
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 23, May 2007

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 23, May 2007

Stable!
In Issue �9 of Connections, I remarked
that there seem to be few computing
topics that cannot be learned in ten
minutes, as attested by books with
titles such as Teach Yourself Linux in
10 Minutes. A cursory look through the
computer section at a bookshop reveals
many more titles along the same lines,
such as CORBA for Dummies, The

Complete Idiot’s Guide to XML, and Visual C++ in 12 Easy Les-
sons. I find such titles amusing because of their oxymoronic nature.
No matter what one might think of middleware, dummies definitely
won’t be able to use CORBA, and no matter what one might think
of SOAP, complete idiots won’t ever get very far with XML. (Not
to mention that someone who learns C++ in twelve easy lessons
will, at best, know just enough to be dangerous.) In fact, these
books remind me of magazine ads with titles such as Lose 10kg in
Two Weeks! Clearly, the promise is vacuous—someone who did
indeed lose that much weight in two weeks would likely be near
death.

The computing industry seems to be unique in this respect, and
other industries appear to be more restrained. For example, doctors
do not read Teach Yourself Surgery in 10 Minutes, civil engineers
cannot refer to Bridge Design for Dummies, law libraries do not
stock The Complete Idiot’s Guide to Contract Law, and one reason
why planes crash so rarely might be that Air Traffic Control in
12 Easy Lessons is unavailable.

I see a lot of feature lists for middleware and other software.
Among features such as fast and small, these lists often contain
the term stable. I would have expected this to go without saying:
of course the software is stable, otherwise it would not be for sale,
right? Yet, few people seem to see anything remarkable in this. We
are so used to software that has bugs, barely performs its advertised
function, is impossibly difficult to use, or does not work at all that
we are pleasantly surprised when we do come across a product
that works. In turn, “it works” is something that marketing people
won’t hesitate to point out, completely missing the irony inherent
in that statement. By comparison, I cannot recall ever seeing a bat-
tery torch that promised on its packaging Lights up every time you
flick the switch! or a car brochure that proudly proclaimed Brakes
engage whenever you step on the pedal, always!

These anecdotes highlight that we are in an industry that is im-
mature and has barely begun to take itself seriously. Snake oil is
the order of the day, and existing wisdom, hard-earned research
results, and prior art are routinely ignored. The catch-cry of I’ve
never designed a protocol before, but how hard can it possibly be?

begets SOAP, and the quest for the holy grail of loose coupling
bestows us with web services. Never mind that, in the long run, we
know that these things are so flawed that they will be abandoned.
In the meantime, an entire industry can continue to spin its wheels,
sell silver bullets, and, whenever necessary, replace the current fad
with the next one, much like going from the grapefruit diet to the
tomato-and-egg diet.

If the industry does not take itself seriously, little wonder then
that customers don’t either. Most customers are suspicious of
anything new and are tired of the pot of gold at the end of the
rainbow, especially when their business depends on the reliability
of their software. If we want to be taken seriously as an industry,
we had better change that and start selling software that is stable as
a matter of course. Here at ZeroC, we are doing just that, so please
forgive us for not including a Stable! sticker when you buy your Ice
license.

Michi Henning
Chief Scientist,

Contents
Proxies .. 2

Master–Slave Replication with Ice �2

FAQ Corner .. �8

Issue Features

Proxies
In this article, Matthew Newhook describes one of the funda-
mental building blocks of Ice applications—proxies.

Master–Slave Replication with Ice
Benoit Foucher explains how to create replicated services using
a master–slave architecture.

http://www.zeroc.com/newsletter/issue19.pdf
http://www.amazon.com/Sams-Teach-Yourself-Linux-Minutes/dp/0672315246/ref=sr_1_1/002-9965344-1673639
http://www.amazon.com/Sams-Teach-Yourself-Linux-Minutes/dp/0672315246/ref=sr_1_1/002-9965344-1673639
http://www.amazon.com/CORBA-Dummies-John-Schettino/dp/0764503081/ref=sr_1_1/002-9965344-1673639
http://www.amazon.com/Complete-Idiots-Guide-XML/dp/0789723115/ref=sr_1_1/002-9965344-1673639?ie=UTF8&s=books&qid=1177645024&sr=1-1
http://www.amazon.com/Complete-Idiots-Guide-XML/dp/0789723115/ref=sr_1_1/002-9965344-1673639?ie=UTF8&s=books&qid=1177645024&sr=1-1
http://www.amazon.com/Visual-Easy-Lessons-Book-Cd-Rom/dp/0672306379
http://www.amazon.com/Visual-Easy-Lessons-Book-Cd-Rom/dp/0672306379

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 23, May 2007 Page 3Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 3Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Proxies
Matthew Newhook, Senior Software Engineer

Proxies are a fundamental concept of Ice and, in order to write Ice
applications, you need understand what proxies are, why they are
necessary, and how to use them. This article provides an overview
of Ice proxies and their semantics.

Overview

What is a Proxy?
The American Heritage Dictionary defines the term proxy as fol-
lows:

�. A person authorized to act for another; an agent or substitute.
2. The authority to act for another.
3. The written authorization to act in place of another.

The first definition, “agent or substitute” is the one that best cap-
tures the purpose of proxies in Ice: a proxy is the local (client-side)
ambassador for a remote (server-side) Ice object. In order for an
application to invoke an operation on a remote Ice object, it must
have a proxy. Instead of invoking the operation directly on the
remote object, the code invokes a corresponding operation on the
proxy; the proxy then takes care of forwarding the invocation to
the remote Ice object.

Proxies direct invocations to Ice objects. Although the purpose
of this article is not to discuss Ice objects (this is the subject of
another article), it is impossible to discuss proxies without having
some understanding of Ice objects. Here is a simple definition:

An Ice object is an abstraction that has an interface and a unique
object identity. An Ice object is composed of one or more facets.
Each facet has exactly one most-derived interface. (Two or more
facets of an Ice object can have the same interface.) If an Ice object
has facets, the object identity is shared by all facets. Each facet has
a facet name. No two facets of the same Ice object can have the
same facet name. An Ice object may (but need not) have a default
facet. The name of the default facet is the empty string.

How are Proxies Used?
Without proxies there would be no way for an application to send
a message to an Ice object. By way of illustration, consider the fol-
lowing C++ code:

// C++
class Hello
{
public:
 void sayHello()
 {
 cout << "Hello world!" << endl;
 }
};
// ...
Hello* p = ...;
p->sayHello();

Calling sayHello via the pointer p sends the sayHello mes-
sage to the Hello object. Let’s now translate this example into an
equivalent one that uses Ice. First we define the Hello interface in
Slice:

// Slice Hello.ice
module Demo
{
interface Hello
{
 void sayHello();
};
};

Next, we compile this definition with the slice2cpp compiler,
which generates a number of type definitions and their implemen-
tations. (See the Ice Manual for details on the C++ mapping.) One
of the generated types is called HelloPrx, which is a C++ class.
To use it, we can write the following code:

// C++
HelloPrx p = ...;
p->sayHello();

This example looks remarkably similar to the original code,
with the exception that we have used the proxy class HelloPrx
instead of a pointer to the Hello class. What exactly then is this
HelloPrx class? An instance of this class is a smart-pointer to a
reference-counted proxy to an Ice object that provides the Hello
interface. In other words, an instance of the proxy class is the local
C++ object through which a programmer can invoke an operation
on a (possibly remote) Ice object.

What Information Does a Proxy Contain?
Consider again the simple C++ code I presented earlier:

// C++
Hello* p = ...;
p->sayHello();

What information does the variable p contain? Seeing that p is an
ordinary C++ class instance pointer, it contains the address of a
Hello instance. (The address serves as the object identity.) As for
regular class instance pointers (or references, in languages such as
Java and C#), an Ice proxy also contains addressing information.
However, because a proxy can denote an object in a remote address

Proxies

http://www.bartleby.com/61/
http://www.bartleby.com/61/56/P0625600.html
http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 23, May 2007 Page 3Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 3Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

space, the addressing information is more complex. At a minimum,
a proxy contains:

• The object identity of the Ice object denoted by the proxy.
• Addressing information to locate the server(s) that implement

the Ice object.

This only makes sense: the additional information identifies which
server implements the Ice object, and the object identity deter-
mines which object within that server a proxy denotes.

Proxies are not opaque objects that contain hidden informa-
tion. If you know the identity of an Ice object, its location, and the
protocol(s) supported by the server, you can create a proxy out of
thin air from a string. For example, if you know an Ice object has
the identity hello and runs on host �92.�68.�.4 at port �0000
using the TCP protocol, you can provide a stringified proxy to
stringToProxy, which turns a string into a proxy:

// C++
HelloPrx p = HelloPrx::checkedCast(
 communicator->stringToProxy(
 "hello:tcp –h 192.168.1.4 –p 10000"));
p->sayHello();

I will discuss stringified proxies in more detail later in this article.

A proxy can contain additional settings that influence its behav-
ior. Some of these settings are marshaled when a proxy is sent over
the wire. These are:

• the facet name;
• a security setting that is used to force a proxy to make invoca-

tions only over secure connections;
• a proxy mode, which is one of twoway, oneway, batch

oneway, datagram, or batch datagram.

Other proxy settings are local to the proxy and are not marshaled
when the proxy is sent over the wire. These are:

• whether the proxy optimizes collocated invocations;
• a connection caching policy;
• an endpoint selection policy;
• a locator proxy;
• a locator cache timeout;
• a router proxy;
• a security policy that determines whether invocations on the

proxy prefer secure connections over insecure connections;
• a default Ice::Context to use when making invocations;
• whether the proxy uses the thread–per-connection concur-

rency model;
• which connection ID to use;
• a timeout for invocations;
• whether to use compression.

Note that proxies are strongly typed (at least, in languages such
as C++ or Java, which provide strong typing), and that the type
of a proxy is a programming-language concept: when proxies are
marshaled, neither the type of the proxy nor the type of the target
object are sent over the wire.

Proxies are Immutable
Once created, a proxy becomes immutable, that is, its contents can-
not be changed. If you need a proxy that is identical to an existing
proxy except for one of the proxy settings, you must create a new
proxy. For example, suppose you need a proxy with a particular
timeout. You can set this timeout by calling ice_timeout:

// C++
HelloPrx proxy = ...;
proxy = HelloPrx::uncheckedCast(
 proxy->ice_timeout(5000));

The call to ice_timeout creates a new proxy that is identical to
the source proxy, except for the new timeout of five seconds. The
uncheckedCast is necessary because ice_timeout returns a
proxy of type ObjectPrx, which is the ultimate base type of all
proxies; the cast narrows the returned proxy to the (derived) type
HelloPrx. Be aware of the following mistake:

// C++
HelloPrx proxy = ...;
proxy->ice_timeout(5000); // ERROR!

This does not change the timeout on the proxy; instead, it returns
a new proxy with a five-second timeout, but that proxy is immedi-
ately thrown away!

Proxy Comparison
You can compare proxies for equality. By default, proxy compari-
son compares all aspects of a proxy, including the object identity,
facet name, addressing information, and all the proxy settings; two
proxies compare equal only if they are identical in all respects.
This is often not what is intended:

// C++
HelloPrx h1 = ...:
HelloPrx h2 = HelloPrx::uncheckedCast(
 h1->ice_timeout(5000)); // Set a new timeout
assert(h1 == h2); // Assertion fails

This assertion will fail, as the two proxies have different timeout
values. Usually, what is needed is to find out whether two proxies
denote the same Ice object. To do this, you need to compare the
object identities:

// C++
HelloPrx h1 = ...;
HelloPrx h2 = HelloPrx::uncheckedCast(
 h1->ice_timeout(5000)); // Set a new timeout
assert(h1->ice_getIdentity() ==
 h2->ice_getIdentity()); // Assertion passes

Proxies

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue 23, May 2007 Page �Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

The reason that comparing only the object identities also compares
the Ice objects is that, as previously stated, the Ice object model as-
sumes that every Ice object has a unique identity. Therefore, if the
identities in the proxies are the same, so are the Ice objects denoted
by the proxies.

All of the Ice language mappings provide convenience functions
for proxy comparison. For C++, the convenience function to com-
pare object identities is proxyIdentityEqual. For example:

// C++
HelloPrx h1 = ...;
HelloPrx h2 = HelloPrx::uncheckedCast(
 h1->ice_timeout(5000)); // Set a new timeout
// Assertion passes
assert(proxyIdentityEqual(h1, h2));

This code is equivalent to the preceding example (which extracted
the identities and then compared the identities explicitly).

Sometimes it is necessary to compare object identity and facet
name, to determine whether two proxies denote the same facet of
the same Ice object. In C++, the convenience function to do this is
proxyIdentityAndFacetEqual. (Please consult the Ice Manual
for the equivalent methods for other language mappings.)

Slice Proxies
Consider the following C++ code:

// C++
class Widget { };
class WidgetFactory
{
 Widget create();
};

Compare this to:

// C++
class WidgetFactory
{
 Widget* create();
};

The create method on the first widget factory returns a widget,
whereas the create method on the second widget factory returns
a pointer to a widget. Now consider the following Slice:

// Slice
class Widget
{
};
interface WidgetFactory
{
 Widget create();
};

Compare this to:

// Slice
interface WidgetFactory
{
 Widget* create();
};

Much like C++, the first create operation returns a widget by
value, whereas the second create operation returns a proxy to a
widget. Thus, the Slice syntax Widget* means “return a proxy to
a widget”. This is often a point of confusion for developers new
to Ice. As with C++, passing a class by value is entirely different
from passing a pointer to a class. Passing a class by value (the first
form) passes all of the data associated with the class and creates a
new instance initialized with the class data in the receiver’s address
space, whereas passing a proxy to a class passes only the proxy
and leaves the class instance where it is.

Proxy Types
Proxies come in several varieties. All of them contain the identity
of the associated Ice object and information such as a timeout, plus
additional information that varies with the type of proxy.

Direct Proxies
Direct proxies contain a protocol identifier (such as TCP, UDP, or
SSL) and addressing information for that protocol, that is, the host
and port at which the server runs. Together with the object identity,
this is sufficient to contact the target object.

Indirect Proxies
Indirect proxies contain no addressing information—to contact
the Ice object, the client-side run time first obtains the addressing
information using an Ice location service, such as IceGrid. (For
more information on IceGrid, see Michi’s article “IceGrid in �0
Minutes” in Issue �9 of Connections.)

Indirect proxies have two forms. The first is known as a well-
known proxy that contains only the identity of an Ice object. The
client-side run time obtains the actual addressing information for
such a proxy by asking the location service for the direct proxy of
an object with that identity. (Once known, the resolved proxy is
cached by the Ice run time for later use.) The following example
contacts a well-known proxy with the identity hello:

// C++
HelloPrx p = HelloPrx::checkedCast(
 communicator->stringToProxy("hello"));
p->sayHello();

The second form of indirect proxies contains the object identity
and an object adapter identifier. The client-side run time obtains
the actual addressing information for such a proxy by asking the
location service for the addressing information of the correspond-
ing object adapter. The code below contacts an Ice object with

Proxies

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/newsletter/issue19.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue 23, May 2007 Page �Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

identity hello that is hosted by an object adapter with the adapter
identifier HelloAdapter:

// C++
HelloPrx p = HelloPrx::checkedCast(
 communicator->stringToProxy(
 "hello@HelloAdapter"));
p->sayHello();

Note that both direct and indirect proxies may additionally be
routed. Routed proxies do not contact their target Ice object di-
rectly, but instead send all invocations to their configured router.
Routers can be used to build forwarding services such as Glacier2.
(See Michi’s article “Glacier2 in �0 Minutes” in Issue 22 of Con-
nections for more information on Glacier2.)

Fixed Proxies
Fixed proxies are bound to a particular connection for the entire
life time of a proxy. Once that connection is closed, the proxy no
longer works (and will never work again). In addition, fixed prox-
ies cannot be marshaled. Fixed proxies are used for bi-directional
communications to allow servers to call back to an object provided
by the client without opening a separate outgoing connection from
server to client.

Proxy Methods
Ice proxies provide a number of methods. What follows is a listing
of the available methods and examples of their use. (As always,
see the Ice Manual for a complete list of these methods.)

Remote Inspection
These methods return information about the associated Ice object.
For remote objects, they will therefore make a remote invocation.

// Pseudo Slice
bool ice_isA(string id);
void ice_ping();
StringSeq ice_ids();
string ice_id();

For example:

// C++
ObjectPrx obj = communicator()-> stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000");
assert(obj->ice_isA(Hello::ice_staticId());

The ice_isA method determines whether the associated Ice object
implements the given interface and returns true if so; false other-
wise. The generated ice_staticId method returns the type ID
of the given interface. If the Ice object is not reachable, ice_isA
throws an exception.

Local Inspection
These methods inspect the configuration and state of the proxy.
The methods never make an invocation on the target object and,
therefore, do not incur network traffic.

// Pseudo Slice
int ice_getHash();
Communicator ice_getCommunicator();
string ice_toString();
Identity ice_getIdentity();
string ice_getAdapterId();
EndpointSeq ice_getEndpoints();
EndpointSelectionType ice_getEndpointSelection();
Context ice_getContext();
string ice_getFacet();
bool ice_isTwoway();
bool ice_isOneway();
bool ice_isBatchOneway();
bool ice_isDatagram();
bool ice_isBatchDatagram();
bool ice_isSecure();
bool ice_isPreferSecure();
Router* ice_getRouter();
Locator* ice_getLocator();
int ice_getLocatorCacheTimeout();
bool ice_isCollocationOptimized();
bool ice_isThreadPerConnection();
onnection ice_getConnection();
Connection ice_getCachedConnection();
bool ice_isConnectionCached();

For example:

// C++
ObjectPrx obj = communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000");
assert(obj->ice_isTwoway());

The ice_isTwoway method returns true if the proxy uses twoway
invocations; false otherwise.

Factory Methods
These methods create a new proxy with the requested configura-
tion.

// Pseudo Slice
Object* ice_identity(Identity id);
Object* ice_adapterId(string id);
Object* ice_endpoints(EndpointSeqendpoint s);
Object* ice_endpointSelection(
 EndpointSelectionType t);
Object* ice_context(Context ctx);
Object* ice_defaultContext();
Object* ice_facet(stringfacet);
Object* ice_twoway();
Object* ice_oneway();
Object* ice_batchOneway();
Object* ice_datagram();
Object* ice_batchDatagram();

Proxies

http://www.zeroc.com/newsletter/issue22.pdf
http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue 23, May 2007 Page 7Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Object* ice_secure(bool b);
Object* ice_preferSecure(bool b);
Object* ice_compress(bool b);
Object* ice_timeout(inttimeout);
Object* ice_router(Router* rtr);
Router* ice_getRouter();
Object* ice_locator(Locator* loc);
Object* ice_locatorCacheTimeout(int seconds);
Object* ice_collocationOptimized(bool b);
Object* ice_connectionId(string id);
Object* ice_threadPerConnection(bool b);
Object* ice_connectionCached(bool b);

For example:

// C++
ObjectPrx obj = communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 12000");
obj = obj->ice_secure(true);

Calling ice_secure(true) returns a new proxy that will make
invocations only via secure endpoints.

Obtaining Proxies

Stringified Proxies
For bootstrapping purposes, proxies are almost always obtained
from a stringified proxy (or via proxy properties—see below). As
we saw earlier, stringified proxies can be used to create direct or
indirect proxies. Direct proxies have a set of associated endpoints.
Each endpoint contains a protocol identifier and associated proto-
col-specific addressing information that specifies how and where
the target object can be reached. For example:

// C++
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000"));

This creates a direct proxy with the object identity Hello that
can be contacted on host �92.�68.�.4 at port �0000 using the TCP
protocol.

Direct proxies can have multiple endpoints. For example:

// C++
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000"));

This stringified proxy contains two endpoints. The first is a TCP
endpoint (as we just saw in the preceding example). The second is
an SSL endpoint for the host 192.168.1.4 and port 11000. A proxy
with more than one endpoint tells the Ice run time that the target
object can be reached at more than one address. The Ice Manual
describes how the Ice run time decides which endpoint to use. (I
will describe this in more detail in a future article.)

Stringified indirect proxies can specify a well-known proxy, for
example:

// C++
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->stringToProxy("Hello"));

This code creates an indirect proxy with the associated identity
hello. Alternatively, stringified proxies can specify an adapter
identifier:

// C++
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->stringToProxy(
 "Hello@HelloAdapter"));

This code creates an indirect proxy with the associated iden-
tity Hello that resides at the object adapter with the identifier
HelloAdapter.

Stringified proxies can also specify marshaled proxy options.
For example, to set the secure mode, you can provide the -s
option:

// C++
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->stringToProxy("Hello -s"));

To specify a facet name, use the -f option:

// C++
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->stringToProxy("Hello –f v2"));

Other options are -t for twoway invocations (this is the default),
-o for oneway invocations , -O for batch oneway invocations, -d
for datagram invocations, and -D for batch datagram invocations.

// C++
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->stringToProxy(
 "Hello –o:tcp –h 192.168.1.4 –p 10000"));

Endpoints can also contain additional flags other than -h (for the
host) and -p (for the port). The exact flags depend on the transport.
For TCP and SSL, Ice supports -t timeout to set the timeout and
-z to set protocol compression. For example:

// C++
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000 –t
10000 –z"));

This sets a ten-second timeout on all invocations to the object via
this proxy, and tells the proxy to use protocol compression (if pos-
sible).

For UDP, Ice supports -z to to set protocol compression and
-e and -v to set the protocol and encoding versions. (See the Ice
Manual for more information on why you might want to use these
options.)

Proxies

http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue 23, May 2007 Page 7Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

// C++
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->stringToProxy(
 "Hello -d:udp –h 192.168.1.4 –p 10000 –z"));

This example configures the hello proxy to use datagrams and
configures the UDP endpoint to use protocol compression. (Note
that with UDP, if the server hosting the Ice object does not support
protocol compression, the message will be lost; because UDP is
unidirectional, the client has no direct way to find out about this
problem.)

Proxy Properties
Proxy properties are an alternate way to create bootstrap proxies.
We introduced proxy properties in Ice 3.2 as a more flexible way of
externalizing proxies with property settings (instead of hard-cod-
ing stringified proxies). Proxy properties are also the only way to
control local proxy settings without making API calls. (Stringified
proxies cannot be used to control local proxy settings because they
only provide options to control marshaled proxy settings.)

config.client
Hello.Proxy=Hello:tcp –h 192.168.1.4 –p 10000

// C++ using config.client
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->propertyToProxy(
 "Hello.Proxy"));

The propertyToProxy method in the preceding example looks
up the Hello.Proxy property to determine the stringified proxy to
use. Of course, you could also do this yourself as follows:

// C++ using config.client
HelloPrx hello = HelloPrx::checkedCast(
 communicator()->stringToProxy(
 communicator()->getProperties()->getProperty(
 "Hello.Proxy")));

So why are proxy properties useful? Their real advantage is that
they allow you to configure local proxy settings. For example:

config.client
Hello.Proxy=Hello:tcp –h 192.168.1.4 –p 10000
Hello.PreferSecure=1

This configuration configures the proxy to prefer to secure connec-
tions over insecure ones. This is equivalent to writing:

// C++ using config.client
ObjectPrx obj = communicator()->stringToProxy(
 communicator()-> getProperties()->getProperty(
 "Hello.Proxy"));
obj = obj->ice_preferSecure(true);
HelloPrx hello = HelloPrx::checkedCast(obj);

You can also control other local proxy settings via proxy prop-
erties, namely, collocation optimization, connection caching,
endpoint selection, the locator proxy, the locator cache timeout, the
router proxy, and the thread-per-connection concurrency model.
(See the Ice Manual for details.)

Proxy Factory Methods
Proxy factory methods provide another way to create new proxies.
In all cases, the new proxy is a copy of the original proxy, but with
one setting altered. For example, the ice_secure method returns
a proxy that will make invocations only via secure endpoints:

// C++
ObjectPrx obj = communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000");
obj = obj->ice_secure();
HelloPrx hello = HelloPrx::checkedCast(obj);

checkedCast and uncheckedCast also create new proxies of a
specific type. uncheckedCast returns a new proxy of the speci-
fied type. This function is not type-safe in that there is no guaran-
tee that the Ice object to which the proxy refers indeed supports
the specified interface. (You must make sure that the type ID you
specify for an uncheckedCast matches an interface that the target
object implements.) If you want to find out whether the target
object implements a particular interface, you could call ice_isA
and, if the interface is supported, call uncheckedCast. This is
what a checkedCast does: it internally calls ice_isA to validate
the type, and then returns a new proxy if the type is correct, and
null otherwise. (If the target object is unreachable, checkedCast
throws an exception.)

Method Invocations
Ice provides stringified proxies mainly for bootstrapping: normally,
proxies are returned by making operation invocations but, to make
an invocation, the client needs a proxy. Stringified proxies solve
this chicken-and-egg problem and allow you to configure clients
with the few initial proxies they typically need to “get off the
ground”. However, once a client has the first few proxies, it should
not use stringified proxies any longer and, instead, obtain further
proxies may making operation invocations. For example:

// Slice
interface Widget
{
 // ...
};
interface WidgetFactory
{
 Widget* create();
};

Proxies

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue 23, May 2007 Page 9Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

// C++
WidgetFactoryPrx factory =
 WidgetFactory::checkedCast(
 communicator->stringToProxy(
 "WidgetFactory")):
WidgetPrx widget = factory->create();

Note that this code obtains the proxy to the new widget directly as
a value, and no conversion from a string to a proxy and no down-
cast are necessary.

In contrast, consider the following:

// Slice
interface WidgetFactory
{
 string create();
};

// C++
WidgetFactoryPrx factory = ...;
// Bad!
WidgetPrx widget = WidgetPrx::uncheckedCast(
 communicator->stringToProxy(
 factory->create()));

This is a bad idea. Do not pass stringified proxies over the wire;
instead, pass them as proxies. Firstly, passing proxies as strings is
less efficient because proxies in marshaled form are more compact
than in string form. Secondly, passing proxies as strings bypasses
the Slice type system and the guarantees provided by the Slice
contract. By passing a proxy as a string the receiver needs to first
convert the string back to a proxy of the appropriate type before
use, instead of using the type information implicit in the Slice
contract. This can result in violations of the type system at run time
that, otherwise, would be caught at compile time. (See this FAQ
for more details on this topic.)

Fixed and Routed Proxies
As previously stated, fixed proxies can neither be created directly
from a stringified proxy, nor obtained as the result of a method
invocation. The only way to create a fixed proxy is by calling
createProxy on a connection object. Doing so creates a fixed
proxy that is bound to the corresponding connection.

Routed proxies are created by either setting the Ice.Default.
Router property or by creating a new proxy from an existing one
by calling ice_router. A routed proxy sends all invocations on
the proxy not to the actual target object, but instead to a router
object that, in turn, forwards the invocation to the real target.

Proxy Defaults and Overrides
Ice supports both proxy defaults and proxy overrides, which allow
you to control specific property settings even if they are not explic-
itly set during proxy creation.

Proxy Defaults
A proxy default controls a setting of a proxy if that setting is not
explicitly specified. For example:

config.client
Ice.Default.CollocationOptimization=0

// C++
ObjectPrx obj = communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000");
assert(!obj->isCollocationOptimized());

By default, all proxies support collocation optimization. (Colloca-
tion optimization means that calls on collocated Ice objects take an
optimized code path that avoids marshaling and network over-
head.) Under some circumstances, collocation optimization is not
desirable. (See the Ice Manual for a list of differences between col-
located and regular method invocations.) To change this setting for
an individual proxy, you can call ice_collocationOptimized
to explicitly control the setting. However, you can change the
default setting, making it unnecessary to disable collocation opti-
mization every time you create a proxy (as shown in the preceding
example.)

Let’s look at another example:

config.client
Ice.Default.Host=192.168.1.4

// C++
ObjectPrx obj = communicator()->stringToProxy(
 "Hello:tcp –p 10000");
obj->ice_ping();

In this case, since no host is specified for the TCP endpoint, the Ice
run time uses the Ice.Default.Host property to set the host for
the proxy and will contact the host at 192.168.1.4 when the code
calls ice_ping on the proxy.

Contrast this with the following:

config.client
Ice.Default.Host=192.168.1.4

// C++
ObjectPrx obj = communicator()->stringToProxy(
 "Hello:tcp –h remote.host.com –p 10000");
obj->ice_ping();

Even though Ice.Default.Host is set, the proxy still contains
the host remote.host.com, because it was explicitly set during
proxy creation (so the default is simply ignored).

The defaults that you will use most often in your applications
are Ice.Default.Router (when using Glacier2) and Ice.
Default.Locator (when using IceGrid). See the Ice Manual for
more default settings that you may find useful in your applications.

Proxies

Master

Slave-1

Node-1

Node-2

http://www.zeroc.com/faq/passingProxies.html
http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue 23, May 2007 Page 9Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Proxy Overrides
In contrast to default settings, override settings are used regardless
of any explicit setting. For example:

config.client
Ice.Override.Compress=1

// C++
HelloPrx hello = HelloPrx::uncheckedCast(
 communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000"));
hello->sayHello();

In this case, all communications via this proxy always use pro-
tocol compression, even though the proxy is created without the
–z option. (If the server does not support protocol compression,
the client receive a ConnectionLostException.)

When using overrides, the proxy’s local settings are always ig-
nored. For example, Ice.Override.Secure instructs the Ice run
time to only bind to secure endpoints:

config.client
Ice.Override.Secure=1

// C++
HelloPrx hello = HelloPrx::uncheckedCast(
 communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000"));
hello->sayHello();

This invocation throws a NoEndpointException because the
proxy does not contain a secure endpoint. Consider this example:

config.client
Ice.Override.Secure=1

// C++
HelloPrx hello = HelloPrx::uncheckedCast(
 communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000"));
hello->sayHello();

In this case, invocations are always secure and the TCP end-
point is simply ignored. In contrast, if Ice.Override.Secure
is not set, insecure endpoints are preferred over secure end-
points (unless Ice.Default.PreferSecure is set or ice_
preferSecure(true) has been called on the proxy in which
case secure endpoints are preferred over insecure endpoints).

config.client
Ice.Override.Secure=1

// C++
ObjectPrx obj = communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000");
obj = obj->ice_secure(false);
HelloPrx hello = HelloPrx::uncheckedCast(obj);
hello->sayHello();

In this case, secure communications will still be used, despite the
call to ice_secure(false).

Note that overrides do not change the proxy, they only change
the behavior of the proxy when it is used. Consider the following
two examples, run without Ice.Override.Secure being set.
Here is the first example:

// C++
ObjectPrx obj = communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000");
cout << obj->ice_toString() << endl;

$ test
Hello –t:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000

As you would expect, the stringified proxy (apart from the
added -t option) is identical to the string that the code passes to
stringToProxy.

The second example also runs without Ice.Override.Secure
being set, but calls ice_secure explicitly:

// C++
ObjectPrx obj = communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000");
obj = obj->ice_secure(true);
cout << obj->ice_toString() << endl;

$ test
Hello –s –t:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000

Note that the stringified proxy now contains a -s flag, which indi-
cates that the proxy is secure and will only make invocations over
secure endpoints. (This is not surprising, given that the code called
ice_secure(true) to create the proxy.)

Now consider the first example once more, but run with Ice.
Override.Secure set:

config.client
Ice.Override.Secure=1

// C++
ObjectPrx obj = communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000");
cout << obj->ice_toString() << endl;

$ test
Hello –t:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000

Although the proxy acts securely (meaning that it will only make
invocations over secure endpoints), when the code calls ice_
toString, the resulting string does not have the -s secure flag
set. In other words, proxy overrides affect the behavior of a proxy,

Proxies

Master

Slave-1

Node-1

Node-2

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue 23, May 2007 Page ��Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

but do not change a proxy’s contents. This distinction is important
and you should keep it in mind.

Proxy overrides do not affect proxy comparison. Consider:

config.client
Ice.Override.Secure=1

// C++
ObjectPrx o1 = communicator()->stringToProxy(
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000");
ObjectPrx o2 = communicator()->stringToProxy(
 "Hello -s:tcp –h 192.168.1.4 –p 10000:ssl –h
192.168.1.4 –p 11000");
assert(o1 == o2);

This assertion will fail: although the two proxies behave the same
way at run time due to the Ice.Override.Secure=1 override,
they are not the same.

Proxies are First-Class Types
We occasionally see Ice applications that avoid storing or passing
proxies for fear that proxies are heavy-weight objects. Such fears
are unfounded: proxies have a very efficient internal representa-
tion and attempts to avoid using proxies are likely to result in more
CPU and memory overhead, not less. For example:

// C++
ObjectPrx o1 = ...;
ObjectPrx o2 = o1;

In this case o1 and o2 are smart pointers to the same proxy object,
and smart pointers provide very efficient initialization and assign-
ment. Contrast this to:

// C++
ObjectPrx o1 = ...;
ObjectPrx o2 = communicator->stringToProxy(
 o2->ice_toString());

In this case, o1 and o2 point to different internal proxy objects,
that is, the code consumes memory for two proxy instances, in-
stead of a single one.

The following example illustrates that Ice can avoid creating a
new proxy in some cases:

// C++
ObjectPrx o1 = communicator->stringToProxy(
 "hello –t 5000");
ObjectPrx o2 = o1->ice_timeout(5000);

o1 and o2 still point to the same proxy object. Ice is smart enough
to realize that the new proxy being created has the same timeout
as the source proxy; in this case, it avoids creating a new proxy
and simply returns a smart pointer to the already existing proxy.
(Because proxies are immutable, this optimization is safe.)

The Ice run time also avoids expensive operations until they
become necessary. For example, Ice does not establish a connec-
tion once a proxy is created, but only once a connection is actually
required in order to invoke an operation (such as checkedCast,
ice_isA, ice_ping, ice_id, ice_ids, or a Slice-defined
operation).

Occasionally, designers try to avoid passing proxies as pa-
rameters, usually to the detriment of the entire system: the likely
outcome is poor performance, inconvenient interfaces, and lack of
scalability. Consider this example of incorrect design:

// Slice--AWKWARD!
interface Widget
{
 int id();
 // ...
};
exception WidgetExistsException
{
};
interface WidgetFactory
{
 Widget* create(int id)
 raises WidgetExistsException;
 Widget* find(int id);
};
interface WidgetContainer
{
 void store(int id);
 StringSeq getWidgets();
};

This application requires a container of widgets. Widgets are cre-
ated using the factory, and then placed into their container as a
widget ID. The factory allows widgets to be located by ID with the
find operation.

This design harbors problems that are not obvious until you
start to use, evolve, and scale the application. For one, the design
is awkward and performs poorly: to use a widget that is retrieved
from the container, the caller must first re-obtain a proxy to the
widget by calling the find operation on the factory. This step is
not only unnecessary, but also expensive because it requires an ad-
ditional remote invocation. Second, to look up a widget via its ID,
the caller must know which widget factory to use (which would be
unnecessary if the caller would have proxy to the widget in the first
place). You might dismiss this as academic: surely there will be
only one widget factory. However, scalability dictates otherwise.
Chances are that a once-small application will become a much
larger application and, before you know, the application will need
multiple widget factories. In turn, to support multiple factories,
the original design needs to be modified to provide callers with a
means to locate the factory for a given widget ID (unless callers
would try all factories, which would be inefficient). Furthermore,
extending the original design to multiple factories also requires a
scheme to partition the widget IDs such that IDs remain unique
across different factories.

Proxies

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue 23, May 2007 Page ��Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

The root problem of the design is that, by storing only the ID
of widget, location information is lost. A superior design is as
follows:

// Slice
interface Widget
{
 // ...
};
sequence<Widget*> WidgetPrxSeq;
interface WidgetFactory
{
 Widget* create();
};
interface WidgetContainer
{
 void store(Widget* w);
 WidgetPrxSeq getWidgets();
};

This interface exhibits none of the preceding problems. It is
straightforward, extensible, easy to use, and performs well. We
strongly encourage you to use proxies as they were intended to be
used, namely, as strongly-typed values that can be exchanged as
easily and efficiently as a string. Doing so results in better perfor-
mance and does not compromise the type safety of an application.

Proxies

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue 23, May 2007 Page �3Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �3Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Master–Slave Replication with Ice
Benoit Foucher, Senior Software Engineer

Introduction
Ice and IceGrid provide facilities that allow you to replicate servic-
es and allow clients to transparently use these replicated services.
This replication provides load balancing over multiple machines
and fault tolerance for vital services.

Clients have several ways to take advantage of replication in Ice:

• Direct proxies. A direct proxy can have multiple endpoints
and can point to multiple replicas of the same service. For
example, you can use the proxy hello:tcp –p 12345 –h
host1.foo.com:tcp –p 12345 –h host2.foo.com
to invoke on the replicated hello object. By default, the Ice
run time will randomly select one of the two endpoints when
a client makes an invocation. If one replica fails, the Ice run
time automatically tries the endpoint of the other replica.

• Indirect proxies with replica groups. An indirect proxy can
point to a replica group, such as hello@MyReplicaGroup.
The replica group identifier MyReplicaGroup is resolved
by the Ice locator service to the endpoints of one or more
replicas.

So, to use replication, all you need to do is implement a service
and deploy multiple instances of it, and distribute the appropriate
proxies to clients. Is it really that easy? Well, yes, or at least, it
would be if the service were completely stateless. However, very
often, services have state.

In this article, I outline how to replicate a simple stateful service
using master–slave replication. The service stores information
about users in a database and allows clients to query that infor-
mation. Updates to the database can be made only by the master
instance, and slaves can only read, but not update, the database. To
keep slaves up to date, the master replicates the database contents
to the slaves. If the master goes down, clients can no longer make
any updates but can still query the database via the slaves.

The Slice Interfaces
Let’s take a look at the Slice interfaces for the service. The service
is provided by two interfaces; an interface to modify the user data-
base, and an interface to query the database:

// Slice
module Demo
{
exception UserNotFoundException
{
 string id;
};

struct UserInfo
{
 string id;
 string firstName;
 string lastName;
 string address;
};

interface UserQuery
{
 UserInfo get(string id)
 throws UserNotFoundException;
 UserDatabase* getDatabase();
};

interface UserDatabase
{
 void add(UserInfo info);
 void remove(string id);

};
};

The user information is stored in a Freeze map. The add and
remove operations of the UserDatabase interface allow clients
to add and remove users, and the get operation of the UserQuery
interface allows clients to retrieve users via their identity. The
getDatabase operation returns the proxy of the UserDatabase
object.

By using separate interfaces, we clearly split the functional-
ity provided by the master from the functionality provided by the
slaves. This makes it easy to write slaves such that they provide
access only to slave functionality. In contrast, if we had defined
a single interface, the master would provide a fully functional
implementation, whereas the slaves would provide only a partial
implementation. In turn, this would mean that either the slave im-
plementation of the add and remove methods would need to throw
an exception to indicate that these operations are supported only
on the master (which is ugly), or the slaves would need to forward
add and remove operations to the master (which is inefficient).
For these reasons, it is better to use two separate interfaces.

Implementation without Replication
The implementation of these two interfaces is trivial if we omit
replication for now. Here is the bulk of the code:

Master–slave rePlication with ice

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue 23, May 2007 Page �3Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �3Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

// Java
public class DatabaseI implements
 _UserDatabaseOperations, _UserQueryOperations
{
 synchronized public UserInfo
 get(String id, Ice.Current current)
 throws UserNotFoundException
 {
 UserInfo info =
 (UserInfo)_users.get(id);
 if(info == null)
 {
 throw new UserNotFoundException(id);
 }
 return info;
 }

 synchronized public UserDatabasePrx
 getDatabase(Ice.Current current)
 {
 return _database;
 }

 synchronized public void
 add(final UserInfo info, Ice.Current current)
 {
 _users.fastPut(info.id, info);
 }

 synchronized public void
 remove(final String id, Ice.Current current)
 {
 _users.fastRemove(id);
 }

 DatabaseI(Ice.Communicator communicator,
 UserDatabasePrx database)
 {
 _database = database;
 _connection =
 Freeze.Util.createConnection(
 communicator, "Master");
 _users = new StringUserInfoDict(
 _connection, "users");
 }

 final private UserDatabasePrx _database;
 final private Freeze.Connection _connection;
 final private StringUserInfoDict _users;
}

We create a Freeze map and use it to store and retrieve the user
information. You might notice that the DatabaseI class in-
herits from the generated _UserDatabaseOperations and
_UserQueryOperations. We’re using tie classes and delegation
to implement the interfaces. This allows implementing the two
interfaces with a single Java class. Here is how the servants are
created and registered:

// Java
public class Server extends Ice.Application
{
 public int
 run(String[] args)
 {
 Ice.ObjectAdapter adapter =
 communicator().createObjectAdapter(
 "Server");
 UserDatabasePrx proxy =
 UserDatabasePrxHelper.uncheckedCast(
 adapter.createProxy(
 communicator().stringToIdentity(
 "UserDatabase")));
 DatabaseI db = new DatabaseI(
 communicator(), proxy);
 adapter.add(new _UserDatabaseTie(db),
 proxy.ice_getIdentity());
 adapter.add(new _UserQueryTie(db),
 communicator().stringToIdentity(
 "UserQuery"));
 adapter.activate();
 communicator().waitForShutdown();
 return 0;
 }
 …
}

The generated class _UserDatabaseTie and _UserQueryTie
delegate the implementation of the interfaces to the DatabaseI
class. The server incarnates two objects whose identities are
UserDatabase and UserQuery. To access the UserDatabase
and UserQuery interfaces, a client needs to be configured with
only the proxy of the UserQuery interface. It can invoke the
getDatabase method to retrieve the proxy of the UserDatabase
interface.

The Slice Interfaces for Replication
Now let’s add master–slave replication to this service. To do that,
we will use the observer pattern, plus a session between each slave
and the master. (See “The Grim Reaper” in Issue 3 of Connections
for more information on sessions.)

Slaves are observers of the master user database: each time the
database is updated, the master sends notifications to its slaves.
Each slave maintains an internal database that can be modified
only through the observer notifications.

The slaves need to create a session with the master to receive
observer updates from the master database. If the master cannot
send a notification to a slave (perhaps because of a temporary
network problem), the session is destroyed and the slave has to es-
tablish a new session to re-synchronize its database with the master
database. This ensures the consistency of the slave database with
the master database: as long as there is an active session between
the master and the slave, the slave has an accurate up-to-date rep-
lica of the database. The session makes it easy to keep track of the
connection status between the slave and the master.

Master–slave rePlication with ice

http://www.zeroc.com/faq/signals.html
http://www.zeroc.com/newsletter/issue3.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �4 Issue 23, May 2007 Page ��Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Replication requires some interactions between the master and
slaves. These interactions are defined by three additional Slice
interfaces. These interfaces are defined in their own module to
clearly separate user interfaces from interfaces used to implement
replication. Here are the additional interfaces:

module DemoInternal
{
interface UserDatabaseObserver
{
 void init(UserInfoSeq infos);
 void added(UserInfo info);
 void removed(string id);
};

interface UserDatabaseSession
{
 void keepAlive();
 void destroy();
};

interface UserDatabase extends Demo::UserDatabase
{
 UserDatabaseSession* createSession(
 UserDatabaseObserver* obsv);
};
};

Slaves implement the
UserDatabaseObserver
to receive database updates
from the master. The mas-
ter calls the init method
once when the session is
established by the slave.
(See ”IceStorm 3.2” in
Issue 2� of Connections for
a detailed description of a
similar observer interface
and why this init method
is necessary.) The mas-
ter calls the added and
removed methods when a
user is added or removed
from the database. The
UserDatabaseSession
interface and the
UserDatabase interfaces
are implemented by the
master and used by slaves
to create sessions. The
slave provides a proxy to
its observer object when
it creates a session. See
Figure � for a sequence
diagram that shows the
interactions between the

master and the slave.

The slave has a thread that is dedicated to creating the session
and keeping it alive. If the master goes down, the thread periodi-
cally tries to re-establish the session. Once a session is established,
the master calls back on the slave observer to initialize the slave’s
database. This ensures that both the master and the slave databases
are consistent. Once the session is created, the master sends up-
dates to the slave whenever the master database changes.

The implementation with replication
The UserDatabase from the DemoInternal module interface
is implemented by the MasterDatabaseI class. This class also
implements the UserQuery interface. The implementation of the
new createSession method is shown below:

synchronized public UserDatabaseSessionPrx
createSession(UserDatabaseObserverPrx observer,
 Ice.Current current)
{
 try
 {
 observer.init(
 (UserInfo[])_users.values().toArray(
 new UserInfo[0]));
 // Close the iterator implicitly opened
 // by the call to _users.values()

Figure 1: Interactions between the Master and a Slave

Master–slave rePlication with ice

MasterSlave

SessionThread

UserDatabase

Session

UserDatabase

UserDatabase

Observer

<<create>>

createSession

<<create>>

init

keepAlive

add

added

http://www.zeroc.com/newsletter/issue21.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �4 Issue 23, May 2007 Page ��Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

 _users.closeAllIterators();
 }
 catch(Ice.LocalException ex)
 {
 return null;
 }
 UserDatabaseSessionI session =
 new UserDatabaseSessionI(
 observer, current.adapter);
 _sessions.add(session);
 return session.getProxy();
}

First, createSession invokes the init method on the observer.
This invocation provides the list of all the users currently stored in
the master database to the observer and allows the slave to syn-
chronize its database with the master database. If the init call is
successful, createSession creates a new session servant and
adds it to the _slaves list. The MasterDatabaseI class uses this
list to keep track of the active sessions and their observer proxies.

In addition to modifying the database, the implementa-
tions of the add and remove need to notify the observers. The
notifyObservers method achieves this with an appropriate
Update object. For example, here is the add operation:

synchronized public void
add(final UserInfo info, Ice.Current current)
{
 _users.fastPut(info.id, info);
 notifyObservers(new Update()
 {
 public void
 invoke(UserDatabaseObserverPrx proxy)
 {
 proxy.added(info);
 }
 });
}

The implementation of the notifyObservers method is shown
below:

private void
notifyObservers(Update update)
{
 java.util.Iterator p = _sessions.iterator();
 while(p.hasNext())
 {
 UserDatabaseSessionI session =
 (UserDatabaseSessionI)p.next();
 try
 {
 DemoInternal.UserDatabaseObserverPrx
 observer = session.getObserver();
 if(observer != null)
 {
 update.invoke(observer);
 }
 else
 {

 // The session has been destroyed
 // by the slave.
 p.remove();
 }
 }
 catch(Ice.LocalException ex)
 {
 _logger.warning(
 "lost connection with replica:\n"
 + ex.toString());
 session.destroy(null);
 p.remove();
 }
 }
}

Each time a user is added or removed, the add or remove
method calls notifyObservers to notify the observers. The
getObserver method of the UserDatabaseSessionI class
returns the proxy of the observer associated with the session.
If the session is destroyed, getObserver returns null and
notifyObservers removes the session from the list of ses-
sions. Otherwise, notifyObservers calls invoke on the update
object, which in turn calls the observer to send the appropriate
update. If the invocation fails, notifyObservers destroys the
session and removes it from the _sessions list of sessions. The
notifyObservers method really has two functions:

• sending updates to all the observers with an active session,
• reaping destroyed sessions.

Destroying the session if an update fails ensures that the slave will
re-connect, thereby creating a new session with the master. By
creating a new session, the slave again receives all the users cur-
rently stored in the database, which ensures that the slave database
is synchronized with the master.

The slave implements the UserDatabaseObserver and
UserQuery interfaces in the SlaveDatabaseI class. Similar to
the master, this class stores the users in a Freeze map, to allow
upgrading a slave to a master by re-using its database. The imple-
mentation of the observer interface is trivial and shown below:

synchronized public void
init(UserInfo[] infos, Ice.Current current)
{
 _users.clear();
 for(int i = 0; i < infos.length; ++i)
 {
 UserInfo info = infos[i];
 _users.fastPut(info.id, info);
 }
}

synchronized public void
added(UserInfo info, Ice.Current current)
{
 _users.fastPut(info.id, info);
}

Master–slave rePlication with ice

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue 23, May 2007 Page �7Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �7Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

synchronized public void
removed(final String id, Ice.Current current)
{
 _users.fastRemove(id);
}

The implementation of the init method simply replaces the con-
tents of the slave database with the users provided by the master.
The implementation of the added and removed methods adds and
removes users from the slave database.

The master sends updates with twoway synchronous calls from
the synchronization block of the MasterDatabaseI servant
methods. This is necessary to ensure that updates are not sent out
of order. For instance, the init call on the observer must be made
before any added or removed call on the observer.

Finally, the slave must establish a session with the master to start
receiving updates. This is achieved with a dedicated keep-alive
thread that has two roles:

• Create the session if it is not established already. The thread
tries to create the session at regular intervals until it succeeds.

• Keep the session alive if it is established already. The thread
tries to recreate a session if it detects that the session is un-
reachable or has been destroyed.

The keep-alive thread also creates the UserDatabaseObserver
servant for each session and registers it with the object adapter.
It is important to use distinct observer objects for each session,
otherwise the slave could receive updates from a previous observer
(if the master has not yet detected that the previous session was
destroyed by the slave).

Caveats and Optimizations
The implementation of the master–slave replication ends up being
quite simple thanks to the use of a session and the observer design
pattern. However, there are a few caveats and optimizations you
need to be aware of.

Consistency
Since the replication updates are propagated synchronously by the
master to the slaves, our replicated user database provides “read
your writes” consistency to clients. In other words, if a client
updates the database, it is guaranteed to be able to read the modi-
fication once the update request has completed. A client is also
guaranteed to always retrieve sequential updates if it uses the same
slave to read the data.

However, inconsistencies among the slaves are possible be-
cause observer updates are not sent atomically. It is possible for an
update to be visible on a slave but not visible on another slave yet
(because of network latency or because the slave is currently not
connected to the master). So, if a client uses multiple slaves to read
the data, it might not get a sequential view of the database updates.

The application has to be aware of this limitation and, if neces-
sary, deal with it. One simple solution is to make sure that the
application always uses the same slave to read updates. Another
solution is to improve the replication mechanism to ensure that all
slaves have the same view of the master database at the same point
in time. (However, this requires a more elaborate protocol to dis-
tribute the updates, similar to the two-phase commit protocol used
for distributed transactions.)

Observer Updates
Observer updates are sent with twoway calls within the master
servant synchronization block. This is necessary for two reasons:

• Updates to observers need to be sent within the synchroni-
zation to make sure the database updates and the observer
updates are atomic. Without synchronization, we would get
inconsistencies if two threads concurrently modify the same
database entry. For example, a thread could add user u to the
Freeze map and be interrupted by the operating system sched-
uler. Another thread could then remove u from the Freeze
map and notify the observer that user u was removed. When
the first thread is scheduled again, it would then notify the
observer that u was added, resulting in an inconsistent slave
database.

• The updates need to be sent with twoway calls to ensure that
the updates are received in the correct order. (Oneway cannot
be used because they may be dispatched out of order, depend-
ing on the observer configuration.)

The problem with synchronized twoway calls is that, if an ob-
server invocation takes a while to complete, it locks up the master
database, and invocations from clients to add or remove users hang
until the observer invocation completes.

One way to solve this issue is to set a timeout on the observer
proxies that limits the amount of time the lock is held for. Another
solution is to delegate the sending of observer updates to a sepa-
rate thread. The updates can be queued within the synchronization
block of the master servant and picked up by a sender thread to
be sent in-order using twoway calls. Finally, another option is to
use IceStorm to distribute the observer updates. However, because
IceStorm communications are unidirectional, this requires an ac-
knowledgment mechanism to ensure that all updates are correctly
delivered to slaves. (This is necessary if IceStorm cannot deliver an
update to an observer, in which case it automatically unsubscribes
the observer without the master being aware of this.)

Slave Synchronization
The synchronization of the slave with the master consists of simply
sending the content of the user database to the slave when the ses-
sion is established. This is simple, but does not scale to large data
sets.

Master–slave rePlication with ice

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue 23, May 2007 Page �7Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �7Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

For one, if there are many users, sending the list of users in a
single invocation could throw a MemoryLimitException. (A
better approach would be to send the database in multiple invoca-
tions, for example, with batch oneway invocations.)

But, even assuming that we can send the updates without run-
ning into memory limitations, the approach still does not scale
beyond a certain point. In that case, it is better have the master
store a log of all the changes made to the user database. The
synchronization of a slave with the master then consists of replay-
ing all the changes that have occurred to the master database since
the last time the slave was connected. This requires the slave to
keep track of a log identifier to identify the last update it received
from the master, and it requires policies to determine when the log
can be cleaned up because it is impossible to indefinitely track all
of the changes made to the user database. (Of course, if the slave
database is empty, this still requires transfer of the whole database,
but only once, instead of every time a session is established.)

Improved Start-Up
While the master is down, some slaves might have an out-of-date
image of the master database. When the master becomes available
again, it can take some time for the slaves to re-connect and re-syn-
chronize their database with the master database. To get the slaves
up-to-date as quickly as possible, the master can notify its slaves
whenever it starts up, thereby avoiding this delay.

Master Upgrade
Because the slave and the master use the same database format, it
is possible to upgrade a slave to a master by terminating a slave
and restarting the slave as a master. However is better if the same
thing can be achieved without having to restart the slave process.
The main hurdle here is to figure out a way to inform other slaves
of the new master without having to edit each slave’s configuration
file.

One simple way to solve this is to use the Ice locator mecha-
nism. For example, you can register the UserDatabase object as
a well-known object. When a slave is upgraded to a master, you
can update the endpoints of the well-known object in the location
service, so no slave configuration needs to change.

Conclusion
This concludes my introduction to the implementation of master–
slave replication with Ice. As always, the implementation of some-
thing you might have thought quite complicated is very simple
with Ice. A few simple interfaces are sufficient for the interactions
between the master and slaves.

Beware however, that replication isn’t that simple! As we saw,
the example implementation presented here has some problems
and, if you intend to replicate a large database, you are probably
better off looking at a database that provides built-in replication
(such as BerkeleyDB).

You can find the source code for this article in the
replication directory of the archive for this issue. Please get in
touch with us in our developer forums if you have any questions or
comments.

Master–slave rePlication with ice

http://www.oracle.com/database/berkeley-db/index.html
http://www.zeroc.com/forums

Connections
ZeroC’s Newsletter for the Ice Community

Page �8 Issue 23, May 2007 Page �9Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �9Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner
In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from
our support forum at http://www.zeroc.com/forums/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: How can I fork and exec an Ice process?

Under Unix, if you have an Ice process (client or server) and want
to create a new process, you will have to call fork and exec. The
basic code pattern looks something like the following:

// C++
pid_t pid = fork();
switch(pid)
{
 case –1:
 {
 throw "cannot fork";
 }
 case 0:
 {
 // Child

 // ...

 const char* exe = ...;
 const char** argv = ...;
 execv(exe, argv);
 }
 default:
 {
 // Parent
 }
}

This looks harmless enough but, unless you do things right,
chances are that your process might hang, crash, or do something
else unexpected. Here are a few simple rules to make sure things
work as intended.

1. Close open file descriptors before calling exec.
2. Only call async-signal-safe system calls in the child.
3. Do not call Ice-related functions in the child.
4. If the parent uses asynchronous signal handlers, disable signal

delivery before calling fork.

�. If the parent uses Ice::Application or IceUtil::
CtrlCHandler, and the child process needs the default be-
havior for SIGHUP, SIGINT, and SIGTERM, reset these signals
to their default behavior in the child before calling exec.

6. If exec fails, call _exit.

Closing open file descriptors in the child is important because not
doing so wastes kernel resources and can also interfere with the
parent (for example, prevent connection closure when the parent
closes a socket that is held open by the child).

Once fork has succeeded, the code must only call async-signal-
safe system calls. (The Unix attributes(�) man page provides a list
of these system calls.) Making any other system call can poten-
tially crash the child.

You must not call Ice-related APIs in the child before calling
exec. To understand why this is necessary, consider how fork
works for a threaded process. In essence, fork duplicates the
entire virtual memory image of the parent and arranges for fork
to return zero in the child process. In addition, if the parent is
threaded, the parent threads are not cloned in the child; instead,
fork creates a single thread in the child (which is the thread that
returns from the call). However, because the child has a memory
image that is identical to that of the parent, any thread-related
data structures will simply be in the state they were in when the
parent called fork and the kernel made a snapshot of the parent’s
memory. Among other things, this means that mutexes may remain
locked in the child, and data structures may be in an inconsistent
state because other threads may have been inside a critical region
at the time the parent called fork.

If you call any Ice-related function in the child before calling
exec, things can go badly wrong because the function may attempt
to lock a mutex that was already locked at the time the parent
called fork, causing the child to deadlock. Similarly, the function
might call a library function that is not async-signal-safe, causing
the child to crash.

If your application installs signal handlers, you need to take
extra care. After a fork, the child process has the same signal
disposition as the parent: signals that are caught and handled by the
parent are also caught and handled by the child. It is possible that
a signal is delivered to the child before the child can call exec. In
this case, if the parent handles the signal, so will the child. Depend-
ing on what the signal handler does, things can go badly wrong.
For one, the signal handler cannot make system calls that are not
async-signal-safe—doing so can crash either parent or child. But,
even if the signal handler is async-signal-safe, it may have side-
effects that are detrimental if the signal arrives in the child before
the exec. If so, you need to block signal delivery before the parent
calls fork, and unblock it again in the parent after fork returns.

If you use the Ice::Application or the IceUtil::
CtrlCHandler helper classes to handle signals, there is no
problem. The Ice run time does not install any signal handlers.
Instead, the helper classes block delivery of SIGHUP, SIGINT, and

FaQ corner

http://www.cse.msu.edu/cgi-bin/man2html?attributes?5?/usr/man

Connections
ZeroC’s Newsletter for the Ice Community

Page �8 Issue 23, May 2007 Page �9Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �9Issue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

SIGTERM and use a dedicated thread that calls sigwait to syn-
chronously accept signals. In turn, this means that your callback
functions (set with Application::callbackOnInterrupt or
CtrlCHandler::setCallback) can safely call into the Ice run
time, and can safely call functions that are not async-signal-safe.
However, if you do use these helper classes and call fork, the
child process will block SIGHUP, SIGINT, and SIGTERM. If you
need the default behavior for these signals in the child, you need
to unblock them before calling exec. (See this FAQ for more
information.)

Finally, if the exec fails for any reason, you must call _exit
(not exit). The difference between the two calls is that _exit
terminates the process immediately and does not perform any
clean-up actions (such as calling atexit handlers). In turn, this
means that the destructors of C++ global and static objects are not
called when you call _exit (whereas, if you call exit, they are
called). Preventing destructors from running if exec fails is impor-
tant because, if destructors were to run, they could fail because of
the same inconsistent data structures that may be encountered by
a signal handler. (Ice uses a few global objects internally, so this
rule applies even if you do not have any global objects in your own
code.)

So, here is an outline of the code needed to correctly fork and
exec:

// C++
// Set up a pipe so the child can report errors.
int fds[2];
if(pipe(fds) == -1)
{
 throw "cannot create pipe";
}

// Set close-on-exec on write end of pipe.
int flags = fcntl(fds[1], F_GETFD);
if(flags == -1)
{
 throw "cannot get fcntl flags";
}
flags |= FD_CLOEXEC;
if(fcntl(fds[1], F_SETFD, flags) == -1)
{
 throw "cannot set close-on-exec";
}

// If the parent uses signal handlers,
// block signal delivery here.

pid_t pid = fork();
switch(pid)
{
 case –1:
 {
 throw "cannot fork";
 }
 case 0:
 {

 // Child

 // If the parent uses Ice::Application or
 // IceUtil::CtrlCHandler, and the child
 // requires the default behavior for
 // SIGHUP, SIGINT, and SIGTERM, reset
 // these signals to the default behavior
 // here.

 // Close all open file descriptors.
 int maxFd = static_cast<int>(
 sysconf(_SC_OPEN_MAX));
 for(int fd = 0; fd < maxFd; ++fd)
 {
 // Don’t close write end of pipe.
 if(fd != fds[1])
 {
 close(fd);
 }
 }

 const char* exe = ...;
 char* const argv[] = ...;
 execv(exe, argv);

 const char msg[] = "exec failed";
 write(fds[1], msg, sizeof(msg) - 1);
 _exit(1);
 }
 default:
 {
 // Parent

 // Close the write end of the pipe.
 close(fds[1]);

 // Wait for child to write error message
 // or exec successfully.
 stringstream err;
 char c;
 while(read(fds[0], &c, 1) > 0)
 {
 err << c;
 }
 close(fds[0]);
 string msg = err.str();

 // If the parent uses signal handlers,
 // restore signal delivery here.

 if(!msg.empty())
 {
 throw msg;
 }
 }
}

Note that this code will most likely need fleshing out for your
application. For example, it simply closes all file descriptors,
including stdin, stdout, and stderr. It is likely that you will
instead want to connect these descriptors to a file or terminal or, if

FaQ corner

http://www.zeroc.com/faq/signals.html

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue 23, May 2007 Page PBIssue 23, May 2007 Connections
ZeroC’s Newsletter for the Ice Community

you do not need them, re-open them to /dev/null. (Leaving the
standard file descriptors closed is bad practice because third-party
libraries sometimes fail if these descriptors do not work.) You
may also want to perform additional actions, such as copying the
parent’s environment variables for the child, changing the working
directory, setting the process group, or similar. For more details
on how to do this, you can consult a Unix book such as Advanced
Programming in the Unix Environment, which is excellent.

Also note that, if exec fails, the preceding code reports the error
instead of having the child exit silently. A common way to imple-
ment this (and used by the preceding code) is to call pipe before
forking to create a pipe between parent and child and to set the
close-on-exec flag for the writing end of the pipe. The child writes
to the pipe if something goes wrong, and the parent reads the error
message from the pipe; the parent’s read either succeeds and reads
the error message or returns with an error if the child called exec
successfully because, in that case, the kernel closes the writing end
of the pipe.

Q: How are connections shared among proxies?

There is a long answer and a short answer to this question. The
long answer includes an explanation of how the Ice run time keeps
track of connections.

Each proxy stores information about the endpoint(s) at which
its object can be reached. When a client invokes an operation on a
proxy, the Ice run time checks whether it already has a compatible
open connection to the proxy’s selected endpoint. If so, it re-uses
that connection; otherwise, it establishes a new one. Once estab-
lished, the run time stores connections in an internal connection
table that keeps track of all open connections. That way, a client
can use thousands of proxies while using only as many connections
as there are distinct endpoints in these proxies. (Note that, if prox-
ies have different timeout values, the Ice run time creates a sepa-
rate connection, that is, for proxies to objects at the same endpoint,
there are as many connections as there are distinct timeouts.)

Connections are closed when, for example, you destroy a com-
municator and when a request times out or encounters a com-
munication failure. You can also explicitly close a connection via
a proxy’s associated Connection object. If you have automatic
connection management (ACM) enabled, the Ice run time peri-
odically closes connections that have been idle for some time, so
connections are not held open indefinitely. (See the Ice Manual for
more information on Connection objects and ACM.)

The short answer as to how connections are shared is “as much
as possible”—the Ice run time never opens a connection unless it
has to and, if you enable ACM, automatically closes connections
when they are no longer needed.

FaQ corner

http://www.amazon.com/Programming-Environment-Addison-Wesley-Professional-Computing/dp/0201433079/ref=sr_1_2/104-3827361-3856711?ie=UTF8&s=books&qid=1177984068&sr=8-2
http://www.amazon.com/Programming-Environment-Addison-Wesley-Professional-Computing/dp/0201433079/ref=sr_1_2/104-3827361-3856711?ie=UTF8&s=books&qid=1177984068&sr=8-2
http://www.zeroc.com/Ice-Manual.pdf

	Proxies
	Master–Slave Replication with Ice
	FAQ Corner

