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Stable!
In Issue �9 of Connections, I remarked 
that there seem to be few computing 
topics that cannot be learned in ten 
minutes, as attested by books with 
titles such as Teach Yourself Linux in 
10 Minutes. A cursory look through the 
computer section at a bookshop reveals 
many more titles along the same lines, 
such as CORBA for Dummies, The 

Complete Idiot’s Guide to XML, and Visual C++ in 12 Easy Les-
sons. I find such titles amusing because of their oxymoronic nature. 
No matter what one might think of middleware, dummies definitely 
won’t be able to use CORBA, and no matter what one might think 
of SOAP, complete idiots won’t ever get very far with XML. (Not 
to mention that someone who learns C++ in twelve easy lessons 
will, at best, know just enough to be dangerous.) In fact, these 
books remind me of magazine ads with titles such as Lose 10kg in 
Two Weeks! Clearly, the promise is vacuous—someone who did 
indeed lose that much weight in two weeks would likely be near 
death.

The computing industry seems to be unique in this respect, and 
other industries appear to be more restrained. For example, doctors 
do not read Teach Yourself Surgery in 10 Minutes, civil engineers 
cannot refer to Bridge Design for Dummies, law libraries do not 
stock The Complete Idiot’s Guide to Contract Law, and one reason 
why planes crash so rarely might be that Air Traffic Control in 
12 Easy Lessons is unavailable.

I see a lot of feature lists for middleware and other software. 
Among features such as fast and small, these lists often contain 
the term stable. I would have expected this to go without saying: 
of course the software is stable, otherwise it would not be for sale, 
right? Yet, few people seem to see anything remarkable in this. We 
are so used to software that has bugs, barely performs its advertised 
function, is impossibly difficult to use, or does not work at all that 
we are pleasantly surprised when we do come across a product 
that works. In turn, “it works” is something that marketing people 
won’t hesitate to point out, completely missing the irony inherent 
in that statement. By comparison, I cannot recall ever seeing a bat-
tery torch that promised on its packaging Lights up every time you 
flick the switch! or a car brochure that proudly proclaimed Brakes 
engage whenever you step on the pedal, always!

These anecdotes highlight that we are in an industry that is im-
mature and has barely begun to take itself seriously. Snake oil is 
the order of the day, and existing wisdom, hard-earned research 
results, and prior art are routinely ignored. The catch-cry of I’ve 
never designed a protocol before, but how hard can it possibly be? 

begets SOAP, and the quest for the holy grail of loose coupling 
bestows us with web services. Never mind that, in the long run, we 
know that these things are so flawed that they will be abandoned. 
In the meantime, an entire industry can continue to spin its wheels, 
sell silver bullets, and, whenever necessary, replace the current fad 
with the next one, much like going from the grapefruit diet to the 
tomato-and-egg diet.

If the industry does not take itself seriously, little wonder then 
that customers don’t either. Most customers are suspicious of 
anything new and are tired of the pot of gold at the end of the 
rainbow, especially when their business depends on the reliability 
of their software. If we want to be taken seriously as an industry, 
we had better change that and start selling software that is stable as 
a matter of course. Here at ZeroC, we are doing just that, so please 
forgive us for not including a Stable! sticker when you buy your Ice 
license.

Michi Henning 
Chief Scientist,
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Proxies
Matthew Newhook, Senior Software Engineer

Proxies are a fundamental concept of Ice and, in order to write Ice 
applications, you need understand what proxies are, why they are 
necessary, and how to use them. This article provides an overview 
of Ice proxies and their semantics.

Overview

What is a Proxy?
The American Heritage Dictionary defines the term proxy as fol-
lows:

�. A person authorized to act for another; an agent or substitute.
2. The authority to act for another.
3. The written authorization to act in place of another.

The first definition, “agent or substitute” is the one that best cap-
tures the purpose of proxies in Ice: a proxy is the local (client-side) 
ambassador for a remote (server-side) Ice object. In order for an 
application to invoke an operation on a remote Ice object, it must 
have a proxy. Instead of invoking the operation directly on the 
remote object, the code invokes a corresponding operation on the 
proxy; the proxy then takes care of forwarding the invocation to 
the remote Ice object.

Proxies direct invocations to Ice objects. Although the purpose 
of this article is not to discuss Ice objects (this is the subject of 
another article), it is impossible to discuss proxies without having 
some understanding of Ice objects. Here is a simple definition:

An Ice object is an abstraction that has an interface and a unique 
object identity. An Ice object is composed of one or more facets. 
Each facet has exactly one most-derived interface. (Two or more 
facets of an Ice object can have the same interface.) If an Ice object 
has facets, the object identity is shared by all facets. Each facet has 
a facet name. No two facets of the same Ice object can have the 
same facet name. An Ice object may (but need not) have a default 
facet. The name of the default facet is the empty string.

How are Proxies Used?
Without proxies there would be no way for an application to send 
a message to an Ice object. By way of illustration, consider the fol-
lowing C++ code:

// C++ 
class Hello 
{ 
public: 
 void sayHello() 
 { 
  cout << "Hello world!" << endl; 
 } 
}; 
// ... 
Hello* p = ...; 
p->sayHello();

Calling sayHello via the pointer p sends the sayHello mes-
sage to the Hello object. Let’s now translate this example into an 
equivalent one that uses Ice. First we define the Hello interface in 
Slice:

// Slice Hello.ice 
module Demo 
{ 
interface Hello 
{ 
  void sayHello(); 
}; 
};

Next, we compile this definition with the slice2cpp compiler, 
which generates a number of type definitions and their implemen-
tations. (See the Ice Manual for details on the C++ mapping.) One 
of the generated types is called HelloPrx, which is a C++ class. 
To use it, we can write the following code:

// C++ 
HelloPrx p = ...; 
p->sayHello();

This example looks remarkably similar to the original code, 
with the exception that we have used the proxy class HelloPrx 
instead of a pointer to the Hello class. What exactly then is this 
HelloPrx class? An instance of this class is a smart-pointer to a 
reference-counted proxy to an Ice object that provides the Hello 
interface. In other words, an instance of the proxy class is the local 
C++ object through which a programmer can invoke an operation 
on a (possibly remote) Ice object.

What Information Does a Proxy Contain?
Consider again the simple C++ code I presented earlier:

// C++ 
Hello* p = ...; 
p->sayHello();

What information does the variable p contain? Seeing that p is an 
ordinary C++ class instance pointer, it contains the address of a 
Hello instance. (The address serves as the object identity.) As for 
regular class instance pointers (or references, in languages such as 
Java and C#), an Ice proxy also contains addressing information. 
However, because a proxy can denote an object in a remote address 

Proxies
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space, the addressing information is more complex. At a minimum, 
a proxy contains:

• The object identity of the Ice object denoted by the proxy.
• Addressing information to locate the server(s) that implement 

the Ice object.

This only makes sense: the additional information identifies which 
server implements the Ice object, and the object identity deter-
mines which object within that server a proxy denotes.

Proxies are not opaque objects that contain hidden informa-
tion. If you know the identity of an Ice object, its location, and the 
protocol(s) supported by the server, you can create a proxy out of 
thin air from a string. For example, if you know an Ice object has 
the identity hello and runs on host �92.�68.�.4 at port �0000 
using the TCP protocol, you can provide a stringified proxy to 
stringToProxy, which turns a string into a proxy:

// C++ 
HelloPrx p = HelloPrx::checkedCast( 
 communicator->stringToProxy( 
  "hello:tcp –h 192.168.1.4 –p 10000")); 
p->sayHello();

I will discuss stringified proxies in more detail later in this article.

A proxy can contain additional settings that influence its behav-
ior. Some of these settings are marshaled when a proxy is sent over 
the wire. These are:

• the facet name;
• a security setting that is used to force a proxy to make invoca-

tions only over secure connections;
• a proxy mode, which is one of twoway, oneway, batch 

oneway, datagram, or batch datagram. 

Other proxy settings are local to the proxy and are not marshaled 
when the proxy is sent over the wire. These are:

• whether the proxy optimizes collocated invocations;
• a connection caching policy;
• an endpoint selection policy;
• a locator proxy;
• a locator cache timeout;
• a router proxy;
• a security policy that determines whether invocations on the 

proxy prefer secure connections over insecure connections;
• a default Ice::Context to use when making invocations;
• whether the proxy uses the thread–per-connection concur-

rency model;
• which connection ID to use;
• a timeout for invocations;
• whether to use compression.

Note that proxies are strongly typed (at least, in languages such 
as C++ or Java, which provide strong typing), and that the type 
of a proxy is a programming-language concept: when proxies are 
marshaled, neither the type of the proxy nor the type of the target 
object are sent over the wire.

Proxies are Immutable
Once created, a proxy becomes immutable, that is, its contents can-
not be changed. If you need a proxy that is identical to an existing 
proxy except for one of the proxy settings, you must create a new 
proxy. For example, suppose you need a proxy with a particular 
timeout. You can set this timeout by calling ice_timeout:

// C++ 
HelloPrx proxy = ...; 
proxy = HelloPrx::uncheckedCast( 
 proxy->ice_timeout(5000));

The call to ice_timeout creates a new proxy that is identical to 
the source proxy, except for the new timeout of five seconds. The 
uncheckedCast is necessary because ice_timeout returns a 
proxy of type ObjectPrx, which is the ultimate base type of all 
proxies; the cast narrows the returned proxy to the (derived) type 
HelloPrx. Be aware of the following mistake:

// C++ 
HelloPrx proxy = ...; 
proxy->ice_timeout(5000); // ERROR!

This does not change the timeout on the proxy; instead, it returns 
a new proxy with a five-second timeout, but that proxy is immedi-
ately thrown away!

Proxy Comparison
You can compare proxies for equality. By default, proxy compari-
son compares all aspects of a proxy, including the object identity, 
facet name, addressing information, and all the proxy settings; two 
proxies compare equal only if they are identical in all respects. 
This is often not what is intended:

// C++ 
HelloPrx h1 = ...: 
HelloPrx h2 = HelloPrx::uncheckedCast( 
 h1->ice_timeout(5000)); // Set a new timeout 
assert(h1 == h2); // Assertion fails

This assertion will fail, as the two proxies have different timeout 
values. Usually, what is needed is to find out whether two proxies 
denote the same Ice object. To do this, you need to compare the 
object identities:

// C++ 
HelloPrx h1 = ...; 
HelloPrx h2 = HelloPrx::uncheckedCast( 
 h1->ice_timeout(5000)); // Set a new timeout 
assert(h1->ice_getIdentity() == 
 h2->ice_getIdentity()); // Assertion passes

Proxies
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The reason that comparing only the object identities also compares 
the Ice objects is that, as previously stated, the Ice object model as-
sumes that every Ice object has a unique identity. Therefore, if the 
identities in the proxies are the same, so are the Ice objects denoted 
by the proxies.

All of the Ice language mappings provide convenience functions 
for proxy comparison. For C++, the convenience function to com-
pare object identities is proxyIdentityEqual. For example:

// C++ 
HelloPrx h1 = ...; 
HelloPrx h2 = HelloPrx::uncheckedCast( 
 h1->ice_timeout(5000)); // Set a new timeout 
// Assertion passes 
assert(proxyIdentityEqual(h1, h2));

This code is equivalent to the preceding example (which extracted 
the identities and then compared the identities explicitly).

Sometimes it is necessary to compare object identity and facet 
name, to determine whether two proxies denote the same facet of 
the same Ice object. In C++, the convenience function to do this is 
proxyIdentityAndFacetEqual. (Please consult the Ice Manual 
for the equivalent methods for other language mappings.)

Slice Proxies
Consider the following C++ code:

// C++ 
class Widget { }; 
class WidgetFactory 
{ 
  Widget create(); 
};

Compare this to:

// C++ 
class WidgetFactory 
{ 
  Widget* create(); 
};

The create method on the first widget factory returns a widget, 
whereas the create method on the second widget factory returns 
a pointer to a widget. Now consider the following Slice:

// Slice 
class Widget 
{ 
}; 
interface WidgetFactory 
{ 
   Widget create(); 
};

Compare this to:

// Slice 
interface WidgetFactory 
{ 
  Widget* create(); 
};

Much like C++, the first create operation returns a widget by 
value, whereas the second create operation returns a proxy to a 
widget.  Thus, the Slice syntax Widget* means “return a proxy to 
a widget”. This is often a point of confusion for developers new 
to Ice. As with C++, passing a class by value is entirely different 
from passing a pointer to a class. Passing a class by value (the first 
form) passes all of the data associated with the class and creates a 
new instance initialized with the class data in the receiver’s address 
space, whereas passing a proxy to a class passes only the proxy 
and leaves the class instance where it is.

Proxy Types
Proxies come in several varieties. All of them contain the identity 
of the associated Ice object and information such as a timeout, plus 
additional information that varies with the type of proxy.

Direct Proxies
Direct proxies contain a protocol identifier (such as TCP, UDP, or 
SSL) and addressing information for that protocol, that is, the host 
and port at which the server runs. Together with the object identity, 
this is sufficient to contact the target object.

Indirect Proxies
Indirect proxies contain no addressing information—to contact 
the Ice object, the client-side run time first obtains the addressing 
information using an Ice location service, such as IceGrid. (For 
more information on IceGrid, see Michi’s article “IceGrid in �0 
Minutes” in Issue �9 of Connections.)

Indirect proxies have two forms. The first is known as a well-
known proxy that contains only the identity of an Ice object. The 
client-side run time obtains the actual addressing information for 
such a proxy by asking the location service for the direct proxy of 
an object with that identity. (Once known, the resolved proxy is 
cached by the Ice run time for later use.) The following example 
contacts a well-known proxy with the identity hello:

// C++ 
HelloPrx p = HelloPrx::checkedCast( 
 communicator->stringToProxy("hello")); 
p->sayHello();

The second form of indirect proxies contains the object identity 
and an object adapter identifier. The client-side run time obtains 
the actual addressing information for such a proxy by asking the 
location service for the addressing information of the correspond-
ing object adapter. The code below contacts an Ice object with 

Proxies
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identity hello that is hosted by an object adapter with the adapter 
identifier HelloAdapter:

// C++ 
HelloPrx p = HelloPrx::checkedCast( 
 communicator->stringToProxy( 
  "hello@HelloAdapter")); 
p->sayHello();

Note that both direct and indirect proxies may additionally be 
routed. Routed proxies do not contact their target Ice object di-
rectly, but instead send all invocations to their configured router. 
Routers can be used to build forwarding services such as Glacier2. 
(See Michi’s article “Glacier2 in �0 Minutes” in Issue 22 of Con-
nections for more information on Glacier2.)

Fixed Proxies
Fixed proxies are bound to a particular connection for the entire 
life time of a proxy. Once that connection is closed, the proxy no 
longer works (and will never work again). In addition, fixed prox-
ies cannot be marshaled. Fixed proxies are used for bi-directional 
communications to allow servers to call back to an object provided 
by the client without opening a separate outgoing connection from 
server to client.

Proxy Methods
Ice proxies provide a number of methods. What follows is a listing 
of the available methods and examples of their use. (As always, 
see the Ice Manual for a complete list of these methods.)

Remote Inspection
These methods return information about the associated Ice object. 
For remote objects, they will therefore make a remote invocation.

// Pseudo Slice 
bool ice_isA(string id); 
void ice_ping();  
StringSeq ice_ids();  
string ice_id(); 

For example:

// C++ 
ObjectPrx obj = communicator()-> stringToProxy( 
  "Hello:tcp –h 192.168.1.4 –p 10000"); 
assert(obj->ice_isA(Hello::ice_staticId());

The ice_isA method determines whether the associated Ice object 
implements the given interface and returns true if so; false other-
wise. The generated ice_staticId method returns the type ID 
of the given interface. If the Ice object is not reachable, ice_isA 
throws an exception.

Local Inspection
These methods inspect the configuration and state of the proxy. 
The methods never make an invocation on the target object and, 
therefore, do not incur network traffic.

// Pseudo Slice 
int ice_getHash();  
Communicator ice_getCommunicator();  
string ice_toString();  
Identity ice_getIdentity();  
string ice_getAdapterId();  
EndpointSeq ice_getEndpoints();  
EndpointSelectionType ice_getEndpointSelection();  
Context ice_getContext();  
string ice_getFacet();  
bool ice_isTwoway();  
bool ice_isOneway();  
bool ice_isBatchOneway();  
bool ice_isDatagram();  
bool ice_isBatchDatagram();  
bool ice_isSecure();  
bool ice_isPreferSecure();  
Router* ice_getRouter();  
Locator* ice_getLocator();  
int ice_getLocatorCacheTimeout();  
bool ice_isCollocationOptimized();  
bool ice_isThreadPerConnection();  
onnection ice_getConnection();  
Connection ice_getCachedConnection();  
bool ice_isConnectionCached();

For example:

// C++ 
ObjectPrx obj = communicator()->stringToProxy( 
 "Hello:tcp –h 192.168.1.4 –p 10000"); 
assert(obj->ice_isTwoway());

The ice_isTwoway method returns true if the proxy uses twoway 
invocations; false otherwise.

Factory Methods
These methods create a new proxy with the requested configura-
tion.

// Pseudo Slice 
Object* ice_identity(Identity id);  
Object* ice_adapterId(string id);  
Object* ice_endpoints(EndpointSeqendpoint s);  
Object* ice_endpointSelection( 
 EndpointSelectionType t);  
Object* ice_context(Context ctx);  
Object* ice_defaultContext();  
Object* ice_facet(stringfacet); 
Object* ice_twoway();  
Object* ice_oneway();  
Object* ice_batchOneway();  
Object* ice_datagram();  
Object* ice_batchDatagram();  

Proxies
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Object* ice_secure(bool b);  
Object* ice_preferSecure(bool b);  
Object* ice_compress(bool b);  
Object* ice_timeout(inttimeout);  
Object* ice_router(Router* rtr);  
Router* ice_getRouter();  
Object* ice_locator(Locator* loc);  
Object* ice_locatorCacheTimeout(int seconds);  
Object* ice_collocationOptimized(bool b);  
Object* ice_connectionId(string id);  
Object* ice_threadPerConnection(bool b);  
Object* ice_connectionCached(bool b); 

For example:

// C++ 
ObjectPrx obj = communicator()->stringToProxy( 
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 12000"); 
obj = obj->ice_secure(true);

Calling ice_secure(true) returns a new proxy that will make 
invocations only via secure endpoints.

Obtaining Proxies

Stringified Proxies
For bootstrapping purposes, proxies are almost always obtained 
from a stringified proxy (or via proxy properties—see below). As 
we saw earlier, stringified proxies can be used to create direct or 
indirect proxies. Direct proxies have a set of associated endpoints. 
Each endpoint contains a protocol identifier and associated proto-
col-specific addressing information that specifies how and where 
the target object can be reached. For example:

// C++ 
HelloPrx hello = HelloPrx::checkedCast( 
 communicator()->stringToProxy( 
  "Hello:tcp –h 192.168.1.4 –p 10000"));

This creates a direct proxy with the object identity Hello that 
can be contacted on host �92.�68.�.4 at port �0000 using the TCP 
protocol.

Direct proxies can have multiple endpoints. For example:

// C++ 
HelloPrx hello = HelloPrx::checkedCast( 
 communicator()->stringToProxy( 
  "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000"));

This stringified proxy contains two endpoints. The first is a TCP 
endpoint (as we just saw in the preceding example). The second is 
an SSL endpoint for the host 192.168.1.4 and port 11000. A proxy 
with more than one endpoint tells the Ice run time that the target 
object can be reached at more than one address. The Ice Manual 
describes how the Ice run time decides which endpoint to use. (I 
will describe this in more detail in a future article.)

Stringified indirect proxies can specify a well-known proxy, for 
example: 

// C++ 
HelloPrx hello = HelloPrx::checkedCast( 
 communicator()->stringToProxy("Hello"));

This code creates an indirect proxy with the associated identity 
hello. Alternatively, stringified proxies can specify an adapter 
identifier:

// C++ 
HelloPrx hello = HelloPrx::checkedCast( 
 communicator()->stringToProxy( 
  "Hello@HelloAdapter"));

This code creates an indirect proxy with the associated iden-
tity Hello that resides at the object adapter with the identifier 
HelloAdapter.

Stringified proxies can also specify marshaled proxy options. 
For example, to set the secure mode, you can provide the -s 
option:

// C++ 
HelloPrx hello = HelloPrx::checkedCast( 
 communicator()->stringToProxy("Hello -s"));

To specify a facet name, use the -f option:

// C++ 
HelloPrx hello = HelloPrx::checkedCast( 
 communicator()->stringToProxy("Hello –f v2"));

Other options are -t for twoway invocations (this is the default), 
-o for oneway invocations , -O for batch oneway invocations, -d 
for datagram invocations, and -D for batch datagram invocations.

// C++ 
HelloPrx hello = HelloPrx::checkedCast( 
 communicator()->stringToProxy( 
  "Hello –o:tcp –h 192.168.1.4 –p 10000"));

Endpoints can also contain additional flags other than -h (for the 
host) and -p (for the port). The exact flags depend on the transport. 
For TCP and SSL, Ice supports -t timeout to set the timeout and 
-z to set protocol compression. For example:

// C++ 
HelloPrx hello = HelloPrx::checkedCast( 
 communicator()->stringToProxy( 
  "Hello:tcp –h 192.168.1.4 –p 10000 –t 
10000 –z"));

This sets a ten-second timeout on all invocations to the object via 
this proxy, and tells the proxy to use protocol compression (if pos-
sible).

For UDP, Ice supports -z to to set protocol compression and 
-e and -v to set the protocol and encoding versions. (See the Ice 
Manual for more information on why you might want to use these 
options.)

Proxies
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// C++ 
HelloPrx hello = HelloPrx::checkedCast( 
 communicator()->stringToProxy( 
 "Hello -d:udp –h 192.168.1.4 –p 10000 –z"));

This example configures the hello proxy to use datagrams and 
configures the UDP endpoint to use protocol compression. (Note 
that with UDP, if the server hosting the Ice object does not support 
protocol compression, the message will be lost; because UDP is 
unidirectional, the client has no direct way to find out about this 
problem.)

Proxy Properties
Proxy properties are an alternate way to create bootstrap proxies. 
We introduced proxy properties in Ice 3.2 as a more flexible way of 
externalizing proxies with property settings (instead of hard-cod-
ing stringified proxies). Proxy properties are also the only way to 
control local proxy settings without making API calls. (Stringified 
proxies cannot be used to control local proxy settings because they 
only provide options to control marshaled proxy settings.)

# config.client 
Hello.Proxy=Hello:tcp –h 192.168.1.4 –p 10000

// C++ using config.client 
HelloPrx hello = HelloPrx::checkedCast( 
 communicator()->propertyToProxy( 
  "Hello.Proxy"));

The propertyToProxy method in the preceding example looks 
up the Hello.Proxy property to determine the stringified proxy to 
use. Of course, you could also do this yourself as follows:

// C++ using config.client 
HelloPrx hello = HelloPrx::checkedCast( 
  communicator()->stringToProxy( 
 communicator()->getProperties()->getProperty( 
  "Hello.Proxy")));

So why are proxy properties useful? Their real advantage is that 
they allow you to configure local proxy settings. For example:

# config.client 
Hello.Proxy=Hello:tcp –h 192.168.1.4 –p 10000 
Hello.PreferSecure=1

This configuration configures the proxy to prefer to secure connec-
tions over insecure ones. This is equivalent to writing:

// C++ using config.client 
ObjectPrx obj = communicator()->stringToProxy( 
 communicator()-> getProperties()->getProperty( 
  "Hello.Proxy")); 
obj = obj->ice_preferSecure(true); 
HelloPrx hello = HelloPrx::checkedCast(obj);

You can also control other local proxy settings via proxy prop-
erties, namely, collocation optimization, connection caching, 
endpoint selection, the locator proxy, the locator cache timeout, the 
router proxy, and the thread-per-connection concurrency model. 
(See the Ice Manual for details.)

Proxy Factory Methods
Proxy factory methods provide another way to create new proxies. 
In all cases, the new proxy is a copy of the original proxy, but with 
one setting altered. For example, the ice_secure method returns 
a proxy that will make invocations only via secure endpoints:

// C++ 
ObjectPrx obj = communicator()->stringToProxy( 
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000"); 
obj = obj->ice_secure(); 
HelloPrx hello = HelloPrx::checkedCast(obj);

checkedCast and uncheckedCast also create new proxies of a 
specific type. uncheckedCast returns a new proxy of the speci-
fied type. This function is not type-safe in that there is no guaran-
tee that the Ice object to which the proxy refers indeed supports 
the specified interface. (You must make sure that the type ID you 
specify for an uncheckedCast matches an interface that the target 
object implements.) If you want to find out whether the target 
object implements a particular interface, you could call ice_isA 
and, if the interface is supported, call uncheckedCast. This is 
what a checkedCast does: it internally calls ice_isA to validate 
the type, and then returns a new proxy if the type is correct, and 
null otherwise. (If the target object is unreachable, checkedCast 
throws an exception.)

Method Invocations
Ice provides stringified proxies mainly for bootstrapping: normally, 
proxies are returned by making operation invocations but, to make 
an invocation, the client needs a proxy. Stringified proxies solve 
this chicken-and-egg problem and allow you to configure clients 
with the few initial proxies they typically need to “get off the 
ground”. However, once a client has the first few proxies, it should 
not use stringified proxies any longer and, instead, obtain further 
proxies may making operation invocations. For example:

// Slice 
interface Widget 
{ 
  // ... 
}; 
interface WidgetFactory 
{ 
  Widget* create(); 
};

Proxies
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// C++ 
WidgetFactoryPrx factory = 
 WidgetFactory::checkedCast( 
  communicator->stringToProxy( 
   "WidgetFactory")): 
WidgetPrx widget = factory->create();

Note that this code obtains the proxy to the new widget directly as 
a value, and no conversion from a string to a proxy and no down-
cast are necessary.

In contrast, consider the following:

// Slice 
interface WidgetFactory 
{ 
  string create(); 
};

// C++ 
WidgetFactoryPrx factory = ...; 
// Bad! 
WidgetPrx widget = WidgetPrx::uncheckedCast( 
 communicator->stringToProxy( 
  factory->create())); 

This is a bad idea. Do not pass stringified proxies over the wire; 
instead, pass them as proxies. Firstly, passing proxies as strings is 
less efficient because proxies in marshaled form are more compact 
than in string form. Secondly, passing proxies as strings bypasses 
the Slice type system and the guarantees provided by the Slice 
contract. By passing a proxy as a string the receiver needs to first 
convert the string back to a proxy of the appropriate type before 
use, instead of using the type information implicit in the Slice 
contract. This can result in violations of the type system at run time 
that, otherwise, would be caught at compile time. (See this FAQ 
for more details on this topic.)

Fixed and Routed Proxies
As previously stated, fixed proxies can neither be created directly 
from a stringified proxy, nor obtained as the result of a method 
invocation. The only way to create a fixed proxy is by calling 
createProxy on a connection object. Doing so creates a fixed 
proxy that is bound to the corresponding connection.

Routed proxies are created by either setting the Ice.Default.
Router property or by creating a new proxy from an existing one 
by calling ice_router. A routed proxy sends all invocations on 
the proxy not to the actual target object, but instead to a router 
object that, in turn, forwards the invocation to the real target.

Proxy Defaults and Overrides
Ice supports both proxy defaults and proxy overrides, which allow 
you to control specific property settings even if they are not explic-
itly set during proxy creation.

Proxy Defaults
A proxy default controls a setting of a proxy if that setting is not 
explicitly specified. For example:

# config.client 
Ice.Default.CollocationOptimization=0

// C++ 
ObjectPrx obj = communicator()->stringToProxy( 
 "Hello:tcp –h 192.168.1.4 –p 10000"); 
assert(!obj->isCollocationOptimized());

By default, all proxies support collocation optimization. (Colloca-
tion optimization means that calls on collocated Ice objects take an 
optimized code path that avoids marshaling and network over-
head.) Under some circumstances, collocation optimization is not 
desirable. (See the Ice Manual for a list of differences between col-
located and regular method invocations.) To change this setting for 
an individual proxy, you can call ice_collocationOptimized 
to explicitly control the setting. However, you can change the 
default setting, making it unnecessary to disable collocation opti-
mization every time you create a proxy (as shown in the preceding 
example.)

Let’s look at another example:

# config.client 
Ice.Default.Host=192.168.1.4

// C++ 
ObjectPrx obj = communicator()->stringToProxy( 
 "Hello:tcp –p 10000"); 
obj->ice_ping();

In this case, since no host is specified for the TCP endpoint, the Ice 
run time uses the Ice.Default.Host property to set the host for 
the proxy and will contact the host at 192.168.1.4 when the code 
calls ice_ping on the proxy.

Contrast this with the following:

# config.client 
Ice.Default.Host=192.168.1.4

// C++ 
ObjectPrx obj = communicator()->stringToProxy( 
 "Hello:tcp –h remote.host.com –p 10000"); 
obj->ice_ping();

Even though Ice.Default.Host is set, the proxy still contains 
the host remote.host.com, because it was explicitly set during 
proxy creation (so the default is simply ignored).

The defaults that you will use most often in your applications 
are Ice.Default.Router (when using Glacier2) and Ice.
Default.Locator (when using IceGrid). See the Ice Manual for 
more default settings that you may find useful in your applications.
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Proxy Overrides
In contrast to default settings, override settings are used regardless 
of any explicit setting. For example:

# config.client 
Ice.Override.Compress=1

// C++ 
HelloPrx hello = HelloPrx::uncheckedCast( 
 communicator()->stringToProxy( 
  "Hello:tcp –h 192.168.1.4 –p 10000")); 
hello->sayHello();

In this case, all communications via this proxy always use pro-
tocol compression, even though the proxy is created without the 
–z option. (If the server does not support protocol compression, 
the client receive a ConnectionLostException.)

When using overrides, the proxy’s local settings are always ig-
nored. For example, Ice.Override.Secure instructs the Ice run 
time to only bind to secure endpoints:

# config.client 
Ice.Override.Secure=1

// C++ 
HelloPrx hello = HelloPrx::uncheckedCast( 
 communicator()->stringToProxy( 
  "Hello:tcp –h 192.168.1.4 –p 10000")); 
hello->sayHello();

This invocation throws a NoEndpointException because the 
proxy does not contain a secure endpoint. Consider this example:

# config.client 
Ice.Override.Secure=1

// C++ 
HelloPrx hello = HelloPrx::uncheckedCast( 
 communicator()->stringToProxy( 
  "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000")); 
hello->sayHello();

In this case, invocations are always secure and the TCP end-
point is simply ignored. In contrast, if Ice.Override.Secure 
is not set, insecure endpoints are preferred over secure end-
points (unless Ice.Default.PreferSecure is set or ice_
preferSecure(true) has been called on the  proxy in which 
case secure endpoints are preferred over insecure endpoints).

# config.client 
Ice.Override.Secure=1

// C++ 
ObjectPrx obj = communicator()->stringToProxy( 
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000"); 
obj = obj->ice_secure(false); 
HelloPrx hello = HelloPrx::uncheckedCast(obj); 
hello->sayHello();

In this case, secure communications will still be used, despite the 
call to ice_secure(false).

Note that overrides do not change the proxy, they only change 
the behavior of the proxy when it is used. Consider the following 
two examples, run without Ice.Override.Secure being set. 
Here is the first example:

// C++ 
ObjectPrx obj = communicator()->stringToProxy( 
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000"); 
cout << obj->ice_toString() << endl;

$ test 
Hello –t:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000

As you would expect, the stringified proxy (apart from the 
added -t option) is identical to the string that the code passes to 
stringToProxy.

The second example also runs without Ice.Override.Secure 
being set, but calls ice_secure explicitly:

// C++ 
ObjectPrx obj = communicator()->stringToProxy( 
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000"); 
obj = obj->ice_secure(true); 
cout << obj->ice_toString() << endl;

$ test 
Hello –s –t:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000

Note that the stringified proxy now contains a -s flag, which indi-
cates that the proxy is secure and will only make invocations over 
secure endpoints. (This is not surprising, given that the code called 
ice_secure(true) to create the proxy.)

Now consider the first example once more, but run with Ice.
Override.Secure set:

# config.client 
Ice.Override.Secure=1

// C++ 
ObjectPrx obj = communicator()->stringToProxy( 
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000"); 
cout << obj->ice_toString() << endl;

$ test 
Hello –t:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000

Although the proxy acts securely (meaning that it will only make 
invocations over secure endpoints), when the code calls ice_
toString, the resulting string does not have the -s secure flag 
set. In other words, proxy overrides affect the behavior of a proxy, 
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but do not change a proxy’s contents. This distinction is important 
and you should keep it in mind.

Proxy overrides do not affect proxy comparison. Consider:

# config.client 
Ice.Override.Secure=1

// C++ 
ObjectPrx o1 = communicator()->stringToProxy( 
 "Hello:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000"); 
ObjectPrx o2 = communicator()->stringToProxy( 
 "Hello -s:tcp –h 192.168.1.4 –p 10000:ssl –h 
192.168.1.4 –p 11000"); 
assert(o1 == o2);

This assertion will fail: although the two proxies behave the same 
way at run time due to the Ice.Override.Secure=1 override, 
they are not the same. 

Proxies are First-Class Types
We occasionally see Ice applications that avoid storing or passing 
proxies for fear that proxies are heavy-weight objects. Such fears 
are unfounded: proxies have a very efficient internal representa-
tion and attempts to avoid using proxies are likely to result in more 
CPU and memory overhead, not less. For example:

// C++ 
ObjectPrx o1 = ...; 
ObjectPrx o2 = o1;

In this case o1 and o2 are smart pointers to the same proxy object, 
and smart pointers provide very efficient initialization and assign-
ment. Contrast this to:

// C++ 
ObjectPrx o1 = ...; 
ObjectPrx o2 = communicator->stringToProxy( 
 o2->ice_toString());

In this case, o1 and o2 point to different internal proxy objects, 
that is, the code consumes memory for two proxy instances, in-
stead of a single one.

The following example illustrates that Ice can avoid creating a 
new proxy in some cases:

// C++ 
ObjectPrx o1 = communicator->stringToProxy( 
 "hello –t 5000");  
ObjectPrx o2 = o1->ice_timeout(5000);

o1 and o2 still point to the same proxy object. Ice is smart enough 
to realize that the new proxy being created has the same timeout 
as the source proxy; in this case, it avoids creating a new proxy 
and simply returns a smart pointer to the already existing proxy. 
(Because proxies are immutable, this optimization is safe.)

The Ice run time also avoids expensive operations until they 
become necessary. For example, Ice does not establish a connec-
tion once a proxy is created, but only once a connection is actually 
required in order to invoke an operation (such as checkedCast, 
ice_isA, ice_ping, ice_id, ice_ids, or a Slice-defined 
operation).

Occasionally, designers try to avoid passing proxies as pa-
rameters, usually to the detriment of the entire system: the likely 
outcome is poor performance, inconvenient interfaces, and lack of 
scalability. Consider this example of incorrect design:

// Slice--AWKWARD! 
interface Widget 
{ 
  int id(); 
  // ... 
}; 
exception WidgetExistsException 
{ 
}; 
interface WidgetFactory 
{ 
  Widget* create(int id) 
  raises WidgetExistsException; 
  Widget* find(int id); 
}; 
interface WidgetContainer 
{ 
  void store(int id); 
  StringSeq getWidgets(); 
};

This application requires a container of widgets. Widgets are cre-
ated using the factory, and then placed into their container as a 
widget ID. The factory allows widgets to be located by ID with the 
find operation.

This design harbors problems that are not obvious until you 
start to use, evolve, and scale the application. For one, the design 
is awkward and performs poorly: to use a widget that is retrieved 
from the container, the caller must first re-obtain a proxy to the 
widget by calling the find operation on the factory. This step is 
not only unnecessary, but also expensive because it requires an ad-
ditional remote invocation. Second, to look up a widget via its ID, 
the caller must know which widget factory to use (which would be 
unnecessary if the caller would have proxy to the widget in the first 
place). You might dismiss this as academic: surely there will be 
only one widget factory. However, scalability dictates otherwise. 
Chances are that a once-small application will become a much 
larger application and, before you know, the application will need 
multiple widget factories. In turn, to support multiple factories, 
the original design needs to be modified to provide callers with a 
means to locate the factory for a given widget ID (unless callers 
would try all factories, which would be inefficient). Furthermore, 
extending the original design to multiple factories also requires a 
scheme to partition the widget IDs such that IDs remain unique 
across different factories.

Proxies
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The root problem of the design is that, by storing only the ID 
of widget, location information is lost. A superior design is as 
follows:

// Slice 
interface Widget 
{ 
  // ... 
}; 
sequence<Widget*> WidgetPrxSeq; 
interface WidgetFactory 
{ 
  Widget* create(); 
}; 
interface WidgetContainer 
{ 
  void store(Widget* w); 
  WidgetPrxSeq getWidgets(); 
};

This interface exhibits none of the preceding problems. It is 
straightforward, extensible, easy to use, and performs well. We 
strongly encourage you to use proxies as they were intended to be 
used, namely, as strongly-typed values that can be exchanged as 
easily and efficiently as a string. Doing so results in better perfor-
mance and does not compromise the type safety of an application.

Proxies
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Master–Slave Replication with Ice
Benoit Foucher, Senior Software Engineer

Introduction
Ice and IceGrid provide facilities that allow you to replicate servic-
es and allow clients to transparently use these replicated services. 
This replication provides load balancing over multiple machines 
and fault tolerance for vital services.

Clients have several ways to take advantage of replication in Ice:

• Direct proxies. A direct proxy can have multiple endpoints 
and can point to multiple replicas of the same service. For 
example, you can use the proxy hello:tcp –p 12345 –h 
host1.foo.com:tcp –p 12345 –h host2.foo.com 
to invoke on the replicated hello object. By default, the Ice 
run time will randomly select one of the two endpoints when 
a client makes an invocation. If one replica fails, the Ice run 
time automatically tries the endpoint of the other replica.

• Indirect proxies with replica groups. An indirect proxy can 
point to a replica group, such as hello@MyReplicaGroup. 
The replica group identifier MyReplicaGroup is resolved 
by the Ice locator service to the endpoints of one or more 
replicas. 

So, to use replication, all you need to do is implement a service 
and deploy multiple instances of it, and distribute the appropriate 
proxies to clients. Is it really that easy? Well, yes, or at least, it 
would be if the service were completely stateless. However, very 
often, services have state.

In this article, I outline how to replicate a simple stateful service 
using master–slave replication. The service stores information 
about users in a database and allows clients to query that infor-
mation. Updates to the database can be made only by the master 
instance, and slaves can only read, but not update, the database. To 
keep slaves up to date, the master replicates the database contents 
to the slaves. If the master goes down, clients can no longer make 
any updates but can still query the database via the slaves.

The Slice Interfaces
Let’s take a look at the Slice interfaces for the service. The service 
is provided by two interfaces; an interface to modify the user data-
base, and an interface to query the database:

// Slice 
module Demo  
{ 
exception UserNotFoundException 
{ 
 string id; 
}; 
 
struct UserInfo  
{ 
 string id; 
 string firstName; 
 string lastName; 
 string address; 
}; 
 
interface UserQuery  
{ 
 UserInfo get(string id) 
  throws UserNotFoundException; 
 UserDatabase* getDatabase(); 
};

 
interface UserDatabase  
{ 
 void add(UserInfo info); 
 void remove(string id);

}; 
};

The user information is stored in a Freeze map. The add and 
remove operations of the UserDatabase interface allow clients 
to add and remove users, and the get operation of the UserQuery 
interface allows clients to retrieve users via their identity. The 
getDatabase operation returns the proxy of the UserDatabase 
object. 

By using separate interfaces, we clearly split the functional-
ity provided by the master from the functionality provided by the 
slaves. This makes it easy to write slaves such that they provide 
access only to slave functionality. In contrast, if we had defined 
a single interface, the master would provide a fully functional 
implementation, whereas the slaves would provide only a partial 
implementation. In turn, this would mean that either the slave im-
plementation of the add and remove methods would need to throw 
an exception to indicate that these operations are supported only 
on the master (which is ugly), or the slaves would need to forward 
add and remove operations to the master (which is inefficient). 
For these reasons, it is better to use two separate interfaces.

Implementation without Replication
The implementation of these two interfaces is trivial if we omit 
replication for now. Here is the bulk of the code:

Master–slave rePlication with ice
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// Java 
public class DatabaseI implements 
 _UserDatabaseOperations, _UserQueryOperations  
{ 
 synchronized public UserInfo 
 get(String id, Ice.Current current) 
  throws UserNotFoundException  
 { 
  UserInfo info = 
   (UserInfo)_users.get(id); 
  if(info == null) 
  { 
   throw new UserNotFoundException(id); 
  } 
  return info; 
 } 
 
 synchronized public UserDatabasePrx 
 getDatabase(Ice.Current current)  
 { 
  return _database; 
 } 
 
 synchronized public void 
 add(final UserInfo info, Ice.Current current)  
 { 
  _users.fastPut(info.id, info); 
 } 
 
 synchronized public void 
 remove(final String id, Ice.Current current)  
 { 
  _users.fastRemove(id); 
 } 
 
 DatabaseI(Ice.Communicator communicator, 
  UserDatabasePrx database)  
 { 
  _database = database; 
  _connection = 
   Freeze.Util.createConnection( 
    communicator, "Master"); 
  _users = new StringUserInfoDict( 
   _connection, "users"); 
 } 
 
 final private UserDatabasePrx _database; 
 final private Freeze.Connection _connection; 
 final private StringUserInfoDict _users; 
} 

We create a Freeze map and use it to store and retrieve the user 
information. You might notice that the DatabaseI class in-
herits from the generated _UserDatabaseOperations and 
_UserQueryOperations. We’re using tie classes and delegation 
to implement the interfaces. This allows implementing the two 
interfaces with a single Java class. Here is how the servants are 
created and registered:

// Java 
public class Server extends Ice.Application 
{ 
 public int 
 run(String[] args) 
 { 
  Ice.ObjectAdapter adapter = 
  communicator().createObjectAdapter( 
   "Server"); 
  UserDatabasePrx proxy = 
   UserDatabasePrxHelper.uncheckedCast( 
    adapter.createProxy( 
      communicator().stringToIdentity( 
     "UserDatabase"))); 
  DatabaseI db = new DatabaseI( 
   communicator(), proxy); 
  adapter.add(new _UserDatabaseTie(db), 
   proxy.ice_getIdentity()); 
  adapter.add(new _UserQueryTie(db), 
   communicator().stringToIdentity( 
   "UserQuery")); 
  adapter.activate(); 
  communicator().waitForShutdown(); 
  return 0; 
 } 
 … 
}

The generated class _UserDatabaseTie and _UserQueryTie 
delegate the implementation of the interfaces to the DatabaseI 
class. The server incarnates two objects whose identities are 
UserDatabase and UserQuery. To access the UserDatabase 
and UserQuery interfaces, a client needs to be configured with 
only the proxy of the UserQuery interface. It can invoke the 
getDatabase method to retrieve the proxy of the UserDatabase 
interface.

The Slice Interfaces for Replication
Now let’s add master–slave replication to this service. To do that, 
we will use the observer pattern, plus a session between each slave 
and the master. (See “The Grim Reaper” in Issue 3 of Connections 
for more information on sessions.)

Slaves are observers of the master user database: each time the 
database is updated, the master sends notifications to its slaves. 
Each slave maintains an internal database that can be modified 
only through the observer notifications. 

The slaves need to create a session with the master to receive 
observer updates from the master database. If the master cannot 
send a notification to a slave (perhaps because of a temporary 
network problem), the session is destroyed and the slave has to es-
tablish a new session to re-synchronize its database with the master 
database. This ensures the consistency of the slave database with 
the master database: as long as there is an active session between 
the master and the slave, the slave has an accurate up-to-date rep-
lica of the database. The session makes it easy to keep track of the 
connection status between the slave and the master.   

Master–slave rePlication with ice
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Replication requires some interactions between the master and 
slaves. These interactions are defined by three additional Slice 
interfaces. These interfaces are defined in their own module to 
clearly separate user interfaces from interfaces used to implement 
replication. Here are the additional interfaces:

module DemoInternal  
{ 
interface UserDatabaseObserver  
{ 
 void init(UserInfoSeq infos); 
 void added(UserInfo info); 
 void removed(string id); 
}; 
 
interface UserDatabaseSession  
{ 
 void keepAlive(); 
 void destroy(); 
}; 
 
interface UserDatabase extends Demo::UserDatabase  
{ 
  UserDatabaseSession* createSession( 
  UserDatabaseObserver* obsv); 
}; 
};

Slaves implement the 
UserDatabaseObserver 
to receive database updates 
from the master. The mas-
ter calls the init method 
once when the session is 
established by the slave. 
(See ”IceStorm 3.2” in 
Issue 2� of Connections for 
a detailed description of a 
similar observer interface 
and why this init method 
is necessary.) The mas-
ter calls the added and 
removed methods when a 
user is added or removed 
from the database. The 
UserDatabaseSession 
interface and the 
UserDatabase interfaces 
are implemented by the 
master and used by slaves 
to create sessions. The 
slave provides a proxy to 
its observer object when 
it creates a session. See 
Figure � for a sequence 
diagram that shows the 
interactions between the 

master and the slave.

The slave has a thread that is dedicated to creating the session 
and keeping it alive. If the master goes down, the thread periodi-
cally tries to re-establish the session. Once a session is established, 
the master calls back on the slave observer to initialize the slave’s 
database. This ensures that both the master and the slave databases 
are consistent. Once the session is created, the master sends up-
dates to the slave whenever the master database changes.

The implementation with replication
The UserDatabase from the DemoInternal module interface 
is implemented by the MasterDatabaseI class. This class also 
implements the UserQuery interface. The implementation of the 
new createSession method is shown below:

synchronized public UserDatabaseSessionPrx 
createSession(UserDatabaseObserverPrx observer, 
 Ice.Current current)  
{ 
 try  
 { 
  observer.init( 
   (UserInfo[])_users.values().toArray( 
    new UserInfo[0])); 
  // Close the iterator implicitly opened 
  // by the call to _users.values() 

Figure 1:  Interactions between the Master and a Slave
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  _users.closeAllIterators();  
 } 
 catch(Ice.LocalException ex)  
 { 
   return null; 
 } 
 UserDatabaseSessionI session = 
  new UserDatabaseSessionI( 
   observer, current.adapter); 
 _sessions.add(session); 
 return session.getProxy(); 
}

First, createSession invokes the init method on the observer. 
This invocation provides the list of all the users currently stored in 
the master database to the observer and allows the slave to syn-
chronize its database with the master database. If the init call is 
successful, createSession creates a new session servant and 
adds it to the _slaves list. The MasterDatabaseI class uses this 
list to keep track of the active sessions and their observer proxies.

In addition to modifying the database, the implementa-
tions of the add and remove need to notify the observers. The 
notifyObservers method achieves this with an appropriate 
Update object. For example, here is the add operation:

synchronized public void 
add(final UserInfo info, Ice.Current current)  
{ 
 _users.fastPut(info.id, info); 
 notifyObservers(new Update()  
  { 
   public void  
   invoke(UserDatabaseObserverPrx proxy) 
   { 
    proxy.added(info); 
   } 
 }); 
}

The implementation of the notifyObservers method is shown 
below:

private void 
notifyObservers(Update update)  
{ 
 java.util.Iterator p = _sessions.iterator(); 
 while(p.hasNext())  
 { 
  UserDatabaseSessionI session = 
   (UserDatabaseSessionI)p.next(); 
  try 
  { 
   DemoInternal.UserDatabaseObserverPrx 
    observer = session.getObserver(); 
   if(observer != null) 
   { 
    update.invoke(observer); 
   } 
   else 
   { 

    // The session has been destroyed 
    // by the slave. 
    p.remove(); 
   } 
  } 
  catch(Ice.LocalException ex)  
  { 
   _logger.warning( 
    "lost connection with replica:\n" 
     + ex.toString()); 
   session.destroy(null); 
   p.remove(); 
  } 
 } 
} 

Each time a user is added or removed, the add or remove 
method calls notifyObservers to notify the observers. The 
getObserver method of the UserDatabaseSessionI class 
returns the proxy of the observer associated with the session. 
If the session is destroyed, getObserver returns null and 
notifyObservers removes the session from the list of ses-
sions. Otherwise, notifyObservers calls invoke on the update 
object, which in turn calls the observer to send the appropriate 
update. If the invocation fails, notifyObservers destroys the 
session and removes it from the _sessions list of sessions. The 
notifyObservers method really has two functions:

• sending updates to all the observers with an active session,
• reaping destroyed sessions.

Destroying the session if an update fails ensures that the slave will 
re-connect, thereby creating a new session with the master. By 
creating a new session, the slave again receives all the users cur-
rently stored in the database, which ensures that the slave database 
is synchronized with the master.

The slave implements the UserDatabaseObserver and 
UserQuery interfaces in the SlaveDatabaseI class. Similar to 
the master, this class stores the users in a Freeze map, to allow 
upgrading a slave to a master by re-using its database. The imple-
mentation of the observer interface is trivial and shown below:

synchronized public void 
init(UserInfo[] infos, Ice.Current current)  
{ 
 _users.clear(); 
 for(int i = 0; i < infos.length; ++i)  
 { 
  UserInfo info = infos[i]; 
  _users.fastPut(info.id, info); 
 } 
} 
 
synchronized public void 
added(UserInfo info, Ice.Current current)  
{ 
 _users.fastPut(info.id, info); 
} 

Master–slave rePlication with ice
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synchronized public void 
removed(final String id, Ice.Current current)  
{ 
 _users.fastRemove(id); 
}

The implementation of the init method simply replaces the con-
tents of the slave database with the users provided by the master. 
The implementation of the added and removed methods adds and 
removes users from the slave database.

The master sends updates with twoway synchronous calls from 
the synchronization block of the MasterDatabaseI servant 
methods. This is necessary to ensure that updates are not sent out 
of order. For instance, the init call on the observer must be made 
before any added or removed call on the observer.

Finally, the slave must establish a session with the master to start 
receiving updates. This is achieved with a dedicated keep-alive 
thread that has two roles:

• Create the session if it is not established already. The thread 
tries to create the session at regular intervals until it succeeds.

• Keep the session alive if it is established already. The thread 
tries to recreate a session if it detects that the session is un-
reachable or has been destroyed.

The keep-alive thread also creates the UserDatabaseObserver 
servant for each session and registers it with the object adapter. 
It is important to use distinct observer objects for each session, 
otherwise the slave could receive updates from a previous observer 
(if the master has not yet detected that the previous session was 
destroyed by the slave).

Caveats and Optimizations
The implementation of the master–slave replication ends up being 
quite simple thanks to the use of a session and the observer design 
pattern. However, there are a few caveats and optimizations you 
need to be aware of. 

Consistency
Since the replication updates are propagated synchronously by the 
master to the slaves, our replicated user database provides “read 
your writes” consistency to clients. In other words, if a client 
updates the database, it is guaranteed to be able to read the modi-
fication once the update request has completed. A client is also 
guaranteed to always retrieve sequential updates if it uses the same 
slave to read the data. 

However, inconsistencies among the slaves are possible be-
cause observer updates are not sent atomically. It is possible for an 
update to be visible on a slave but not visible on another slave yet 
(because of network latency or because the slave is currently not 
connected to the master). So, if a client uses multiple slaves to read 
the data, it might not get a sequential view of the database updates. 

The application has to be aware of this limitation and, if neces-
sary, deal with it. One simple solution is to make sure that the 
application always uses the same slave to read updates. Another 
solution is to improve the replication mechanism to ensure that all 
slaves have the same view of the master database at the same point 
in time. (However, this requires a more elaborate protocol to dis-
tribute the updates, similar to the two-phase commit protocol used 
for distributed transactions.)

Observer Updates
Observer updates are sent with twoway calls within the master 
servant synchronization block. This is necessary for two reasons:

• Updates to observers need to be sent within the synchroni-
zation to make sure the database updates and the observer 
updates are atomic. Without synchronization, we would get 
inconsistencies if two threads concurrently modify the same 
database entry. For example, a thread could add user u to the 
Freeze map and be interrupted by the operating system sched-
uler. Another thread could then remove u from the Freeze 
map and notify the observer that user u was removed. When 
the first thread is scheduled again, it would then notify the 
observer that u was added, resulting in an inconsistent slave 
database.

• The updates need to be sent with twoway calls to ensure that 
the updates are received in the correct order. (Oneway cannot 
be used because they may be dispatched out of order, depend-
ing on the observer configuration.)

The problem with synchronized twoway calls is that, if an ob-
server invocation takes a while to complete, it locks up the master 
database, and invocations from clients to add or remove users hang 
until the observer invocation completes. 

One way to solve this issue is to set a timeout on the observer 
proxies that limits the amount of time the lock is held for. Another 
solution is to delegate the sending of observer updates to a sepa-
rate thread. The updates can be queued within the synchronization 
block of the master servant and picked up by a sender thread to 
be sent in-order using twoway calls. Finally, another option is to 
use IceStorm to distribute the observer updates. However, because 
IceStorm communications are unidirectional, this requires an ac-
knowledgment mechanism to ensure that all updates are correctly 
delivered to slaves. (This is necessary if IceStorm cannot deliver an 
update to an observer, in which case it automatically unsubscribes 
the observer without the master being aware of this.)

Slave Synchronization
The synchronization of the slave with the master consists of simply 
sending the content of the user database to the slave when the ses-
sion is established. This is simple, but does not scale to large data 
sets.

Master–slave rePlication with ice
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For one, if there are many users, sending the list of users in a 
single invocation could throw a  MemoryLimitException. (A 
better approach would be to send the database in multiple invoca-
tions, for example, with batch oneway invocations.)

But, even assuming that we can send the updates without run-
ning into memory limitations, the approach still does not scale 
beyond a certain point. In that case, it is better have the master 
store a log of all the changes made to the user database. The 
synchronization of a slave with the master then consists of replay-
ing all the changes that have occurred to the master database since 
the last time the slave was connected. This requires the slave to 
keep track of a log identifier to identify the last update it received 
from the master, and it requires policies to determine when the log 
can be cleaned up because it is impossible to indefinitely track all 
of the changes made to the user database. (Of course, if the slave 
database is empty, this still requires transfer of the whole database, 
but only once, instead of every time a session is established.)

Improved Start-Up
While the master is down, some slaves might have an out-of-date 
image of the master database. When the master becomes available 
again, it can take some time for the slaves to re-connect and re-syn-
chronize their database with the master database. To get the slaves 
up-to-date as quickly as possible, the master can notify its slaves 
whenever it starts up, thereby avoiding this delay.

Master Upgrade 
Because the slave and the master use the same database format, it 
is possible to upgrade a slave to a master by terminating a slave 
and restarting the slave as a master. However is better if the same 
thing can be achieved without having to restart the slave process. 
The main hurdle here is to figure out a way to inform other slaves 
of the new master without having to edit each slave’s configuration 
file.

One simple way to solve this is to use the Ice locator mecha-
nism. For example, you can register the UserDatabase object as 
a well-known object. When a slave is upgraded to a master, you 
can update the endpoints of the well-known object in the location 
service, so no slave configuration needs to change.

Conclusion
This concludes my introduction to the implementation of master–
slave replication with Ice. As always, the implementation of some-
thing you might have thought quite complicated is very simple 
with Ice. A few simple interfaces are sufficient for the interactions 
between the master and slaves.

Beware however, that replication isn’t that simple! As we saw, 
the example implementation presented here has some problems 
and, if you intend to replicate a large database, you are probably 
better off looking at a database that provides built-in replication 
(such as BerkeleyDB).

You can find the source code for this article in the 
replication directory of the archive for this issue. Please get in 
touch with us in our developer forums if you have any questions or 
comments.
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FAQ Corner
In each issue of our newsletter, we present a few frequently-asked 
questions about Ice. The questions and answers are taken from 
our support forum at http://www.zeroc.com/forums/ and deal with 
specific problems that developers tend to encounter, and for which 
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this 
section useful.

Q: How can I fork and exec an Ice process?

Under Unix, if you have an Ice process (client or server) and want 
to create a new process, you will have to call fork and exec. The 
basic code pattern looks something like the following:

// C++ 
pid_t pid = fork(); 
switch(pid)  
{ 
 case –1: 
 { 
  throw "cannot fork"; 
 } 
 case 0: 
 { 
  // Child 
 
  // ... 
   
  const char* exe = ...; 
  const char** argv = ...; 
  execv(exe, argv); 
 } 
 default: 
 { 
  // Parent 
 } 
}

This looks harmless enough but, unless you do things right, 
chances are that your process might hang, crash, or do something 
else unexpected. Here are a few simple rules to make sure things 
work as intended.

1. Close open file descriptors before calling exec.
2. Only call async-signal-safe system calls in the child.
3. Do not call Ice-related functions in the child.
4. If the parent uses asynchronous signal handlers, disable signal 

delivery before calling fork.

�. If the parent uses Ice::Application or IceUtil::
CtrlCHandler, and the child process needs the default be-
havior for SIGHUP, SIGINT, and SIGTERM, reset these signals 
to their default behavior in the child before calling exec.

6. If exec fails, call _exit.

Closing open file descriptors in the child is important because not 
doing so wastes kernel resources and can also interfere with the 
parent (for example, prevent connection closure when the parent 
closes a socket that is held open by the child).

Once fork has succeeded, the code must only call async-signal-
safe system calls. (The Unix attributes(�) man page provides a list 
of these system calls.) Making any other system call can poten-
tially crash the child.

You must not call Ice-related APIs in the child before calling 
exec. To understand why this is necessary, consider how fork 
works for a threaded process. In essence, fork duplicates the 
entire virtual memory image of the parent and arranges for fork 
to return zero in the child process. In addition, if the parent is 
threaded, the parent threads are not cloned in the child; instead, 
fork creates a single thread in the child (which is the thread that 
returns from the call). However, because the child has a memory 
image that is identical to that of the parent, any thread-related 
data structures will simply be in the state they were in when the 
parent called fork and the kernel made a snapshot of the parent’s 
memory. Among other things, this means that mutexes may remain 
locked in the child, and data structures may be in an inconsistent 
state because other threads may have been inside a critical region 
at the time the parent called fork.

If you call any Ice-related function in the child before calling 
exec, things can go badly wrong because the function may attempt 
to lock a mutex that was already locked at the time the parent 
called fork, causing the child to deadlock. Similarly, the function 
might call a library function that is not async-signal-safe, causing 
the child to crash. 

If your application installs signal handlers, you need to take 
extra care. After a fork, the child process has the same signal 
disposition as the parent: signals that are caught and handled by the 
parent are also caught and handled by the child. It is possible that 
a signal is delivered to the child before the child can call exec. In 
this case, if the parent handles the signal, so will the child. Depend-
ing on what the signal handler does, things can go badly wrong. 
For one, the signal handler cannot make system calls that are not 
async-signal-safe—doing so can crash either parent or child. But, 
even if the signal handler is async-signal-safe, it may have side-
effects that are detrimental if the signal arrives in the child before 
the exec. If so, you need to block signal delivery before the parent 
calls fork, and unblock it again in the parent after fork returns.

If you use the Ice::Application or the IceUtil::
CtrlCHandler helper classes to handle signals, there is no 
problem. The Ice run time does not install any signal handlers. 
Instead, the helper classes block delivery of SIGHUP, SIGINT, and 
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SIGTERM and use a dedicated thread that calls sigwait to syn-
chronously accept signals. In turn, this means that your callback 
functions (set with Application::callbackOnInterrupt or 
CtrlCHandler::setCallback) can safely call into the Ice run 
time, and can safely call functions that are not async-signal-safe. 
However, if you do use these helper classes and call fork, the 
child process will block SIGHUP, SIGINT, and SIGTERM. If you 
need the default behavior for these signals in the child, you need 
to unblock them before calling exec. (See this FAQ for more 
information.)

Finally, if the exec fails for any reason, you must call _exit 
(not exit). The difference between the two calls is that _exit 
terminates the process immediately and does not perform any 
clean-up actions (such as calling atexit handlers). In turn, this 
means that the destructors of C++ global and static objects are not 
called when you call _exit (whereas, if you call exit, they are 
called). Preventing destructors from running if exec fails is impor-
tant because, if destructors were to run, they could fail because of 
the same inconsistent data structures that may be encountered by 
a signal handler. (Ice uses a few global objects internally, so this 
rule applies even if you do not have any global objects in your own 
code.)

So, here is an outline of the code needed to correctly fork and 
exec:

// C++ 
// Set up a pipe so the child can report errors. 
int fds[2]; 
if(pipe(fds) == -1) 
{ 
 throw "cannot create pipe"; 
} 
 
// Set close-on-exec on write end of pipe. 
int flags = fcntl(fds[1], F_GETFD); 
if(flags == -1) 
{ 
 throw "cannot get fcntl flags"; 
} 
flags |= FD_CLOEXEC; 
if(fcntl(fds[1], F_SETFD, flags) == -1) 
{ 
 throw "cannot set close-on-exec"; 
} 
 
// If the parent uses signal handlers, 
// block signal delivery here. 
 
pid_t pid = fork(); 
switch(pid)  
{ 
 case –1: 
 { 
  throw "cannot fork"; 
 } 
 case 0: 
 { 

  // Child 
 
  // If the parent uses Ice::Application or 
  // IceUtil::CtrlCHandler, and the child 
  // requires the default behavior for 
  // SIGHUP, SIGINT, and SIGTERM, reset 
  // these signals to the default behavior 
  // here. 
 
  // Close all open file descriptors. 
  int maxFd = static_cast<int>( 
   sysconf(_SC_OPEN_MAX)); 
  for(int fd = 0; fd < maxFd; ++fd) 
  { 
   // Don’t close write end of pipe. 
   if(fd != fds[1]) 
   { 
    close(fd); 
   } 
  } 
  
  const char* exe = ...; 
  char* const argv[] = ...; 
  execv(exe, argv); 
 
  const char msg[] = "exec failed"; 
  write(fds[1], msg, sizeof(msg) - 1); 
  _exit(1); 
 } 
 default: 
 { 
  // Parent 
 
  // Close the write end of the pipe. 
  close(fds[1]); 
 
     // Wait for child to write error message 
  // or exec successfully. 
  stringstream err; 
  char c; 
  while(read(fds[0], &c, 1) > 0) 
  { 
   err << c; 
  } 
  close(fds[0]); 
  string msg = err.str(); 
 
  // If the parent uses signal handlers, 
  // restore signal delivery here. 
 
  if(!msg.empty()) 
  { 
   throw msg; 
  } 
 } 
}

Note that this code will most likely need fleshing out for your 
application. For example, it simply closes all file descriptors, 
including stdin, stdout, and stderr. It is likely that you will 
instead want to connect these descriptors to a file or terminal or, if 
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you do not need them, re-open them to /dev/null. (Leaving the 
standard file descriptors closed is bad practice because third-party 
libraries sometimes fail if these descriptors do not work.) You 
may also want to perform additional actions, such as copying the 
parent’s environment variables for the child, changing the working 
directory, setting the process group, or similar. For more details 
on how to do this, you can consult a Unix book such as Advanced 
Programming in the Unix Environment, which is excellent.

Also note that, if exec fails, the preceding code reports the error 
instead of having the child exit silently. A common way to imple-
ment this (and used by the preceding code) is to call pipe before 
forking to create a pipe between parent and child and to set the 
close-on-exec flag for the writing end of the pipe. The child writes 
to the pipe if something goes wrong, and the parent reads the error 
message from the pipe; the parent’s read either succeeds and reads 
the error message or returns with an error if the child called exec 
successfully because, in that case, the kernel closes the writing end 
of the pipe.

Q: How are connections shared among proxies?

There is a long answer and a short answer to this question. The 
long answer includes an explanation of how the Ice run time keeps 
track of connections.

Each proxy stores information about the endpoint(s) at which 
its object can be reached. When a client invokes an operation on a 
proxy, the Ice run time checks whether it already has a compatible 
open connection to the proxy’s selected endpoint. If so, it re-uses 
that connection; otherwise, it establishes a new one. Once estab-
lished, the run time stores connections in an internal connection 
table that keeps track of all open connections. That way, a client 
can use thousands of proxies while using only as many connections 
as there are distinct endpoints in these proxies. (Note that, if prox-
ies have different timeout values, the Ice run time creates a sepa-
rate connection, that is, for proxies to objects at the same endpoint, 
there are as many connections as there are distinct timeouts.)

Connections are closed when, for example, you destroy a com-
municator and when a request times out or encounters a com-
munication failure. You can also explicitly close a connection via 
a proxy’s associated Connection object. If you have automatic 
connection management (ACM) enabled, the Ice run time peri-
odically closes connections that have been idle for some time, so 
connections are not held open indefinitely. (See the Ice Manual for 
more information on Connection objects and ACM.)

The short answer as to how connections are shared is “as much 
as possible”—the Ice run time never opens a connection unless it 
has to and, if you enable ACM, automatically closes connections 
when they are no longer needed.
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