration
Ice.Default.Router=Glacier2/router:tcp –h firewall
.zeroc.com –p 4063
Ice.ACM.Client=0
Ice.RetryIntervals=‑1

The property Ice.Default.Router configures a default router
for the client. Setting this property has the effect that all client
requests are sent to the object specified by that property, instead
of being sent to the endpoint that is inside the proxy that a client
uses to make an invocation. In effect, the property says “send all
invocations to the specified object, instead of sending them as you
normally would.” The host and port for this property must point
at the firewall, which port-forwards all traffic to Glacier2 to the
host and port set by Glacier2’s Glacier2.Client.Endpoints
property.

Glacier2 also requires the client to disable automatic connec-
tion management (ACM). This is necessary because, once a client
drops its connection to Glacier2, Glacier2 automatically destroys
the client’s session. Setting the property Ice.ACM.Client to zero
prevents the client from closing its connection to Glacier2 due to
idle periods and so having its session disappear unexpectedly.

Finally, retries do not make sense if a client communicates with
a server via Glacier2 because Glacier2 will retry failed requests
automatically on behalf of the client. To disable retries, we set
Ice.RetryIntervals to a negative value.

This is all that is needed to get off the ground, at least for this
simple scenario: run Glacier2, add the preceding few lines of code
to the client, run the server, and run the client with these three
configuration items.

If you have problems getting things to work, it will almost cer-
tainly be due to incorrect endpoint configuration. In particular, the
client’s Ice.Default.Router setting must point at the firewall
and the firewall must forward to the host and port defined with
Glacier2.Client.Endpoints. You can set
Ice.Trace.Network=1 for Glacier2 and the client to check
whether connections are made to the correct address and port.

Better Authentication
You can force clients to authenticate themselves with a user name
and password when they create a Glacier2 session by leaving
Glacier2.PermissionsVerifier undefined, and instead set-
ting the property Glacier2.CryptPasswords to the path name
of a password file. Doing this activates a built-in permissions
verifier that uses the Unix crypt algorithm to authenticate clients.

The password file must contain pairs of user name and encrypted
passwords, one per line. The client passes the user name and (un-
encrypted) password to createSession, and Glacier2 allows ac-
cess only if the supplied password encrypts to the same string that
is stored in the password file. Note that if you use this mechanism,
you should restrict client access to SSL, otherwise the password
will be sent in clear text over the wire.

Using SSL
For security-sensitive applications, you will probably want to
ensure that no-one can eavesdrop on the traffic between clients and
Glacier2 and use an SSL connection instead of TCP. To run Gla-
cier2 with SSL and disable TCP, you need to set a few additional
properties:

Glacier2 config for SSL
Glacier2.Client.Endpoints=ssl -h glacier2.zeroc.
com –p 4064
Glacier2.PermissionsVerifier=Glacier2/NullPermissi
onsVerifier
Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=certs
IceSSL.CertAuthFile=cacert.pem
IceSSL.CertFile=s_rsa1024_pub.pem
IceSSL.KeyFile=s_rsa1024_priv.pem
IceSSL.VerifyPeer=0

Note that Glacier2 now uses an SSL endpoint. The remaining
properties specify that the Ice run time should load the SSL plug-in
(Ice.Plugin.IceSSL) and configure the directory and files that
provide the plug-in with the relevant certificate and key informa-
tion. We are still using the null permissions verifier, so any client
can connect, but only via SSL. Because the client is still authenti-
cated via user name and password, it need not provide its own SSL
credentials: Glacier2 sets IceSSL.VerifyPeer to zero to accept
such anonymous connections. (This example uses the certifcates
that accompany the Ice distribution. For a real-world deployment,
you would generate your own CA certificate and a unique certifi-
cate for the Glacier2 router. See the Ice Manual for more details on
how to configure the SSL plug-in and how to generate certificates.)

As before, no changes are required for the server—the server
can provide either TCP or SSL endpoints, and Glacier2 will for-
ward client requests to the server as appropriate.

The client must be configured as follows:

Client configuration
Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=certs
IceSSL.CertAuthFile=cacert.pem
IceSSL.TrustOnly=CN=”Server”

The IceSSL.TrustOnly rule tells the client to connect only to
servers that have the common name Server. In a real-world de-
ployment, you would use a unique common name for your
Glacier2 router, and use that common name instead.

Teach Yourself Glacier2 in 10 Minutes

Master

Slave-1

Node-1

Node-2

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 10 Issue 22, April 2007 Page 11Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 11Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

With this configuration, clients communicate with Glacier2 only
via SSL, and Glacier2 forwards requests to back-end servers using
whatever endpoints (TCP or SSL) are provided by these servers.

Using SSL Connection Credentials
You can use SSL in combination with user name and pass-
word authentication exactly as with TCP: leave Glacier2.
PermissionsVerifier undefined, and instead set Glacier2.
CryptPasswords to the path name of the password file. With that
configuration, because SSL communications are encrypted, the
client’s password is no longer sent in plain text over the wire when
the client calls createSession.

An alternative way to authenticate clients is to use the creden-
tials that are established for the client’s SSL connection. In that
case, the client does not need to supply a password—instead, the
client calls createSessionFromSecureConnection, which
does not require arguments:

// C++
try
{
	 router->createSessionFromSecureConnection();
}
catch(const Ice::Exception& ex)
{
	 cerr << "Cannot create session: " << ex
		 << endl;
}

For this to work, Glacier2 must be configured slightly differ-
ently: instead of setting Glacier2.PermissionsVerifier or
Glacier2.CryptPasswords, leave these properties undefined
and set Glacier2.SSLPermissionsVerifier instead:

Glacier2 config for SSL
Glacier2.SSLPermissionsVerifier=Glacier2/NullSSLP
ermissionsVerifier
Other settings as before...

The value Glacier2/NullSSLPermissionsVerifier allows
any client to connect, provided that the SSL connection could be
established. If you want to restrict access to specific clients, you
need to install a custom verifier.

Custom Verifiers
You can set Glacier2.PermissionsVerifier to the proxy
of an arbitrary Ice object that you provide in any server that is
reachable by Glacier2. The target object must implement the
Glacier2::PermissionsVerifier interface, which contains a
checkPermissions operation. To verify a client’s password, Gla-
cier2 calls your checkPermissions operation to decide whether
the client should be authorized.

Similarly, you can set Glacier2.SSLPermissionsVerifier
to the proxy of an Ice object that implements the Glacier2::
SSLPermissionsVerifier interface, which contains an

authorize operation that Glacier2 invokes when the client calls
createSessionFromSecureConnection.

This allows you to implement arbitrary authorization policies,
typically by delegating the decision to an authorization mechanism
that you have already in place.

Using Callbacks
With the setup we have seen so far, clients can reach servers
through the firewall, but servers cannot necessarily reach clients.
Doing this is necessary if a client passes a proxy to a callback ob-
ject to a server. In that case, the client is both client and server and,
when the server calls back into the client, they momentarily reverse
roles: the server acts as the client, and the client acts as the server.

There is nothing wrong with this as such: if the client is not be-
hind a firewall of its own, the server will simply open a connection
to the client and invoke the callback via that connection. However,
chances are that the client will be behind its own firewall, with that
firewall disallowing incoming connections (see Figure 1).

The solution for this problem is for the server to send the call-
back to Glacier2, which forwards the callback to the correct client
via the already-existing connection that was established by the
client. That way, the server can reach the client even if the client is
behind a firewall that disallows incoming connections, as shown in
Figure 2.

To make this setup work, no code or configuration changes are
necessary in the server. However, we need to add one additional
property setting to Glacier2’s configuration:

Glacier2 config
Glacier2.Server.Endpoints=tcp –h glacier2.zeroc.
com
Other settings as before...

Setting Glacier2.Server.Endpoints enables an endpoint in
Glacier2 that servers use when they invoke a callback on a client.
(Note that you need not specify a port number for this property.)
The endpoint you specify here must be accessible on the internal
network, so the back-end servers can connect to it, and should
not be accessible from the external network, to prevent malicious
clients from flooding Glacier2’s server endpoint with requests.

The million-dollar question is: how does it happen that servers
connect to Glacier2’s server endpoint when they invoke a callback,

Teach Yourself Glacier2 in 10 Minutes

Figure 2: Bi-Directional Communication with
Glacier2 for Callbacks

Client Firewall Firewall Glacier2 Server

firewall.zeroc.com glacier2.zeroc.com

4063, 4064 4063, 4064

Connections
ZeroC’s Newsletter for the Ice Community

Page 10 Issue 22, April 2007 Page 11Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 11Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

instead of attempting to open a separate connection directly to the
client? The answer involves two separate things on the client side.
The first is that the client must have an additional property setting:

Client config
CallbackAdapter.Router=Glacier2/router:ssl –h
firewall.zeroc.com –p 4064
Other settings as before...

Note the setting of CallbackAdapter.Router. (This assumes
that the client’s object adapter that provides the callback object has
the name CallbackAdapter.)

The property configures the client’s object adapter with a router,
and the setting of that property must point at the firewall. Setting
this property has the effect that proxies for callback objects that the
client creates contain the server endpoint of the Glacier2 router that
is used by back-end servers (instead of the endpoint at which the
client’s object adapter listens). This explains how, when the server
invokes a callback, it ends up connecting to Glacier2 instead: the
client-side run time notices the property setting, asks Glacier2 for
the endpoint that Glacier2 provides to servers for callbacks, and
puts that server endpoint (which is on the internal network) into
the callback proxy. Therefore, the back-end server connects to
Glacier2’s server endpoint when it invokes the callback.

The second part of the answer deals with how Glacier2 can
ensure that callbacks for different clients actually go to the cor-
rect client: because each server has only a single connection to
Glacier2, but may need to send callbacks to different clients, the
identity of the target client is no longer implicit in the server’s
connection to Glacier2. Instead, the client must provide an identi-
fier that Glacier2 can use to de-multiplex callbacks from back-end
servers in order to forward them to the correct client.

Glacier2 does this by assigning a unique identifier to each cli-
ent. In turn, the client is expected to provide that identifier in the
category part of the object identity for its callback objects. For
example, suppose the client provides callback objects of inter-
face Callback to a number of back-end servers. The client must
contact Glacier2 once, to obtain the unique category Glacier2 has
assigned to the client, and then use that category in the object iden-
tity of its callback objects:

// C++
// Get category from Glacier2.
string myCategory =
	 router->getCategoryForClient();

// Use that category for all callback objects.
Identity id;
id.category = myCategory;

// Create two callback objects with name cb1
// and cb2.
id.name = "cb1";
adapter->add(new CallbackI(), id);
id.name = "cb2";
adapter->add(new CallbackI(), id);

Instead of explicitly assigning the category in-line, as shown by the
preceding code, I suggest that you bundle the object identity cre-
ation as a makeId method into the same helper class I suggested
earlier. The helper class, if the client is configured with a router,
automatically assigns the category and, if no router is configured,
leaves the category empty. That way, the same binary client can be
used with and without Glacier2 by simply changing its configura-
tion. The calls to adapter‑>add then use makeId on the helper
class:

// C++
// Instantiate router helper.
RouterHelperPtr rh =
	 new RouterHelper(communicator());

// Create two callback objects with name cb1
// and cb2.
adapter->add(new CallbackI(), rh->makeId("cb1"));
adapter->add(new CallbackI(), rh->makeId("cb2"));

The helper class, in outline, looks something like this (methods are
in-line only for brevity):

// C++
class RouterHelper : public IceUtil::Shared
{
public:
 RouterHelper(
		 const CommunicatorPtr& communicator)
	 {
		 Ice::RouterPrx r =
			 communicator->getDefaultRouter();
		 if(r)
		 {
			 _router =
			 Glacier2::RouterPrx::checkedCast(r);
			 if(!_router)
			 {
				 throw
					 "Wrong interface for router";
			 }
			 string name;
			 string password;
			 // Initialize name and
			 // password here...

			 _router->createSession(
				 name, password);
			 _category =
				 _router->getCategoryForClient();
		 }
	 }

	

Teach Yourself Glacier2 in 10 Minutes

Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 22, April 2007 Page 13Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 13Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

~RouterHelper()
	 {
		 try
		 {
			 if(_router)
			 {
				 _router->destroySession();
			 }
		 }
		 catch(...)
		 {
		 }
	 }

	 Identity makeId(const string& name)
	 {
		 Identity id;
		 id.name = name;
		 id.category = _category;
		 return id;
	 }

private:
 Glacier2::RouterPrx _router;
 string _category;
};
typedef IceUtil::Handle<RouterHelper>
	 RouterHelperPtr;

You can easily modify this helper class to suit your own needs, for
example, to dynamically select the correct permissions verifier for
SSL, or to delegate authentication to the appropriate mechanism.

Summary
Glacier2 makes it very easy to provide secure access to Ice servers
that sit behind a firewall. Once you know Glacier2, you can make
a new server available in just a few minutes. The coding effort
required to make clients cooperate with Glacier2 is truly minimal:
you only need to write a few lines of code once and then can re-
use that code in all your clients. Moreover, it is trivial to write the
helper code such that it works with and without a router; by doing
this, you can switch an existing client from non-routed to routed
operation simply by changing the client’s configuration.

If you want to experiment with Glacier2, I suggest you start
with the demo that is provided in the demo/Glacier2/callback
directory in the Ice distribution. The demo also illustrates how to
connect a custom verifier to Glacier2, and how to use explicit ses-
sion management. In addition, I suggest that you take a look at the
Glacier2 chapter in the Ice Manual, which provides more infor-
mation on advanced features, such as fine-grained access control,
integration with IceGrid, and other topics. And, as always, if you
would like to discuss the topic of this article, you can get in touch
with us in our developer forums.

Teach Yourself Glacier2 in 10 Minutes

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/forums

Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 22, April 2007 Page 13Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 13Issue 22, April 2007 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner
In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from
our support forum at http://www.zeroc.com/forums/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: How do I use IceSSL with Ruby/Python/PHP?

Ice for Ruby, Ice for Python, and Ice for PHP are based on Ice for
C++. Therefore, configuring IceSSL for these languages works
the same way as with Ice for C++. With Ice for Ruby and Ice for
Python, configuring IceSSL is straightforward. The configura-
tion files for some of the demos that accompany the distributions
are examples of how to do this. For example, if you inspect the
config.client file for the Ruby or Python demo/Ice/hello,
you will find the following configuration items for IceSSL:

config.client
...

Security Tracing

0 = no security tracing
1 = trace messages

#IceSSL.Trace.Security=1

SSL Configuration

Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=../../../certs
IceSSL.CertAuthFile=cacert.pem
IceSSL.CertFile=c_rsa1024_pub.pem
IceSSL.KeyFile=c_rsa1024_priv.pem

The Ice.Plugin.IceSSL property tells the Ice run time to
load the IceSSL plug-in, and the properties prefixed by IceSSL
configure the plug-in itself. For more information on these prop-
erties, please see the Ice Manual. (Note that, under Windows,
Ice for Ruby has an OpenSSL compatibility issue. Please see the
INSTALL.WINDOWS file that accompanies the distribution for
details.)

The procedure for configuring Ice for PHP is the same: config-
ure the IceSSL plug-in as you would for any C++ application, and
inform the Ice-for-PHP plug-in to use this configuration. However,
because the plug-in is loaded by Apache, it can be a little tricky
to get things working. If you are loading the Ice-for-PHP plug-in
dynamically, the IceSSL and OpenSSL shared libraries must be
accessible to Apache. In addition, you must configure IceSSL. One
way to do this is to put the property settings (such as the above)
into a configuration file that is accessible to Apache, and then add
an ice.config directive to the php.ini file. For example, as-
suming the configuration file is located in /etc/config-ice.
php, and you are adding to the default PHP profile:

php.ini
...
ice.config=/etc/config-ice.php

Another method is to add an ice.options directive to the php.
ini file. On the up-side, this avoids external configuration files
but, on the down-side, makes the php.ini file more verbose.

FAQ Corner

http://www.zeroc.com/forums/
http://www.zeroc.com/Ice-Manual.pdf

