
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 24, June 2007

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 24, June 2007

Diversity
In this issue, Connections presents
another article written by one of
ZeroC’s customers. In a two-part se-
ries, Stephan Stapel from S2 Industries
shows you how to integrate your Ice
applications with relational database
management systems. (In this issue,
Stephan discusses the basics of object-
relational mapping; in the next issue,

he will discuss more advanced topics, such as threading, connection
management, and scalability.)

I’m thrilled to see our customers contribute to Connections. For
one, it means that we don’t have to fill every issue ourselves (and,
believe me, a lot of work goes into each article). But, more impor-
tantly, it means that real customers write about real applications
they are creating with Ice. Stephan’s articles draw on two such
applications, a document management system and a project man-
agement system. Off hand, if someone asked me to list essential
software components for these applications, Ice is not something
that would immediately spring to my mind. Yet, as our customers
integrate more and more computing tasks across diverse environ-
ments such as the Web, intranets, the mobile phone system, and
special-purpose embedded devices, they keep coming up with new
and innovative uses for Ice. Increasingly, Ice is used in situations
we never thought of; currently, these include document retrieval,
telediagnosis, real-time investment trading, video conferencing and
online collaboration, online gaming, biometrics, real-time process
control, remote sensing, internet telephony, command-and-control,
and road traffic monitoring (among many others).

This diversity is not only interesting, but also provides inspira-
tion for us to extend Ice in ways that, without the experience of our
customers, we would never have thought of. Because each situa-
tion presents its own set of problems, there is always something
worthwhile to learn about how customers have dealt with vari-
ous trade-offs. And chances are that an approach used to solve a
problem in one situation will transfer to a (sometimes surprisingly)
different situation and therefore be interesting to a wider audience.
So, I want to encourage you to write for Connections and share
your experiences, not just for ZeroC’s sake, but also for the sake
of the ever-growing Ice community. Don’t be shy about things in
Ice you found didn’t work so well: things that were difficult to do
are more interesting to read about than things that were easy. And,
as a customer-driven company, we need your criticism because it
provides the impetus for ongoing improvements and new features
(and, besides, our egos can take it).

As applications using Ice grow more diverse, so does Ice itself.
Initially, Ice supported C++ and Java on mainstream operating
systems and, from there, has grown to support seven languages
(a “baker’s half-dozen”) and platforms such as Gumstix Linux,
Windows Mobile, Java Micro Edition, plus a whole raft of general-
purpose OSs. In turn, this expanded the diversity of hardware: Ice
can now run on hardware as limited as a remote control, mobile
phone, or PDA, and as powerful as a big-iron server cluster. All
this diversity is driven by your feedback, so please keep it coming.
And, if you’ve somehow managed to make Ice run on an abacus,
we’d love to hear about it!

Michi Henning
Chief Scientist,

Contents
Beyond Freeze—Persistence with IcePart �: The Basics 2

Connection Management in Ice 9

FAQ Corner .. �5

Issue Features

Beyond Freeze—Persistence with Ice
Part 1: The Basics
Stephen Stapel discusses how to integrate Ice applications with
relational database management systems.

Connection Management in Ice
Matthew Newhook provides detailed look at how the Ice run
time establishes and tears down connections, and how it chooses
among connections if an Ice object can be reached via more
than one endpoint.

mailto:stephan@s2-industries.com
http://www.s2-industries.com/

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 24, June 2007 Page �Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Beyond Freeze—Persistence with Ice
Part 1: The Basics

Stephan Stapel, Freelance Systems Architect
S2 Industries

Motivation
As an object-oriented middleware framework, Ice is designed
to implement an object-oriented representation of both informa-
tion and functionality for remote access. This works perfectly
for functional business concerns that are implemented with Ice:
servants are accessed remotely via proxies and the Ice run time.
Almost the same is true for information: information structures can
be designed with Slice and can easily be transferred using the Ice
run time, but the question is how to store and retrieve the underly-
ing data sets. Traditionally, business applications store data within
relational database management systems (RDBMS). These systems
are easy to set up, use, and maintain, are rock-solid, provide fast
access, and—depending on the actual product that is used—can be
very cost-effective.

Unfortunately, relational databases store data in a different
style than objects. For example, an RDBMS core concept, namely
foreign key relations, does not apply to objects. Similarly, an
object-oriented core concept, namely inheritance, is not supported
by a (classical) RDBMS. (There also are other differences, such
as the presence or absence of null values.) These differences are
known as the object-relational impedance mismatch; to overcome
the mismatch, we require a mapping between the two styles of data
representation, known as an object-relational mapping.

This article is based on our experience with two real-world
applications that use both Ice and relational databases. The first ap-
plication is a large-scale document management system, currently
managing around �00,000 scanned documents. The documents are
versioned and are described by metadata as well as user annota-
tions. Document images are stored in the file system; however, the
entire document information is managed using PostgreSQL. Ice is
used to provide a consistent interface for data manipulation.

The second application is a planned multi-project management
system that includes milestone tracking and management of project
members and tasks. This application is also based on PostgreSQL
and Ice.

I will use examples from the second application to introduce the
concepts and to make recommendations on how to successfully
integrate database and middleware technologies.

Scenario
Ice currently provides Freeze as its only built-in persistence mech-
anism. Freeze allows an application to easily load and store objects
in a database without having to care about the underlying database
representation. Freeze uses Oracle Berkeley DB as its database.

Freeze uses simple maps of objects that guarantee fast access to
object data. By using indices, querying arbitrary fields is possible.
However, fancy database actions such as resolving foreign key
relationships are not possible with this approach. Instead, the appli-
cation must use multiple maps and resolve the referenced objects
explicitly. Complex queries on multiple attributes or sub-selections
are not possible either. Another constraint with Freeze is that a
database can be accessed by only one server at a time.

For more complex use cases, it is better to store the data in a
relational database that supports the aforementioned complex
queries, joins, and so on. Using an RDBMS is also necessary if an
existing application is extended to use Ice, in which case Freeze
simply cannot be used.

Among the important available relational database systems are
Oracle, Microsoft SQL Server, MySQL, and PostgreSQL. I will
use the latter for the examples throughout this article.

To avoid making things too complicated, I assume in the follow-
ing examples that we start from the beginning and do not rely on
pre-existing database schemas.

Object-Relational Mapping
To illustrate object-relational (OR) mapping, we begin with a
simple example. Figure � shows a simple entity, called Project.
This entity will be used in the project management system.

The entity has a number of attributes, each providing a particular
datum. The most important attribute is the id attribute; it uniquely
identifies a project and is known as the primary key of the entity.
Furthermore, a project has a distinct name. The description
contains text of arbitrary length that provides further information
about the project.

The creatorid attribute is an implicit reference to another ele-
ment, namely the creator of the project. The creator also has an id
attribute that serves as the creator’s primary key. Such a reference

Beyond Freeze

Figure 1: The Project Entity

id: integer
name: text
description: text
creatorid: integer
creationdate: timestamp

Project

mailto:stephan@s2-industries.com
http://www.s2-industries.com/
http://en.wikipedia.org/wiki/Object-Relational_Impedance_Mismatch

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 24, June 2007 Page �Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

is called a foreign key relationship because the creatorid is a
reference to the key of an entity of different type. (We will use this
attribute shortly.) The creatorid attribute is complemented by
the creationdate attribute; this attribute is set whenever a new
project is created and indicates the date and time of the creation of
the element.

To store data of this kind into the database, we use the data defi-
nition language (DDL) that is part of the SQL language to create a
database table with the aforementioned attributes:

-- PostgreSQL
CREATE TABLE Project (
 id integer,
 name text,
 description text,
 creatorid integer REFERENCES User,
 creationdate timestamp without time zone
);

We can now access the table, and insert, query, and delete data eas-
ily using SQL. The question is how to access this table via Ice.

Approaches for Representing Data within Ice
Objects
Before discussing how to represent complex entities using Ice, we
should first look at the building blocks of entities: fields and their
attributes. Let’s examine the most common SQL (SQL92/ SQL99)
standard types and their possible Slice representation:

SQL Type Slice type
binary bool or byte
bit string sequence<bool> or

sequence<byte>
blob sequence<byte>
boolean bool
character string
clob string
nchar string
nvchar string
vchar string
double double
float float
integer int
real float
smallint int
Time DataTypes::Time
Date DataTypes::Date
Time with timezone DataTypes::Time
timestamp DataTypes::DateTime
timestamp with timezone DataTypes::DateTime

Please note that the string mapping requires additional checks as
string lengths in databases are usually limited, while Slice strings
have no length limitation.

Standard SQL provides built-in types such as boolean,
integer, float, double that map nicely to Slice and the cor-
responding implementation language types.

Some of the standard types have no native representation in
either Slice or some of the implementation languages supported
by Ice. For example, C++ does not have equivalents for the time,
date, datetime, and the bit string types. The following Slice
definition illustrates how these types can be represented in Slice:

// Slice
module DataTypes
{
 struct Date
 {
 int nYear;
 byte nMonth;
 byte nDay;
 byte nHour;
 };

 struct Time
 {
 byte nHour;
 byte nMinute;
 byte nSecond;
 int nMilisecond;
 int nUtcOffset;
 };

 struct DateTime
 {
 int nYear;
 byte nMonth;
 byte nDay;
 byte nHour;
 byte nMinute;
 byte nSecond;
 int nMilisecond;
 int nUtcOffset;
 };
};

Using these structures, both date and time variables can be used
with Ice. Please note that other timestamp mappings would also be
perfectly valid (such as using an int value to represent the number
of seconds that have elapsed since �st of January �970).

Code that converts between the Slice representation and the
corresponding implementation language type (if any) such as
System.DateTime for C#, datetime.datetime for Python,
or QDateTime for Qt can be placed into a helper library for easy
access.

Beyond Freeze

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue 24, June 2007 Page 5Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Representing Entities as Objects
When mapping database entities to Ice objects, there are basically
two approaches that can be used: fine-grained interfaces or coarse-
grained interfaces.

Fine-grained interfaces provide a get and a set function for each
attribute to read and write the value. (If an attribute is read-only,
the set function is absent.) For our project example, the interface
would look like this:

// Slice
interface CProject
{
 idempotent string getName();
 void setName(string newname);
 idempotent string getDescription();
 void setDescription(string newdescription);
 // no setters for this field
 idempotent CUser* getCreatorId();
 // no setters for this field
 idempotent DateTime getCreationTime();
};

The advantage of this approach is that we have a fully object-ori-
ented representation of the data. This style of data access is easy
to read and also widely used to manipulate properties in languages
such as Java and C#. Also, data is mostly kept on the server and
only single attributes are exchanged in an atomic fashion. Thus,
there are few concerns regarding synchronization of concurrent
accesses.

Unfortunately, when modifying multiple attributes, this ap-
proach causes a huge number of tiny data transfers between client
and server, each of which incurs some latency (not to mention the
additional transactions that are necessary for each set function
implementation).

Frequently, a key performance factor is not the amount of data
that is exchanged but the latency, so this approach is unsuited for
many common use cases.

To avoid these small and expensive data transfers, coarse-
grained interfaces can be used. Coarse-grained interfaces provide
access to all the data of an entity via a single read function and a
single write function. The coarse-grained interface for the project
therefore looks like this:

// Slice
struct CProjectDesc
{
 CProject* projectproxy;
 string szName;
 string szDescription;
 CUser* creatorproxy;
 DataTypes::DateTime creationTime;
};

interface CProject
{
 idempotent CProjectDesc describe();
 void saveUpdate(CProjectDesc desc);
};

The Slice defines a structure that contains all attributes that should
be accessible to the user. In order to access one of these attributes,
the user calls the describe function to retrieve the entire attribute
set. Contrary to the fine-grained approach, a single remote invoca-
tion is used to receive or to update all of the object’s data. In the
style of the well-known POJO (Plain Old Java Objects) approach,
a nice name for this approach is POSO (Plain Old Slice Objects).

I prefer implementing data access using the coarse-grained ap-
proach. While it does not have the pure object-oriented charm of
the fine-grained approach, it makes up for this with numerous other
advantages.

One drawback of the coarse-grained approach is that transmit-
ting object data to the client can result in synchronization problems
because different versions of the data can exist in different clients
simultaneously. Thus, correct handling of concurrency issues is
important.

An open issue with the coarse-grained approach is how to
distinguish between read-only attributes and read-write attributes.
In the preceding example, any descriptor’s member variable can
be modified by the user and passed to saveUpdate. It is up to the
servant’s implementation to decide which attribute to save and
which member modification to ignore. One option to distinguish
read-only from read-write attributes is to create sub-structures as
follows:

// Slice
struct CProjectRODesc
{
 CProject* projectproxy;
 CUser* creatorproxy;
 DataTypes::DateTime creationTime;
};

struct CProjectRWDesc
{
 string szName;
 string szDescription;
};

struct CProjectDesc
{
 CProjectRODesc ro;
 CProjectRWDesc rw;
};

interface CProject
{
 idempotent CProjectDesc describe();
 void saveUpdate(CProjectRWDesc desc);
};

Beyond Freeze

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue 24, June 2007 Page 5Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

This splitting of attributes makes the definition clearer and also op-
timizes the saveUpdate function call because only the read-write
attributes are transmitted over the wire.

Proxy Creation
Database row identification and proxy identification should be as
consistent as possible to ease their mapping. The Ice::Identity
structure allows us to easily create the association here: we can use
the structure’s two members name and category for the mapping:

// C++
std::stringstream ssStream;
ssStream << nId;

Ice::Identity id;
id.name = ssStream.str();
id.category = "project";
Ice::ObjectPrx prx = adapter->createProxy(id);

As you might have noticed in the descriptor definition above,
there is no id field to map the object to the corresponding data-
base row. Instead, the proxy is created using the database primary
key nId as the object identity. The key can later be retrieved
with Current.id on the server side or from the proxy with the
ice_getIdentity proxy function on the client side; the key then
can be used to access the corresponding database record.

Relations among Objects
So far I have discussed how to implement an isolated entity as an
object. However, this is insufficient for applications that use inter-
dependent objects, that is, objects that refer to each other. For our

project management example, retrieving the creator and members
of an arbitrary project requires use of such a relation. The UML
model is shown in Figure 2.

The corresponding SQL table definitions look like this:

-- PostgreSQL
CREATE TABLE User (
 id integer,
 username text,
 creatorid integer,
 creationdate timestamp without time zone
);

CREATE TABLE Project (
 id integer,
 name text,
 description text,
 creatorid integer REFERENCES user,
 creationdate timestamp without time zone
);

CREATE TABLE UserProject (
 id integer,
 userid integer REFERENCES User,
 projectid integer REFERENCES Project
);

Here is the corresponding Slice interface:

// Slice
struct CUserDesc
{
 CUser* userproxy;
 string szUsername;
 CUser* creatorproxy;
 DataTypes::DateTime creationdate;
};

interface CUser
{
 idempotent CUserDesc describe();
};

sequence<CUser*> CUserPrxSequence;

interface CProject
{
 // returns the basic fields
 idempotent CProjectDesc describe();
 idempotent CUser* getCreator();
 idempotent CUserPrxSequence
 getProjectMembers();
};

When invoking the getCreator function, the creator proxy is
created on demand by the CProject servant using the creator’s
primary key as the object identity. By installing a servant locator
for the CUser servants, any call via a CUser proxy is automatical-
ly routed through this locator to the underlying servant implemen-
tation. A variant of this access pattern is to return the CUserDesc

Beyond Freeze

Figure 2: The Project Entity and its Related User
Entity

id: integer
name: text
description: text
creationdate: timestamp

Project

id: integer
name: text
description: text
description: text
creatorid: integer
creationdate: timestamp

User

1

+creatorid

*

is member of

*

*

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 24, June 2007 Page 7Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

structure instead. In this case, the CProject servant implementa-
tion needs to know how to fill that structure in order to return it. In
part 2 of this article, I will introduce a way to do this easily without
the need for the CProject servant to know anything about the
CUserDesc structure.

When modeling relations, we must decide whether relations are
always retrieved from the server (as in the preceding example, us-
ing getCreator and getProjectMembers) or whether relations
are also transferred to the client using the descriptor approach.

Depending on how the business logic is implemented, either
approach can be valid: it might be a good choice to use a separate
addMember operation if additional data needs to be passed to add
members to a project, such as their project-specific role or the date
of their entry into the project. Alternatively, members can be added
to a project by simply adding a new item to a member list (the
memberProxies attribute) of the project descriptor and invoking
saveUpdate.

For the latter case, the definition looks like this:

// Slice
sequence<CUser*> CUserPrxSequence;

struct CProjectDesc
{
 CProject* projectProxy;
 CUserPrxSequence memberProxies;
 string szName;
 string szDescription;
 CUser* userProxy;
 DataTypes::DateTime creationTime;
};

interface CProject
{
 idempotent CProjectDesc describe();
 void saveUpdate(CProjectDesc desc)
 throws SaveFailedException;
};

The two approaches should not be mixed—I suggest to either
use the memberProxies list in the descriptor or to define an
addMember function. Mixing the two approaches is not only
confusing to the caller, but also can raise concurrency issues. For
example consider the following scenario:

�. User � retrieves the descriptor with describe to add a new
member to the memberproxies list.

2. User 2 adds a member to the project using addMember.
3. User 1 tries to save the modified descriptor using
saveUpdate. At this point the update fails because parts
of the descriptor (namely the member list) have changed.
(Allowing the update to succeed would violate the ACID
guarantees and is therefore not an option.)

Inheritance
There are various strategies for modeling inheritance with entity
relationships (ERs). Two important ones are:

• Table per class hierarchy. Data for the base class and all
children is stored in the same table. Using a discriminator
column, the corresponding type for a particular row can be
retrieved, which in turn defines the valid columns for that row.

• Table per subclass. A base table exists for the base class. This
table defines the primary key and type of each object. For
each subclass, a separate table holds all subclass attributes.

I will use the table per subclass strategy to model a hierarchy of
user types:

-- PostgreSQL
CREATE TABLE User (
 type integer,
 id integer,
 username text,
 creatorid integer,
 creationdate timestamp without time zone
);

CREATE TABLE Companyuser (
 userid integer references user,
 employeenumber string
);

CREATE TABLE Consultantuser (
 userid integer references user,
 consultingfirmname string
);

In this example, two additional user types are defined: one type for
users that are working for a specific company (Companyuser) and
one type for users that are working as external consultants for that
company (Consultantuser).

When mapping ER-modeled class hierarchies to Slice, one has
to decide between data-only inheritance and data-and-functionality
inheritance. Data-only inheritance only affects the object descrip-
tors in that it uses different attribute sets for each type. In contrast,
data-and-functionality inheritance also affects the interfaces that
are used: for each subclass, a separate interface defines the addi-
tional functionality for that subclass.

For data-only inheritance we will create a hierarchy of descrip-
tors and therefore use a Slice class instead of a Slice struct for
each class.

Because functionality does not differ among subclasses with this
definition, we can still use a single interface to access both data
and functionality of a user:

Beyond Freeze

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 24, June 2007 Page 7Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

// Slice
class CUserDesc
{
 CUserTypeDiscriminator typeDiscriminator;
 CUser* userproxy;
 string szUsername;
 CUser* creatorproxy;
 DataTypes::DateTime creationdate;
};

class CCompanyUserDesc extends CUserDesc
{
 string szEmployeeNumber;
};

class CConsultantUserDesc extends CUserDesc
{
 string szConsultingFirmName;
};

interface CUser
{
 idempotent CUserDesc describe();
};

When retrieving such a user descriptor object from a CUser proxy,
a type-safe down-cast can be used to safely cast the descriptor to
the correct derived type.

If the functionality of derived classes differs significantly, we
must create one interface for each subclass:

// Slice

// Descriptors defined as before...
interface CUser
{
 idempotent CUserDesc describe();
};

interface CCompanyUser extends CUser
{
 // Provide additional functionality here...
};

interface CConsultantUser extends CUser
{
 // Provide additional functionality here...
};

This second approach is slightly more complex. For example, we
now use additional proxy types, and the server must implement the
corresponding servant hierarchy.

Inheritance Limitations
A danger of using inheritance to model business concepts is its
inflexibility. An alternative to inheritance is to use roles and com-
position. Instead of defining strict hierarchical subclasses for types,
only a base class exists (CUserDesc, in this example). Specific
types that were previously modeled as subclasses are instead mod-

eled as roles that are attached to base class instances. This permits
assigning more than one role to a person whereas, with subclasses,
a person can have only one role. For the preceding example, we
need one role to represent a company user and another role to
represent a consultant user. For each of these roles, we can intro-
duce a well-defined set of attributes. Roles are assigned to users as
follows:

// Slice
enum CUserRole
{
 CompanyUserRole,
 CconsultantUserRole
};

dictionary<string,DataTypes::Variant>
 AttributeMap;

class CUserRole
{
 CUserRole userRole;
 AttributeMap attributes;
};

sequence<CUserRole> CUserRoleSequence;
class CUserDesc
{
 CUser* userproxy;
 string szUsername;
 CUser* creatorproxy;
 DataTypes::DateTime creationdate;
 CUserRoleSequence rgRoles;
};

Implementation Best Practices
From my experience, creating explicit abstraction layers in applica-
tions minimizes interdependence between the various components
of the application. By encapsulating the database access code into
separate classes, data structures at higher layers are simplified as
well. Figure � shows a common way to layer such abstractions.

The lowest layer in this case is the database. A data access layer
physically connects to the database and moves data to and from
the database. This shields the remainder of the application from the
particulars of the database that is used. On top of the data access
layer is a business object layer that contains all the business logic
and uses the data access layer for persistence. Potentially, another
layer on top of the business logic can be used to encapsulate Ice-
related code, that is, the servant implementations; however, servant
implementation and business logic are often combined into a single
layer.

Despite this layering, Slice-defined types should be used for
as many layers as possible. This avoids the need to convert data
among different representations, which is error-prone and inef-
ficient. (If you use different types to represent the same data in
different layers, extensive unit testing should be used to ensure that
conversion between different representations works correctly.)

Beyond Freeze

http://en.wikipedia.org/wiki/Inheritance_(computer_science)#Limitations_and_alternatives

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 24, June 2007 Page 9Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Ideally, the descriptor should be used to pass data between the
persistence layer and the servant class. Further, the object data
should be stored within the servant class using the same descriptor
by adding a private member m_desc of type CProjectDesc.

A general recommendation is to encapsulate database transac-
tions within single calls from the client’s perspective to reduce the
complexity of session management and transaction management.
Transactions should not span across multiple client calls because
this can cause deadlocks, for example, if a client disappears in the
middle of a transaction. Avoiding operations that span transactions
greatly simplifies application development and is usually possible
by designing the application appropriately.

Additional logic may also be needed to support the chosen
database. For example, some databases, such as PostgreSQL, limit
access to a single thread for each connection. Unless care is taken,
this can cause problems in multi-threaded environments such
as Ice. (I will return to such concurrency issues in part 2 of this
article.)

Another challenge is caching within the data access layer or the
business logic layers of the application. While caching is a per-
fectly valid approach to increase the application’s overall perfor-
mance, it also increases the risk of losing data in case of crashes.
Therefore, it is desirable to write modified data to the database
immediately after receiving it from a client, that is, to restrict
caching to operations that do not modify data. If the data is layered
and managed by descriptor objects, read caches can be imple-
mented easily, provided the application has exclusive access to the
database. When this is not the case, it is usually easiest to simply
disable read caching.

In the second part of this article, I will explore a number of ad-
vanced topics, including concurrency issues, connection manage-
ment, and techniques for ensuring that the application scales well.

Beyond Freeze

Master

Slave-1

Node-1

Node-2

Figure 3: Typical Application Layers

Client-side
Layers

Server-side
Layers

Presentation
Layer

Ice Runtime

Ice Layer

Business Logic
Layer

Data Access
Layer

Data Layer

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 24, June 2007 Page 9Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Connection Management in Ice
Matthew Newhook, Senior Software Engineer

Introduction
The Ice run transparently creates and closes connections on behalf
of the application so, as an application developer, you can gener-
ally ignore how Ice manages connections. However, especially if
servers provide multiple endpoints for Ice objects, it is useful to
know how Ice deals with connections and chooses among them.

Client-side Connections
When clients contact a server via TCP or SSL, Ice needs to
establish a connection between the two. Connections are always
initiated by clients, and accepted by servers. Clients can obtain
a Connection object from a proxy. This object describes the
underlying connection for the proxy. (A connection object can be
obtained even for datagram proxies, that is, proxies that contact the
server via UDP.) The Connection object provides operations such
as close and createProxy, as well as a number of other opera-
tions. (Please consult the Ice Manual for details.)

There are two methods that obtain the Connection object from
a proxy:

• ice_getConnection. This proxy method returns the
Connection object associated with the proxy. If no con-
nection to the target exists yet, the Ice run time establishes a
connection first and then returns the Connection object for
the new connection. If the run time cannot establish a con-
nection the operation raises an exception; if the Ice object
to which the proxy refers is collocated, the method raises a
CollocationOptimizationException.

• ice_getCachedConnection. This proxy method returns the
Connection object associated with the proxy if a connection
was previously established; if no connection is established,
the method returns null.

Here is a simple example that illustrates how to obtain a
Connection object:

// C++
CommunicatorPtr communicator = ...;
HelloPrx hello = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000"));
ConnectionPtr conn = hello->ice_getConnection();

The call to ice_getConnection establishes a connection to
the remote.host.com at port �0000 and returns the associated
Connection object. Contrast this with the following example:

// C++
CommunicatorPtr communicator = ...;
HelloPrx hello = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000"));
ConnectionPtr conn = hello->
 ice_getCachedConnection();

In this case, the call to ice_getCachedConnection returns null
because no connection was established previously for the hello
proxy.

As you might imagine, connections are not cheap. In particu-
lar, a connection consumes a file descriptor, memory, and—if
you use the thread-per-connection concurrency model—a thread.
Proxies use the communicator’s default thread pool concurrency
model or thread-per-connection if you set the property Ice.
ThreadPerConnection. You can obtain a proxy that uses the
thread-per-connection model (regardless of the default setting) by
calling ice_threadPerConnection(true). For example:

// C++
HelloPrx hello = ...;
HelloPrx htpc = HelloPrx::uncheckedCast(
 hello->ice_threadPerConnection(true));

Because connections are expensive, connection reuse is an integral
part of the Ice run time. It is important to understand how the client
side determines whether to establish a new connection or whether
to re-use an existing connection.

Connection Life Cycle
The Ice run time maintains a pool of existing connections (on a
per-communicator basis); the run time binds these connections to a
proxy as a side-effect of the client making remote invocations. The
run time creates new connections transparently as they are needed.

For example, consider the following code:

// C++
CommunicatorPtr communicator = ...;
HelloPrx h1 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000"));
// Connection creation and binding occurs here
h1->sayHello();

When the client invokes sayHello via the proxy h1, the Ice run
creates a connection to remote.host.com at port �0000 and
binds this connection to the proxy. Note that the preceding ex-
ample uses an uncheckedCast which does not make a remote
invocation and, therefore, never establishes a connection. On
the other hand, if the code were to use a checkedCast instead,
then connection establishment would take place as part of the
checkedCast, because a checked cast requires a remote call

ConneCtion ManageMent in iCe

Master

Slave-1

Node-1

Node-2

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue 24, June 2007 Page ��Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

(ice_isA) to determine whether the target object supports the
specified interface. (See my article “Proxies” in Issue 2� of Con-
nections for more details.)

The life cycle of a connection is independent of the life cycle of
a proxy. For example:

// C++
void
doit(const CommunicatorPtr& communicator)
{
 HelloPrx h1 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000"));
 // Connection creation and binding occurs here
 h1->sayHello();
}

Once the doit function returns, the C++ run time destroys the
proxy h1. However, the connection bound to that proxy object re-
mains: the life cycle of a connection and the life cycle of the prox-
ies that are bound to that connection are completely independent.
This raises the question of how and when connections are closed
and their associated resources released. The Ice run time closes and
destroys connections in a variety of circumstances:

• Destroying a communicator closes and destroys that commu-
nicator’s connections.

• If active connection management (ACM) is enabled, it will
close connections that have been idle for longer than a speci-
fied timeout.

• You can call close on a proxy’s Connection object to ex-
plicitly close a connection.

• If a connection has a timeout, the run time closes the connec-
tion when the timeout expires. (This is considered an unrecov-
erable exception.)

• If the run time encounters an unrecoverable error, such as a
socket error, or receives data that violates the Ice protocol or
encoding, it closes the corresponding connection.

The Ice Manual provides more detail on these scenarios.

A proxy may be bound to different connections during its life
cycle. For example, a proxy may have a connection that remains
idle for some time and is closed by ACM; the next time the proxy
is used to make an invocation, the run time transparently estab-
lishes a new connection for the proxy. Similarly, a new connection
may be established for a proxy because the previous connection
was closed for any of the preceding reasons, or because connection
caching is disabled. (I will return to this topic shortly.)

If you want to permanently bind a proxy to a specific con-
nection, you can create a fixed connection proxy by calling
Connection::createProxy. (The Ice Manual provides details
on why you might want to do this.)

The Ice run time reuses existing connections when possible. For
example, consider:

// C++
CommunicatorPtr communicator = ...;
HelloPrx h1 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000"));
h1->sayHello();
HelloPrx h2 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello2:tcp –h remote.host.com –p 10000"));
h2->sayHello();

In this case, the Ice run time binds the two proxies h1 and h2 to
the same connection because both proxies refer to an object at the
same endpoint (remote.host.com at port �0000). In contrast,
consider:

// C++
CommunicatorPtr communicator = ...;
HelloPrx h1 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000"));
h1->sayHello();
HelloPrx h2 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello2:tcp –h remote2.host.com –p 8000"));
h2->sayHello();

In this example, the hello object resides on remote.host.com
at port �0000, and the hello2 object resides on remote2.host.
com at port �000. Because the two proxies have different end-
points, the Ice run time establishes a separate connection for each
proxy.

The situation becomes more complex if a proxy contains more
than one endpoint. For example, consider:

// C++
CommunicatorPtr communicator = ...;
HelloPrx h1 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000:tcp
–h remote2.host.com –p 8000"));
h1->sayHello();
HelloPrx h2 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello2:tcp –h remote.host.com –p 10000:tc
p –h remote2.host.com –p 8000"));
h2->sayHello();

In this case, both the hello and the hello2 objects can be
reached on either remote.host.com at port �0000, or on
remote2.host.com at port �000. The question is whether the
two proxies will share the same connection or may end up with
separate connections. The answer is that the proxies share a single
connection—to see why, we need to look in more depth at how Ice
binds connections.

ConneCtion ManageMent in iCe

http://www.zeroc.com/newsletter/issue23.pdf
http://www.zeroc.com/Ice-Manual.pdf
http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue 24, June 2007 Page ��Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Endpoint Selection
During binding, the Ice run time looks at the endpoints of a
proxy and, from that list of endpoints, produces an ordered list of
candidate endpoints. The default algorithm for creating the list of
candidate endpoints and binding a connection is as follows:

�. Remove any unusable or incompatible endpoints.
2. Shuffle the endpoints and, after shuffling, move secure

endpoints to the end of the list. This establishes an endpoint
preference order.

�. Check whether a compatible connection exists to any of the
candidate endpoints. If so, reuse the connection.

4. Otherwise, no compatible connection exists. For each end-
point in the candidate list, attempt to establish a connection to
that endpoint and use the connection if successful; otherwise,
try the next endpoint on the candidate list until either a con-
nection can be established, or no more candidate endpoints
remain.

Depending on proxy settings, this algorithm may be modi-
fied—what follows are the nitty-gritty details of how endpoints are
selected and how connections are established.

Removing Unusable and Incompatible Endpoints
The first step is to remove any endpoints that satisfy one of the
following criteria:

• The endpoint is unknown. For example, if the IceSSL plug-in
is not installed, an SSL endpoint is an unknown endpoint.

• The endpoint is incompatible. An endpoint is incompatible if
it does not match the proxy’s invocation mode. For example,
for a datagram proxy, all endpoints that do not use UDP are
removed.

• The endpoint is insecure, but the proxy is secure or Ice.
Override.Secure is set.

If no endpoints remain once the run time has removed un-
usable and incompatible endpoints, the invocation raises a
NoEndpointException because the proxy has no endpoints that
could be used to make the invocation. Consider the examples that
follow for illustration. (Note that the examples do not specify the
-h option in the endpoints for brevity; doing so sets the host to
127.0.0.1 or the value of Ice.Default.Host if that property
is set).

// C++
// Server: IceSSL plug-in installed.
ObjectPrx
SomeServantI::getObj(const Current& current)
{
 return current.adapter->getCommunicator()->
 stringToProxy(
 "obj:tcp –p 8000:udp –p 9000:ssl –p 10000");
}

// Client: IceSSL plug-in not installed.
ObjectPrx obj = someServant->getObj();
obj->ice_ping();

In this example, a client without the IceSSL plug-in receives a
proxy containing TCP, SSL, and UDP endpoints over the wire. The
Ice run time preserves the SSL endpoint in the client’s proxy even
though the client cannot use the endpoint. This allows the client to
later send the proxy over the wire without losing the SSL endpoint.
Also note that the client cannot directly create a proxy with an SSL
endpoint by calling stringToProxy because, without the IceSSL
plug-in, stringToProxy raises an EndpointParseException
for SSL endpoints.

 After the client-side run time has removed the unsuitable SSL
and UDP endpoints, only the TCP endpoint remains and will be
used. The SSL endpoint is removed because IceSSL is not installed
in the client, and the UDP endpoint is removed because it can only
be used to make datagram invocations.

// C++
// IceSSL plug-in installed.
ObjectPrx obj = communicator->stringToProxy(
 "obj:tcp –p 8000:udp –p 9000:ssl –p 10000");
obj->ice_ping();

With this example, the TCP and the SSL endpoint remain. If Ice.
Override.Secure would be set, the TCP endpoint would be
removed as well.

// C++
// IceSSL plug-in installed.
ObjectPrx obj = communicator->stringToProxy(
 "obj:tcp –p 8000:udp –p 9000:ssl –p 10000");
obj = obj->ice_datagram();
obj->ice_ping();

In this case, the only remaining endpoint is the UDP endpoint.
If Ice.Override.Secure would be set, the UDP endpoint
would be removed as well (because UDP cannot be used for
secure invocations) and the call to ice_ping would raise a
NoEndpointException.

// C++
// IceSSL plug-in installed.
ObjectPrx obj = communicator->stringToProxy(
 "obj:tcp –p 8000:udp –p 9000:ssl –p 10000");
obj = obj->ice_secure();
obj->ice_ping();

In this example, because the proxy is secure, only the SSL end-
point remains for connection establishment.

ConneCtion ManageMent in iCe

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue 24, June 2007 Page ��Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Endpoint Order
Once the Ice run time has removed unsuitable endpoints, it estab-
lishes the order in which endpoints will be used for connection
attempts. Doing so proceeds in two steps:

�. The run time sorts the endpoint list based on the endpoint
selection policy (which can be set with the
ice_endpointSelection proxy method). By default, the
endpoint selection policy is Random, meaning that the run
time shuffles the endpoints into random order. Otherwise, the
selection policy is Ordered and Ice preserves the order in
which the endpoints are listed in the proxy.

2. If PreferSecure is false (the default value), the run time
moves all secure endpoints to the end of the list. Con-
versely, if PreferSecure is true, the run times moves
all secure endpoints to the beginning of the list. (You can
set PreferSecure with the ice_preferSecure proxy
method).

Consider the following examples:

// C++
// IceSSL plug-in is installed.
ObjectPrx obj = communicator->stringToProxy(
 "obj:tcp –p 8000:ssl –p 10000:tcp –p 9000");
obj->ice_ping();

In this case, the endpoint list is either <tcp -p �000, tcp -p 9000,
ssl -p �0000> or <tcp -p 9000, tcp -p �000, ssl -p �0000>. The
order of the TCP endpoints is random because the endpoint selec-
tion policy has the default value. However, the SSL endpoint is
guaranteed to be at the end because PreferSecure is false.

// C++
// IceSSL plug-in is installed.
ObjectPrx obj = communicator->stringToProxy(
 "obj:tcp –p 8000:ssl –p 10000:tcp –p 9000");
obj = obj->ice_endpointSelection(Ordered);
obj->ice_ping();

In this case, the endpoint list is <tcp -p �000, tcp -p 9000,
ssl -p �0000>. This is because the selection policy is Ordered, so
the two TCP endpoints retain the original order. The SSL endpoint
appears at the end because PreferSecure is false.

// C++
// IceSSL plug-in is installed.
ObjectPrx obj = communicator->stringToProxy(
 "obj:tcp –p 8000:ssl –p 10000:tcp –p 9000");
obj = obj->ice_endpointSelection(Ordered);
obj = obj->ice_preferSecure(true);
obj->ice_ping();

In this case, the endpoint list is <ssl -p �0000, tcp -p �000,
tcp -p 9000>. Again, the endpoint selection policy is Ordered, so
the two TCP endpoints retain the original order. However, because
PreferSecure is true, the SSL endpoint appears first.

Connection Creation and Binding
If connection caching is enabled (which it is by default), the run
time first checks all of the endpoints to see whether a connection to
one of the endpoints already exists. If so, it reuses that connection;
otherwise, it establishes a new one, that is, the run time establishes
a new connection only if no compatible connection to any of the
endpoints exists. If connection caching is disabled, the run time
goes through the endpoint list in order and, for each endpoint,
determines whether a compatible existing connection to that end-
point exists, in which case that connection is bound; otherwise, it
attempts to establish a new connection to that endpoint. This means
that, if connection caching is disabled, the run time may establish
a new connection even if there is a compatible connection later in
the endpoint list.

A connection can be reused if the connection’s endpoint matches
the proxy’s endpoint and the connection matches the proxy’s con-
figuration. Specifically, the timeout setting of the connection must
match the configured timeout for the proxy. (If the proxy has a
configured connection ID, the connection ID must match—see the
Ice Manual for details on connection IDs.)

Connection timeouts are a very important and often misunder-
stood aspect of Ice. In short, each connection has an associated
timeout value. The timeout value is copied from the proxy that
originally caused the connection to be established. If a request sent
over that connection times out, all outstanding requests on that
connection also time out and Ice forcefully closes the connection.
Therefore, two proxies with different timeout values cannot share a
connection. For example:

// C++
CommunicatorPtr communicator = ...;
ObjectPrx o = communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000");
HelloPrx h1 = HelloPrx::uncheckedCast(
 o->ice_timeout(1000));
h1->sayHello();
HelloPrx h2 = HelloPrx::uncheckedCast(
 o->ice_timeout(2000));
h2->sayHello();

In this case, h1 and h2 are bound to different connections because
the timeout of the two proxies differs. Let me return to an earlier
example again:

// C++
CommunicatorPtr communicator = ...;
HelloPrx h1 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000:tcp
–h remote2.host.com –p 8000"));
h1->sayHello();
HelloPrx h2 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello2:tcp –h remote.host.com –p 10000:tc
p –h remote2.host.com –p 8000"));
h2->sayHello();

ConneCtion ManageMent in iCe

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue 24, June 2007 Page ��Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Consider the first invocation via h1. The endpoint list will be
either <tcp -p �0000, tcp -p �000> or <tcp -p �0000, tcp -p �000>
depending on how the endpoints are shuffled. (The endpoints are
shuffled because the endpoint selection policy has the default value
of Random.) Assuming a server runs at each endpoint, the client
creates a connection to whatever endpoint happens to be first in the
candidate list and binds that connection to the h1 proxy. Now con-
sider the second invocation via h2. In this case, as before, there are
two possible endpoint lists. However, because connection caching
is enabled, the Ice run time prefers to reuse the existing connec-
tion, and thus binds to whatever connection was established by the
initial invocation via h1.

Connection Establishment Retries
If an attempt to establish a connection fails, the run time retries
based on the value of Ice.RetryIntervals. The default value
of this property is zero, which instructs the run time to retry con-
nection establishment once for each endpoint. If no connection
can be established via any of the endpoints, the run time raises an
exception that indicates the reason for the final failed connection
attempt.

Connection Caching
As previously stated, by default, a connection is bound to a proxy
during the first remote invocation via that proxy; thereafter, the
proxy continues to use this connection for as long as it remains
open. In other words, the proxy caches the connection. If the con-
nection is closed at some point, the next remote invocation via the
proxy establishes a new connection using the algorithm I outlined
earlier. For the majority of applications, this is the correct behavior
because it minimizes the overhead of remote invocations.

For some applications, however, it is desirable to rebind a
proxy’s connection on each remote invocation. In particular, the
default algorithm is unsuitable for per-request load balancing. In
this scenario, the proxy contains an endpoint for each replica in
a replica group. However, the default algorithm does exactly the
wrong thing because, once a connection to any one of the replicas
is established, all future requests are sent via that same connection,
so only one replica is ever used:

// C++
CommunicatorPtr communicator = ...;
HelloPrx h1 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000:tcp
–h remote2.host.com –p 8000"));
h1->sayHello();
h1->sayHello();

In this case, the second sayHello invocation is sent via whatever
connection was established by the first invocation. To change this
behavior, you must create a new proxy by calling
ice_connectionCached(false):

// C++
CommunicatorPtr communicator = ...;
ObjectPrx o = communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000:tcp –h
remote2.host.com –p 8000");
HelloPrx h1 = HelloPrx::uncheckedCast(
 o->ice_connectionCached(false));
h1->sayHello();
h1->sayHello();

Because connection caching is now disabled for h1, the second call
to sayHello causes the binding algorithm to run a second time.
There are two possible outcomes.

• During the first invocation, the endpoints are shuffled and the
run time establishes a connection to one of the endpoints, for
example, tcp -p �0000.

• During the second invocation, the selection algorithm runs a
second time. If the endpoint shuffle results in the same order
as for the first invocation, the request is sent over the already-
existing connection. However, if the shuffle results in the
opposite order, the second invocation causes a second connec-
tion to be opened, to tcp -p �000.

Eventually, after a number of invocations, both connections will
be established; selecting one of the two existing connections for
every invocation made by the client is very efficient and results in
per-request random load balancing.

Now assume we disable connection caching and set the selec-
tion policy to Ordered. Assuming a server actually runs at the first
endpoint, all invocations made by the client will be bound sepa-
rately, and the first endpoint will be tried first on each invocation.
This behavior is useful for servers in a master–slave relationship:
the master endpoint is listed first and will always be used unless
the master is down, at which point the slaves identified by subse-
quent endpoints are tried. However, note that at present this is quite
expensive because, while the master is down, the run time attempts
to create a new connection to the first endpoint on every invoca-
tion, only to have every such attempt fail until the master comes
back on line.

Active Connection Management
Active connection management (ACM) improves application
scalability by closing idle connections. At regular intervals, the Ice
run time checks each existing connection and, if a connection has
been idle for more than Ice.ACM.Client (or Ice.ACM.Server)
seconds, it gracefully closes the connection. (The default values
of these properties are �0 seconds for the client and zero (i.e.,
disabled) for the server.) The next invocation made by a client via
a proxy whose connection was closed causes the connection to be
re-established, so ACM is transparent to application code.

ConneCtion ManageMent in iCe

Connections
ZeroC’s Newsletter for the Ice Community

Page �4 Issue 24, June 2007 Page �5Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �5Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Note that, on the server side, ACM is disabled by default
because server-side ACM can cause oneway invocations to be
silently discarded. (See this FAQ for more information.) Disabling
ACM on the client side is necessary only if the client uses bi-
directional connections. To disable ACM, set the corresponding
property to zero.

In the context of ACM, “idle” means that, for the timeout period,
no request has been sent over the connection, no invocations are
in progress whose requests were sent over the connection, and no
batch messages were added to a batch to be sent over the connec-
tion. For example:

// C++
CommunicatorPtr communicator = ...;
HelloPrx h1 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000"));
h1->sayHello();
sleep(70);
h1->sayHello();

In this case, the connection that is established by the first call to
sayHello is closed after �0 seconds (the default idle timeout for
the client side). The second call creates a new connection to the
same endpoint and binds that connection to the proxy. However:

// C++
CommunicatorPtr communicator = ...;
HelloPrx h1 = HelloPrx::uncheckedCast(
 communicator->stringToProxy(
 "hello:tcp –h remote.host.com –p 10000"));
h1->sayHello(); // Takes 70 seconds
h1->sayHello();

In this case, the connection is not closed because a reply is out-
standing on the connection during the 70 seconds it takes the first
call to complete.

Note that disabling ACM on the client side does not guarantee
that the connection will not be closed because ACM may be active
on the server side. If you want to be sure that connections remain
open, you must disable ACM for both client and server.

ConneCtion ManageMent in iCe

http://www.zeroc.com/faq/onewaysLost.html

Connections
ZeroC’s Newsletter for the Ice Community

Page �4 Issue 24, June 2007 Page �5Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �5Issue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner
In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from
our support forum at http://www.zeroc.com/forums/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: I use Ice with Visual C++ �.0/7.� and also want to
use Ice for Java/C#/VB/Python. What should I do?

The binary installers for Visual C++ �.0 and Visual C++ 7.� do not
include the Slice compilers for Java, C#, Visual Basic, and Python.
(These language mappings are only included in the installer for
Visual C++ �.0, aka Visual C++ 2005.)

If you want to use Ice with both Visual C++ �.0/7.� and one
or more of the other languages, you need to download the in-
stallers for Visual C++ �.0 or 7.�, plus the installer for Visual
C++ �.0. First run the installer for Visual C++ �.0 or 7.�. The
default installation directories for these installers carry a Visual
C++ version number, such as C:\Ice-3.2.0-VC60 and C:\
Ice-3.2.0-VC71, respectively. Then run the installer for Visual
C++ �.0; the default installation directory only carries the Ice ver-
sion number, but no version for Visual C++, for example, C:\
Ice-3.2.0. When you run the Visual C++ �.0 installer, choose
custom setup. You can select the additional languages you want to
use with Ice. For example, if you are only interested in develop-
ment support for Java and C#, you can deselect everything else.

Having done this, you will end up with two Ice installations, one
for Ice for Visual C++ �.0/7.�, and a second one that provides the
Slice compilers and run-time support for the additional languages
you select. For example, if you select Java development, you will
find the slice2java compiler in C:\Ice-3.2.0\bin, and JAR
files in C:\Ice-3.2.0\lib.

To compile Ice for Java applications, you need the slice2java
compiler provided by the Visual C++ �.0 installation. This means
that you must set your PATH correctly when you run slice2java:
your PATH must point at C:\Ice-3.2.0\bin. Similarly, your
Java CLASSPATH must include C:\Ice-3.2.0\ant if you want to
compile the demo applications and, at run time, the CLASSPATH of
your Ice for Java applications must include C:\Ice-3.2.0\lib\
Ice.jar (and C:\Ice-3.2.0\lib\db.jar if your applications
use Freeze).

Similar considerations apply for other language mappings: the
Slice compilers are provided by the Visual C++ �.0 installation so,
when using the Slice compilers (slice2cs, slice2vb,

or slice2py), you must ensure that your PATH includes C:\
Ice-3.2.0\bin instead of C:\Ice-3.2.0-VC60\bin or C:\
Ice-3.2.0-VC71\bin.

To run C# and Visual Basic applications, no further configura-
tion is necessary; the Ice assemblies are installed in the global
assembly cache (GAC), so there is no need to set environment
variables to point at an installation directory.

To run Python applications, you need to direct the Python
interpreter at the Ice extension for Python, that is, the application’s
PYTHONPATH must include C:\Ice-3.2.0\python.

Q: How does multi-threading work with Ice for
Python?

Python supports multi-threaded programming, but the interpreter
is inherently single threaded: a global interpreter lock (GIL) allows
only one thread at a time to execute a Python opcode. Despite this
limitation, careful management of the GIL can still provide perfor-
mance improvements; for example, a thread that is about to block
on I/O can release the GIL so a different thread can use the CPU in
the meantime. Although the GIL is an implementation detail that is
typically of interest only to developers of Python extensions, it is
still important for Python programmers to understand the seman-
tics of the GIL and how it affects their applications.

The Ice extension for Python is built as a run-time layer on top
of Ice for C++, which is threaded. Depending on the concurrency
model in use, the Ice for C++ run time may have several native
threads running concurrently in the background, performing tasks
such as accepting a new connection or reading an incoming re-
quest. The Python interpreter is unaware of these threads; further-
more, they are not constrained by the GIL. It is only when an Ice
thread needs to call into the Python API, for example to dispatch
an operation to a Python servant, that it must acquire the GIL.

The GIL also affects calls from Python code into the Ice API,
such as when a program invokes a remote operation via a proxy. In
this scenario, the GIL is already locked by the interpreter and the
Ice extension releases the GIL to give another thread a chance to
execute while the remote operation is in progress. If the GIL were
to remain locked for the duration of the remote operation, not only
would we unnecessarily restrict concurrency, but we would also
introduce the possibility of a deadlock. For example, the opera-
tion might invoke a callback to a servant in the client process; if
the GIL were to remain locked during the initial operation, the Ice
extension would be unable to acquire the GIL before dispatch-
ing the callback. For these reasons, the Ice extension releases the
GIL during any Ice API method that can block the calling thread,
and acquires the GIL again just prior to returning control to the
interpreter.

FaQ Corner

http://docs.python.org/api/threads.html

Connections
ZeroC’s Newsletter for the Ice Community

Page �� Issue 24, June 2007 Page PBIssue 24, June 2007 Connections
ZeroC’s Newsletter for the Ice Community

In practice, the limitations of the GIL mean that only one thread
executes in the servant implementation code of an Ice server that is
written in Python. Note that the single-threaded nature of the Py-
thon interpreter does not guarantee that all servant operations will
execute atomically. In particular, if a Python server has more than
one thread in its thread pool, it is possible for one thread to enter an
operation on a servant, get suspended, and then for another thread
to execute part or all of an operation on the same or a different
servant. Proper use of synchronization is required in this case to
protect shared resources. If you want true single-threaded execu-
tion, such that every operation runs to completion before a thread
enters another operation, you must leave the Ice.ThreadPool.
Server.Size property at its default setting of �.

If you find that you cannot tolerate the performance limitations
of serialized execution in your Ice server, currently the only option
is to implement the server in a language other than Python, at least
until Python provides true multi-threading support. The GIL will
not be removed for Python �.0 however, so this is not likely to hap-
pen any time soon.

FaQ Corner

http://mail.python.org/pipermail/python-3000/2007-May/007382.html
http://mail.python.org/pipermail/python-3000/2007-May/007382.html

	Beyond Freeze—Persistence with IcePart 1: The Basics
	Connection Management in Ice
	FAQ Corner

