
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 25, July 2007

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 25, July 2007

Bridge to Nowhere?
Many moons ago, I was asked by
my employer to integrate credit card
processing into an application that ran
on a cluster of UNIX machines. Un-
fortunately, at that time, the only way
to talk with our credit card processing
center was via a proprietary protocol,
and the only way to interface to that
protocol was via a COM library pro-

vided by the center. Since I was in UNIX land, this naturally didn’t
work. So what to do? Our application was built on CORBA and, as
it turned out, our CORBA vendor offered a COM-CORBA bridge.

A bridge is a piece of software that transparently translates calls
originating in one system to calls on the target system by perform-
ing protocol conversion or by intercepting calls and re-issuing
them via the API of the target system. This seemed like heaven—a
perfect solution that would allow me to live in my UNIX/CORBA
world and not deal with all the Windows COM complexity.

As it turned it out, the solution was anything but perfect. After
using the bridge for a while, it became clear that the bridge did not
work as expected. For one, the bridge itself had bugs that were hard
to track down. Second, the COM-CORBA mapping was awkward
and resulted in unnatural and difficult-to-use APIs. But, worst of
all, I ended up coding in a half-CORBA, half-COM world—a dis-
tinctly weird and counter-intuitive place indeed.

After thinking about the problem some more, I began to realize
why my bridge (and bridges in general) caused such problems. A
bridge, by its very nature, restricts the type system to the lowest
common denominator of both systems and, worse, ignores differ-
ences in the object model. For example, COM controls object life
time with reference counting, whereas CORBA has no such mecha-
nism. As a result, a bridge rarely (if ever) makes a good fit with
existing systems and makes interoperation quite difficult, if not
impossible. (Personally, I believe that automatic interoperation of
distributed systems is a pipe dream unless the distributed systems
in question are indistinguishable.) Finally, even if it works, a bridge
tends to be inefficient because it burns a lot of CPU cycles and fun-
nels communications through a single choke point, with negative
performance impact.

So, why would anyone want to use a bridge, despite these
problems? Usually, the motivation is that a particular system has
complex APIs, poor documentation or support, or does not support
a particular platform or programming language. A bridge is often

seen as a low-cost way to cross this chasm, even though automatic
interoperability among distributed systems is theoretical and, prag-
matically, does not exist. At best, the bridge reaches only halfway.

In my case, I ended up solving the problem by writing a CORBA
server that provided natural and easy-to-use CORBA interfaces to
clients, and that implemented the operations on these interfaces by
calling the into the COM library. That way, I avoided the COM-
CORBA bridge’s ugly APIs as well as its lowest-common-de-
nominator type system, and I could also take care of matching the
semantics of the two object models appropriately. Of course, my
server was not a bridge; instead, it was a credit card processing ser-
vice that naturally formed part of the application—the server just
so happened to use a COM library as part of its implementation,
hidden from view behind CORBA interfaces.

The moral of this story is that, before you reach for a generic
bridge that most likely will disappoint you, consider solving the
problem the way I described. The wide-ranging platform and pro-
gramming language support of Ice make it almost certain that Ice
will run in the target environment, thereby eliminating the need for
a bridge altogether. In turn, you will enjoy natural APIs and better
performance. And that beats being left stranded on a bridge that
almost, but not quite, reaches the other side.

Matthew Newhook, Senior Software Engineer

Contents
Beyond Freeze—Persistence with Ice
Part 2: Advanced Topics .. 2

Who’s Counting? .. �0

FAQ Corner .. 24

Issue Features

Beyond Freeze—Persistence with Ice
Part 2: Advanced Topics
Part 2 of Stephan Stapel’s article discusses concurrency, transac-
tions, connection management, and scalability issues.

Who’s Counting?
Michi Henning shows you how to use Ice smart pointers to ease
application development and reduce defect rates.

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 25, July 2007 Page �Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Beyond Freeze—Persistence with Ice
Part 2: Advanced Topics

Stephan Stapel, Freelance Systems Architect
S2 Industries

In part � of this article series, I discussed the basics of how to
integrate Ice applications with a relational database management
system (RDBMS) and how to implement the necessary object-re-
lational (O/R) mapping. In this article, I examine more advanced
topics, in particular, concurrency and transactions, using O/R map-
pers, connection management, and how to scale an application to
very large numbers of objects.

Implementing Concurrency
Besides entity-relationship modeling and its implementation in
relational databases such as Oracle, MySQL, and PostgreSQL,
databases also provide the concept of transactions, which are
responsible for maintaining consistency of the data that is stored
in a database. Transactions ensure that concurrent modifications to
data are either performed completely or revoked to the state prior
to a transaction. The famous ACID paradigm formalizes the idea of
transactions:

• A stands for atomicity which makes sure that—as mentioned
before—all of the tasks of a transaction are either performed
successfully or revoked completely.

• C stands for consistency, which ensures the consistent state of
a database after performing a transaction, that is, enforces the
database’s integrity constraints.

• I stands for isolation, which guarantees that transactions only
see the committed state of other transactions but not inter-
mediate (and possibly inconsistent) state internal to some
transaction.

• D stands for durability, which guarantees that state changes
are persistent and will not be lost, for example, in the case of
system failure.

In order to guarantee isolation, databases use locking. A lock grants
exclusive access to a section of data to a transaction and prevents,
for example, one transaction reading data while another transaction
is modifying the same data. Depending on the database, locking
takes place at various granularities; a particular implementation
may lock an entire table at a time, whereas another implementation
may lock only particular rows of a table. The most fine-grained
locking mechanism locks specific attributes.

So-called pessimistic locking is implemented by acquiring locks
early during a transaction’s life cycle, which makes lock conflicts
more likely but, if a conflict does occur, the conflict is discov-
ered early. Pessimistic locking is not always the best approach to

achieve isolation because, depending on the implementation, locks
not only affect clients that modify data, but also clients that read
data.

Another approach, known as optimistic locking, delays locking
data until a transaction actually performs an operation on the data.
This makes lock conflicts less likely but delays their discovery.
Code development for databases that use optimistic locking is
generally easier.

Optimistic Locking
Optimistic locking generally works well if conflicting data access
is expected to be infrequent. The basic approach is as follows:
when a pre-existing entity, in our case a descriptor, is modified and
needs to be written to the database, the only check we perform is
whether someone else modified the same descriptor in the mean-
time. This check is performed by the application, that is, there is
no additional database logic involved in handling this task. We can
achieve the check by adding an attribute to both the entity and the
descriptor, known as the optimistic concurrency control attribute.
When retrieving a row from the database and storing it into the
corresponding descriptor, we retrieve this attribute with the data
and store it in the descriptor.

There are various ways to implement such an attribute. For ex-
ample, we can use a simple integer value that is increased by each
update and acts as a serial number or, alternatively, we can use a
datetime field that reflects the date and time of the last update.

During a save attempt, we compare the database value of the
attribute with the (possibly dirty) attribute value of the descriptor.
If the database value of the attribute differs from the value in the
descriptor, it is clear that the row was modified in the meantime
and thus we reject the update with an exception. (Object-relational
mappers, such as Hibernate, have this functionality built-in and so
can be used with very little additional coding.)

Note that, with optimistic locking, we still need transactions at
the database level: while we do not need transactions to implement
optimistic locking, transactions are necessary to maintain clean
database state during SELECT/ UPDATE operations.

To use optimistic locking with the example application from
part 1 of this article, we add a new field ocadate (OCA stands for
Optimistic Concurrency Attribute):

-- PostgreSQL
CREATE TABLE Project (
 id integer,
 name text,
 description text,
 creatorid integer,
 creationdate timestamp without time zone,
 ocadate timestamp without time zone
);

Beyond Freeze

mailto:stephan@s2-industries.com
http://www.s2-industries.com/
http://en.wikipedia.org/wiki/ACID
http://www.hibernate.org/

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 25, July 2007 Page �Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

As mentioned, the OCA attribute must also be part of the descrip-
tor. Thus, we add a new attribute to CProjectDesc:

// Slice
exception SaveFailedException {};

struct CProjectDesc
{
 CProject* projectproxy;
 string szName;
 // ...
 // datetime value to store the last save date
 DateTime ocaDate;
};

interface CProject
{
 idempotent CProjectDesc describe();
 void saveUpdate(CProjectDesc descriptor)
 throws SaveFailedException;
};

CProject now also contains a saveUpdate operation that
attempts to atomically update the descriptor. If an update fails be-
cause ocaDate indicates that the descriptor is dirty, the operation
throws SaveFailedException.

At the database layer, we update an existing row using:

-- PostgreSQL
update name, ..., ocadate (newname, ..., current_
timestamp) from Project where id = x and ocadate =
oldocadate

Alternatively, if using an integer ocaversion:

-- PostgreSQL
update name, ..., ocaversion (newname, ...,
oldocaversion + 1) from Project where id = x and
ocaversion = ocaversion

Depending on whether the application updates a single descriptor
or several, it can either use implicit transactions (omitting calls
to begin and commit) or create explicit transaction boundaries
(bracketing several updates with begin and commit).

Optimistic locking is simple and effective. For our example
application, suppose we have a server-side project with the name
'initial project name' and users perform the following
sequence of operations:

�. User � calls describe and retrieves the descriptor
(descriptor.szName = 'initial project name' and
descriptor.ocaversion = 1).

2. User 1 (locally, on the client side) modifies the descriptor
and changes descriptor.szName to 'my new project
name'.

�. User 2 also calls describe and receives the still valid
descriptor (descriptor.szName = 'initial project
name').

4. User 2 modifies its local copy of the descriptor and sets
descriptor.szName to 'my very new project name'.

5. User � commits the change using saveUpdate with
descriptor.szName = 'my new project name' and
descriptor.ocaversion = 1.

6. The commit is successful because the ocaversion in the
descriptor and on the server-side are still identical. This
increases ocaversion on the server by one and the new
server-side values are name = 'initial project name'
and ocaversion = 2.

7. User 2 now wants to commit the modification and calls
saveUpdate using a descriptor that contains descriptor.
szName = 'my very new project name' and
descriptor.ocaDate = 1.

8. The commit fails because the descriptor’s ocaversion dif-
fers from the server-side ocaversion.

9. The server raises a SaveFailedException that can be
propagated to the user via a meaningful error message.

One drawback of optimistic locking is that it covers only single-
object modifications because, if we have several interconnected
objects that are modified as a set, it can happen that only some of
these objects can be saved successfully because other objects in the
same set have changed in the meantime.

There are various approaches to deal with this problem: we can
introduce additional transaction handling (as described in the next
section) or we can modify the data model such that objects that
may be modified as a set are stored within a single database table.
Another option is to have objects within the same set share a single
OCA attribute. We can achieve this by interconnecting the OCA
attributes of the corresponding set of tables: each time one of the
OCA attributes of an object is increased, we also increase the OCA
attributes of the remaining objects in the set. (We can use triggers
or additional server-side logic to implement this.)

Pessimistic Locking
For applications with a high rate of data modification and, there-
fore, high probability of conflicts, we need to resort to pessimistic
locking: data that will be modified by a user is explicitly locked
before starting the update process and is freed when the user com-
mits or rolls back the changes; during that time, other users can
only gain read access to the corresponding data set.

Beyond Freeze

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue 25, July 2007 Page 5Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

The interface for this scheme looks like this:

// Slice
exception LockFailedException;
exception CommitFailedException;
exception RollbackFailedException;

interface CProject
{
 idempotent CProjectDesc describe();
 CProjectDesc describeForUpdate()
 throws LockFailedException;
 void saveUpdate(CProjectDesc desc)
 throws CommitFailedException;
 void rollback()
 throws RollbackFailedException;
};

As with optimistic locking, we have a describe operation. In ad-
dition, a describeForUpdate operation has the same functional-
ity, but also explicitly locks the corresponding data set.

As for optimistic locking, clients call saveUpdate to commit an
update. In addition, we need to provide a rollback operation that
closes the transaction without committing updated data.

Here is the preceding concurrent update scenario once more, this
time using pessimistic locking:

�. User � calls describeForUpdate and receives the initial
descriptor for further modification.

2. User 2 calls describeForUpdate and receives a
LockFailedException.

3. User 1 modifies the object.
4. User � calls saveUpdate, which releases the lock on the data

set.
5. User 2 calls describeForUpdate again and receives the

new descriptor, which also locks the data set for further modi-
fication by user 2.

At first glance, this use case is simpler than the use case with opti-
mistic locking. Unfortunately, it hides a number of constraints that
must be taken into account when implementing the application.
For one, we cannot share database connections among multiple
requests because we need to guarantee that transaction boundaries
are maintained; if the same database connection is used by more
than one transaction, it is no longer clear to which transaction a
particular update belongs. Therefore, we need a connection manag-
er that maps transactions to database connections. (I will introduce
such a mechanism later in this article because it is not only a good
tool to manage transactions but also overcomes general multi-
threading issues for databases.)

Second, in a distributed environment, we cannot guarantee that
a particular client will not suddenly disappear in the middle of an
operation. If this happens during a transaction, the transaction must
be rolled back to reclaim its locks. Doing this requires a separate
routine that monitors all open database connections for request

activity and eventually rolls back the transaction if a connection
remains idle for too long.

The implementation can no longer use auto-commit (which was
possible with optimistic locking) because we need transactions that
span multiple requests. Therefore, a transaction’s underlying con-
nection cannot automatically be closed once a request completes
but must be held open until the client performs an explicit commit
or rollback.

In SQL, we can lock a database row using the SELECT FOR
UPDATE command. Without additional parameters, this call blocks
until the caller either commits or rolls back the requested row
(that is, describeForUpdate would not return until the row gets
unlocked). In a distributed environment, this is not the desired
behavior. Databases such as Oracle and PostgreSQL support
an additional NOWAIT parameter that guarantees non-blocking
behavior: if a lock cannot be acquired, SELECT FOR UPDATE
returns an error code that the application can propagate as a
LockFailedException.

Referring to the previous example, the following happen beneath
the covers:

�. User � calls describeForUpdate and receives the initial
descriptor for further modification. Internally, this locks
the corresponding database row for user �’s connection by
executing SELECT * FROM Project WHERE id = x FOR
UPDATE NOWAIT. The connection stays open and assigned to
user � once the request completes.

2. User 2 calls describeForUpdate and receives a
LockFailedException. Internally, this makes an attempt
to acquire a lock by executing SELECT * FROM Project
WHERE id = x FOR UPDATE NOWAIT. However, the
SELECT returns an error code that is passed to the user as the
LockFailedException.

3. User 1 modifies the object.
4. User � calls saveUpdate, which releases the lock on the data

set. Internally, this calls COMMIT on the transaction associated
with user �’s connection.

5. User 2 calls describeForUpdate again and receives the
new descriptor, which also locks the data set for further modi-
fication by user 2. Internally, this locks the database row again
using another SELECT * FROM Project WHERE id = x
FOR UPDATE NOWAIT, but this time using a new connection
object that is then assigned to user 2 (and not freed).

The preceding does not address modification of multiple objects
within one transaction. Doing so would require creating a transac-
tion management component, which makes applying the pessimis-
tic locking scheme even more difficult.

In summary, I generally suggest to use optimistic locking be-
cause this requires less logic in the back end and thus is less error
prone.

Beyond Freeze

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue 25, July 2007 Page 5Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Using an O/R Mapper
Object-relational mappers—known as O/R mappers—are becom-
ing the de-facto standard for accessing databases from modern
programming languages such as Java and C#. Among others,
Hibernate (for Java) and NHibernate (for C#) are two popular map-
pers that I will use as an example.

Common to all mapping services is that they hide SQL queries
behind an object-oriented facade that provides convenient access to
the underlying database. Furthermore, database rows are automati-
cally mapped to objects, so-called POJOs and POCOs (Plain Old
Java Objects and Plain Old C# Objects, respectively). O/R map-
pers even resolve foreign-key relationships and map them to object
references. To map a data model to a POCO, NHibernate uses an
XML definition:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping
 xmlns="urn:nhibernate-mapping-2.0">
 <class name="MyApplication.Persistence.Project,
 MyApplication.Persistence" table="project">
 <id name="id" column="id" type="Int32"
 unsaved-value="0">
 <generator class="native">
 <param name="sequence">
 project_id_seq
 </param>
 </generator>
 </id>
 <version name="ocaVersion" column="ocaversion"
 type="Int32"/>
 <property name="szName" column="name"
 type="String"/>
 <property name="creatorId" column="creatorid"
 type="Int32"/>
 <property name="creationDate"
 column="creationdate" type="DateTime"/>
 </class>
</hibernate-mapping>

The <class> tag defines the mapping class and table, and the
<id> tag defines how the primary key (the row ID) is generated.
For this example, we’ll use the database sequence generator. (NHi-
bernate provides other strategies as well.)

Next, we define the aforementioned OCA field; for this example,
we use a serial number that NHibernate increases automatically
on each update. Finally, we map the database fields to their cor-
responding class member variables. (Please note that NHiber-
nate supports foreign-key relationships, which I omitted for the
creatorId field to keep things simple.)

Accessing the database through NHibernate in your program
code looks like as follows. (I assume the code has previously ini-
tialized the sessionFactory object).

// C#
NHibernate.ISession session =
 sessionFactory.OpenSession();
NHibernate.ICriteria crit =
 session.CreateCriteria(
 typeof(Persistence.Project));
crit.Add(new NHibernate.Expression.
EqExpression("id", id));
if (crit.List().Count == 1)
{
 Persistence.Project project =
 (Persistence.Project)crit.UniqueResult();
}
else
{
 // throw error
}
session.close();

I suggest that you avoid mapping tables directly to descriptor
classes, even though this initially looks attractive. The reason is
that not all SQL and NHibernate types have direct Slice equiva-
lents. (The time stamps I mentioned in part � of this article are an
example). Thus, it is better to use a well-defined mapping layer that
is exclusively responsible for mapping between descriptors and
POCOs/ POJOs.

Connection Management
Ice has the advantage of being inherently multithreaded. Usually,
the presence of multiple threads within a server is transparent to
the application. However, database connections are often sensi-
tive to multi-threading. In pure PostgreSQL for instance, a single
database connection can be used by only one thread at a time. The
server-side application code can deal with this limitation by using
mutexes that guard the connection objects; however, doing so often
causes a performance bottleneck.

Another strategy is to use multiple connections and store them
in thread-local storage. That way, each application thread uses its
own connection. (This method is used in the Oracle demos that are
part of Ice �.2.0—see the demo/oracle directory.) However, with
large numbers of threads in an application, this can cause prob-
lems due to limits on the number of connections supported by the
database.

A more adaptive approach is to create pool of connections: for
each request that involves database activity, the application picks
a connection from the pool and locks it for that particular request;
once the request completes, the connection is returned to the pool
for further use. This is more efficient than using a dedicated con-
nection for each thread. (This pattern is, for example, used by the
Java Connector API, which provides good inspiration for imple-
menting custom connection pools in C++. Persistence mappers
such as Hibernate also make use of such pools within their session
factory object.)

Beyond Freeze

http://www.hibernate.org/344.html
http://www.hibernate.org/343.html

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue 25, July 2007 Page 7Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

The design goals for a connection pool are:

• Simplify connection handling by providing a single factory.
• Ensure thread-safety of connection handles.
• Reduce the number of open database sessions by reusing

unused connections whenever possible.
• For pessimistic locking, isolate transactions by ensuring that

each request receives a distinct connection handle when a
transaction is started, thereby dedicating a separate connection
to each transaction at a time.

No common implementation of database connection pools exists
for C++, so I’ll provide a rough sketch of how such a library could
look using Qt:

// C++
class Connection
{
public:
 QSqlDatabase* pDatabase;
 void close();
 void beginTransaction();
 void commit();
 void rollback();
};

class ConnectionFactory
{
public:
 Connection* getConnection();
};

Using this library is similar to the preceding NHibernate example:

// C++
void
CProjectI::saveUpdate(const CProjectDesc& desc)
{
 Connection* pConn = pFactory->getConnection();

 QString szQuery =
 QSqlQuery query("update ... from Project where
id = x and ocaversion = " +
 QString::number(desc.ocaVersion),
 pConn->pDatabase, /* ... */);
 // ...
 pConn->close();
}

The implementation retrieves a connection handle from the con-
nection factory and, once the query completes, returns it to the
pool by calling close.

This scheme is sufficient for implementing optimistic locking.
For pessimistic locking, we need additional logic. First of all,
the connection manager must support transactions; whenever a
transaction is started, that is, a client calls beginTransaction,
the corresponding connection must be bound to the session in
which the transaction is used. The implementation does not return
this connection to the pool of connections until the client calls

either rollback or commit. An important issue is that the ses-
sion will break in the middle of a transaction if the corresponding
client suddenly disappears. For safe rollback and unlocking of the
transaction, we must use a timer that automatically returns locked
connections to the pool, rolling back any active transaction after a
certain period of inactivity.

Another issue is that, if a database uses row locking, dead-
locks can occur. This can happen, for example, if a client starts a
transaction, locks some rows, and then disappears. Some database
management systems, such as Oracle, have advanced features for
recovering automatically from that state: as soon as the database
discovers dead sessions, it performs automatic rollback. Of course,
this means that rollback can happen to a transaction without the
application or library being aware of it.

Zillions of Objects
Databases are the solution of choice for handling large data sets.
However, it is not a good idea to create millions of servant instanc-
es in a server, each reflecting a particular row in the database—the
server will run out of memory for far fewer servants than this.
Ice provides servant locators to deal with this scenario. First, I
will show a simple implementation and then discuss advanced
mechanisms that use servant locators, the evictor pattern and the
IceUtil::Cache class.

Using a Servant Locator
An Ice servant locator provides a mechanism to map a particular
request to a specific servant for the duration of the request. For our
example application, I will incorporate a servant locator to create
this ad-hoc association. As I mentioned in part � of this article, an
Ice object identity contains both an object’s type (in the category
attribute) as well as an object ID (in the name attribute). The loca-
tor uses these attributes to determine which servant to instantiate:

// C++
Ice::ObjectPtr
CProjectLocator::locate(
 const Ice::Current& current,
 Ice::LocalObjectPtr& cookie)
{
 IceUtil::Mutex::Lock sync(m_syncMutex);
 assert(current.id.category == "project");

 // retrieve the database row id
 std::stringstream ssStream(current.id.name);
 int nId;
 ssStream >> nId;

 CPersistentProject projectData =
 CPersistenceLayer::instance()->
 selectProject(nId);

 CProjectDesc projectDesc =
 CProjectDescMapper::map(projectData);

Beyond Freeze

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue 25, July 2007 Page 7Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

 if (projectDesc.m_nId == 0)
 {
 return 0;
 }
 CProjectIPtr retval = new CProjectI();
 retval->m_data = projectDesc;
 return retval;
}

The code retrieves the database row ID from the context that is
passed to the locate function, loads the appropriate data from
the database, creates the new servant (which is passed the data),
and, finally, returns the servant. The locator is integrated into the
program as follows:

// C++
CProjectLocatorPtr pProjectLocator =
 new CProjectLocator();
objectAdapter->addServantLocator(
 pProjectLocator, "project");

This simple scheme guarantees that database and Ice objects are
synchronized as, for each request, a new servant object is created
that holds the data. However, this default implementation will be
quite slow because, for every request, it creates a new object and
contacts the database. To improve on this, we can use an evictor or
cache class.

Using an Evictor
The evictor pattern retains a fixed number of servants in memory,
with fast random access to each servant. In addition, it maintains
servants in least-recently-used (LRU) order; if no servant is in
memory for a particular request, the evictor evicts the least-recent-
ly used servant before allocating a new servant for the request. The
implementation still uses a servant locator but, instead of blindly
creating a servant for each request, it checks whether a servant is
already in memory before instantiating a new one (and possibly
evicting another servant).

A sample implementation of the evictor pattern is part of
the Ice distribution, in the demo/book/evictor directory.
The EvictorBase class provided by Ice has a default locate
implementation that we will use. Our locator class derives from
EvictorBase and implements add and evict methods that the
base class calls to notify the application that it needs a servant and
is about to evict a servant.

// C++
class CProjectLocator : virtual public EvictorBase
{
public:
 CProjectLocator(
 const Ice::ObjectAdapterPtr& adapter);
protected:
 virtual Ice::ObjectPtr
 add(const Ice::Current& current,
 Ice::LocalObjectPtr& localobject);

 virtual void
 evict(const Ice::ObjectPtr& object,
 const Ice::LocalObjectPtr& localobject);
};

We can implement evict as an empty function because we do not
need take special actions before evicting a servant; add is imple-
mented as follows:

// C++
Ice::ObjectPtr
CProjectLocator::add(
 const Ice::Current& current,
 Ice::LocalObjectPtr& localobject)
{
 CProjectIPtr retval = 0;
 int nId = atoi(current.id.name.c_str());

 CPersistentProject projectData =
 CPersistenceLayer::instance()->
 selectProject(nId);

 CProjectDesc projectDesc =
 CProjectDescMapper::map(projectData);
 if (projectDesc.m_nId != 0)
 {
 retval = new CProjectI();
 retval->m_data = projectDesc;
 }
 return retval;
}

Using an evictor, we create a one-to-one mapping between da-
tabase entities and Ice servants, at least for those objects that are
currently cached. Those cached Ice servants each reflect a single
database row. Performance using an evictor is significantly better
because servants live longer and we do not access the database for
each request.

Unfortunately, the evictor cache is not necessarily consistent
with the database: the (logical) deletion of objects and, in turn, of
database rows is not handled by the standard evictor implementa-
tion. If your application needs to implement object deletion, it must
also clean the evictor cache!

One strategy for deletion that works fine if objects can delete
themselves is to use a delete flag within the servant, for example:

// Slice
interface CProject
{
 void deleteProject();
};

The deleteProject operation is implemented as:

// C++
void
CProjectI::deleteProject(
 const Ice::Current& current)
{
 m_deleted = true;
}

Beyond Freeze

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue 25, July 2007 Page 9Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

When such a logically deleted servant is accessed through the loca-
tor, locate throws an ObjectNotExistsException. Note that
this requires a small modification of the EvictorBase class to
take care of checking the m_deleted flag.

Another way of implementing object deletion and keeping the
database and evictor cache in sync is to derive from EvictorBase
and implement a removeProjectById function:

// C++
void
CProjectEvictor::removeProjectById(int projectId)
{
 Ice.Identity id = new Ice.Identity();
 id.category = "project";
 id.name = projectId.ToString();

 lock (this)
 {
 if (!_map.Contains(id))
 {
 return true;
 }
 _map.Remove(id);
 if (_map.Contains(id))
 {
 return false;
 }
 return true;
 }
}

We have to make the _map member variable of EvictorBase
protected to make this work.

Using a small mediator class such as

// C++
void
CProjectMediator::removeProject(int id)
{
 m_pProjectLocator->removeProjectById(id);
}

prevents your business logic from accessing the Ice-specific code.

All in all, using an evictor for implementing a servant locator
has a number of advantages:

• It removes the performance bottleneck of the default servant
locator implementation.

• The code is still quite simple and easy to understand and
maintain; using the EvictorBase class is even easier than
creating a standard servant locator implementation.

However, there is a slight drawback to this approach that is hidden
in the EvictorBase class: the implementation uses a mutex to
guard the LRU map. Thus, lookups and database access are serial-
ized within EvictorBase. No two servants can be loaded from
the database concurrently.

Using the IceUtil::Cache Class
This potential performance bottleneck can be solved by using the
IceUtil::Cache class. This cache class is thread-safe and does
not use a mutex to serialize lookups. The Ice �.2.� distribution in-
cludes a demo called CustomEvictor that shows how to combine
the Cache class with the standard evictor. If you write your code
based on this example, the code will not differ from the standard
evictor approach but automatically be fully multi-threaded. Even
the remove implementation can easily be adapted to this approach.
(Unfortunately, this class is only available for C++.)

Complex Database Operations
So far, we have discussed how to retrieve and update descriptors
using the corresponding interface: The CProjectDesc descrip-
tor was retrieved and modified using the Project interface. This
works for a lot of use cases but there might be some more complex
tasks where this basic scheme does not apply. For example, in our
project management application, we might want to find all projects
that have a particular member. Depending on the database schema,
this might require more complex database operations such as joins,
sub-selects, or dynamic selections with run-time construction of
the query.

Such operations should not be implemented in the servant itself.
Instead, a separate servant can handle such complex tasks in a
service-like manner:

// Slice
sequence<CProjectDesc> CProjectDescSequence;

interface CProjectInformationService
{
 CProjectDescSequence
 findAllProjectsWithMember(string membername);
};

interface CProject
{
 CProjectDesc describe();
};

To keep the function style consistent, we keep using project
descriptors as the ultimate structures for passing data. As in part �
of this article, the mapping between a database row and the cor-
responding descriptor is implemented by the describe operation.
Because we now have a second function that also creates such
descriptors, it makes sense to extract the mapping functionality
into separate classes as mentioned in part �. Such classes take care
of mapping between data structures as retrieved from the database
and the structures handled within the application.

For our example, we introduce the class
CProjectDescProvider which can be retrieved from a global
DescProvider factory:

Beyond Freeze

Master

Slave-1

Node-1

Node-2

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue 25, July 2007 Page 9Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

// C++
class CProjectDescProvider : DescProviderBase
{
public:
 CProjectDesc get(int id) const;
 bool set(const CProjectDesc& desc);
};

This new class is responsible for generating new descriptors based
on database rows and for storing modified descriptors back into the
database.

To support complex query operations, the implementations of
CProjectI and CProjectInformationService access the
same CProjectDescProvider instance, which in turn accesses
the database to provide descriptors. The servant implementation no
longer requires a descriptor member, which makes the correspond-
ing implementation more lightweight.

A further advantage of this single-point data access is that we
can easily ensure data consistency, as well as implement a caching
layer for descriptors.

Final Words
Based on the generic layered application architecture I introduced
in part �, the integration of all concepts introduced yields Figure �.

Depending on the complexity of use cases that you need to handle
in your application, you may not need all of the features introduced
here.

As the two parts of this article show, using the correct imple-
mentation techniques for persistence makes it quite easy to use
databases and thus to implement �+-tier applications that use Ice as
the communication infrastructure. Ice features such as servant loca-
tors let you easily build scalable, high-performance applications.

I hope you will find the implementation techniques I presented
here useful for your own development. Please feel free to contact
me if you have any questions.

Beyond Freeze

Master

Slave-1

Node-1

Node-2

Figure 1: Application Layers
Client-side
Layers

Server-side
Layers

Presentation Layer

Ice Runtime

Ice Layer

Business Logic Layer

Data Access Layer

Data Layer

Servants Servants

Connection Manager
Hibernate

Desc
Providers

QueryServices

mailto:stephan@s2-industries.com
mailto:stephan@s2-industries.com

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue 25, July 2007 Page ��Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Who’s Counting?
Michi Henning, Chief Scientist

Introduction
When developers face a programming task that is either close to
the hardware or is critical to performance, they usually reach for
C++. C++ permits manipulation of raw memory and, because it
supports pointers and pointer arithmetic, enables many algorithms
to be implemented more efficiently than a language such as Java
that tightly controls access to memory and often requires data to
be copied that, with C++, can be manipulated in place. This makes
C++ the system programming language of choice in many situa-
tions.

One characteristic of C++ is that it encourages allocation of
objects on the heap. In particular, whenever the need arises to
manipulate data whose size is known only at run time but not at
compile time, heap allocation is usually the only option. (And
many programming patterns, such as the factory pattern, intrinsi-
cally require heap allocation.) However, therein lies a catch: we
must carefully balance every call to new with a corresponding
call to delete, and we must balance every call to new[] with
a corresponding call to delete[]. Failure to do this has fatal
consequences: too few calls to delete or delete[] will cause
the program to eventually run out of memory, and too many calls
to delete or delete[] will cause the program to die an untimely
death. And, as a C++ programmer, I am sure that you will be aware
of the numerous other ways for a C++ program to shoot itself in
the foot, such as making mismatched calls to new and delete[]
(or new[] and delete), or failing to deallocate memory when the
program’s execution path takes an unexpected turn, such as when
code takes an early return out of a function or calls a function that
unexpectedly throws an exception.

There are other spanners in the memory-management works.
One of the biggest problems of explicit memory management is
that, as the programmer, you are made responsible for tracking
the life time of allocated memory: if one part of the program calls
delete while another part of the program still holds a pointer to
that region of memory and later dereferences that pointer, all hell
breaks loose. To make matters worse, the problem usually only
shows up far from the place where the damage was done (namely,
where the incorrect call to delete was made) and instead mani-
fests itself at the point where the no-longer valid memory is used
(namely, where the pointer is dereferenced). This can make it ex-
tremely difficult to track down the cause of a memory management
problem. If your program is threaded and the threads share pointers
to allocated memory, the problem gets more complex by at least an
order of magnitude, often because it can become very difficult to
reproduce a memory management problem from run to run due to
timing differences in the execution of threads.

The problems caused by memory management errors are seri-
ous. In the past, I have consulted on many projects that were
plagued by memory management problems (some to the point
where the project ended up being cancelled), and a number of
companies make a healthy living from memory management
debugging tools, such as IBM Rational Purify. These tools can
be invaluable when it comes to tracking down memory manage-
ment problems. However, the tools only help fix a problem after it
arises, and only if you happen to have a test case that actually ex-
poses the problem. This is not at all certain for large and complex
programs; often, memory management errors remain dormant for
years before they are discovered.

A much better way to deal with memory management errors is
to make sure that they don’t happen in the first place. Doing this
not only saves a lot of licensing fees for debugging tools, but also
saves your—and usually your manager’s—sanity.

As a user of the Ice C++ mapping, you will appreciate its
automatic memory management: you never need to call delete;
instead, the mapping ensures that memory is deallocated at just the
right time, namely, as soon as it is no longer needed. (If you are a
past user of the CORBA C++ mapping, I am sure that you are dou-
bly appreciative of this—the CORBA C++ mapping makes it ludi-
crously easy to corrupt or leak memory.) Much of this convenience
of the Ice C++ mapping is based on a single concept, namely,
smart pointers. Smart pointers provide all the necessary magic that
makes it impossible to leak or prematurely deallocate memory, by
tracking the life time of allocated objects with reference counts.
Leaks are not completely impossible but, to cause them, your code
has to deliberately go out of its way.

What many programmers do not realize is that smart pointers
are not limited to Ice-related classes and APIs—you can use them
just as easily for memory management of your own, application
specific classes that have nothing to do with Ice. In this article, I
will show you:

• How Ice smart pointers work
• How to use Ice smart pointers with your own classes
• How Ice smart pointers deal with cyclic dependencies in Slice

classes

I suggest that you take a good look at these techniques. Doing
so will not only simplify your code a great deal, but will almost
certainly reduce the number of memory management defects in
your project. And, believe me, reference counting is much more
fun than bug counting, especially if the counting is being done by
your manager…

Smart Pointers: An Overview

Why Bother with Smart Pointers?
Ice smart pointers are successful because they provide a number of
features:

Who’s Counting?

http://www-306.ibm.com/software/awdtools/purify/

Connections
ZeroC’s Newsletter for the Ice Community

Page �0 Issue 25, July 2007 Page ��Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

• Once you have initialized a smart pointer with the pointer re-
turned by a call to new, you never need to call delete. Smart
pointers automatically track the life time of the allocated
object and delete it as soon as the program lets the last smart
pointer go out of scope. You can freely copy and assign smart
pointers without violating this guarantee.

• Smart pointers are strongly-typed. Just as with ordinary C++
pointers, you cannot accidentally assign a smart pointer to,
say, a chair to the smart pointer for an automobile (unless the
chair derives from the automobile, which is unlikely).

• Smart pointers are polymorphic. Just as with ordinary C++
pointers, you can pass a smart pointer to a derived instance
where a smart pointer to a base instance is expected. Simi-
larly, if you have a smart pointer to a base class that, at run
time, points at a derived instance, invoking member functions
via the smart pointer uses the usual semantics for virtual func-
tion calls and invokes the most-derived implementation of the
member function. (In other words, smart pointers behave like
normal C++ pointers.)

• Smart pointers are exception-safe. Even in the presence of ex-
ceptions that change the flow of control in unexpected ways,
smart pointers correctly track allocated memory.

• Smart pointers are thread-safe. Internally, assignment and
copying of smart pointers is interlocked such that you need
not use any additional synchronization when using smart
pointers from different threads.

• Smart pointers are efficient. The size of a smart pointer is
the same as that of a raw C++ pointer (four bytes on a �2-bit
platform), so smart pointers have no space overhead. Per
class instance, the reference counting implementation adds
only �2-bytes (on �2-bit Linux and Windows), which is
insignificant even for classes containing little data. Run-time
performance of smart pointers is excellent as well, with neg-
ligible impact on execution speed. (Ice uses smart pointers all
throughout its implementation, with no negative performance
impact, even for speed-critical code.)

These features make smart pointer an immensely useful tool: they
make it much easier to write your code and eliminate many com-
mon mistakes that become manifest only at run time. In turn, this
means that your software will be faster to develop and will contain
fewer defects. Simply put, smart pointers reduce development and
maintenance cost.

Implementation Overview
The basic mechanism of smart pointers is simple: each class
instance holds a reference count that starts out with the value zero
when the instance is created. When the instance’s address (that is,
its C++ pointer) is used to initialize a smart pointer, the reference
count in the class instance is set to one. Thereafter, every time a
smart pointer to the object is assigned or copied to another smart
pointer, the reference count in the instance goes up by one and, ev-
ery time a smart pointer to an instance goes out of scope (or has its

value changed by assignment), the reference count is decremented
by one. When the reference count reaches zero, which happens
when the last smart pointer to the instance goes out of scope, the
instance deletes itself by calling delete this.

You can find an overview of this idea in the client-side C++
mapping chapter in the Ice Manual and, if you are not familiar
with the idea of reference counting and smart pointers, I suggest
you read the section on smart pointers before proceeding. For this
article, we are more interested in the implementation of smart
pointers, so I will proceed to that.

Here is the basic implementation of smart pointers, which
consists of two parts. The first part adds a reference count to every
class that is to work with smart pointers:

// C++
namespace IceInternal
{
 namespace GC
 {
 extern IceUtil::RecMutex gcRecMutex;
 }

 class GCShared
 {
 private:
 int _ref;

 public:
 GCShared() : _ref(0) {}
 GCShared(const GCShared&) : _ref(0) {}
 virtual ~GCShared() {}
 GCShared& operator=(const GCShared&}
 {
 return *this;
 }
 virtual void __incRef()
 {
 Mutex::Lock sync(GC::gcRecMutex);
 ++_ref;
 }
 virtual void __decRef()
 {
 Mutex::Lock sync(GC::gcRecMutex);
 if(--_ref == 0)
 {

 delete this;
 }
 }
 };
}

Note that I have taken some liberties with this code—if you look
at the actual implementation of IceInternal::GCShared in the
Ice source code, you will find that it looks somewhat different: for
simplicity, I have inlined some member functions that are out of
line in the actual implementation, and I have omitted a number of
details that deal with platform-specific and efficiency issues. The

Who’s Counting?

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue 25, July 2007 Page ��Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

code I show is sufficient to understand how reference counting and
smart pointers work without getting lost in too much implementa-
tion detail.

 The purpose of GCShared is to act as a base class from which
reference-counted classes derive. This style of reference count-
ing is known as intrusive reference counting because, for a class
to be reference-counted, its definition must be modified. There is
also non-intrusive reference counting, which keeps the reference
count in a class instance that is separate to the one being reference-
counted. The advantage of non-intrusive reference counting is that
it allows you to reference-count classes without modifying their
definition; the disadvantage is that non-intrusive reference counting
requires more memory (which is why Ice uses intrusive reference
counting).

If you define a class in Slice, the slice2cpp compiler ar-
ranges for the corresponding generated C++ class to derive from
GCShared. For example, consider the following minimal Slice
class:

// Slice
class Simple {};

That’s as simple a class as we can get. For this class, the
slice2cpp compiler generates the following C++ definition:

// C++
class Simple : public virtual Ice::Object
{
public:
 Simple() {}
 // ...

protected:
 virtual ~Simple() {}
};

Again, I have omitted some irrelevant detail here. The important
point is that the generated class Simple derives from Ice::
Object. In turn, if you look through the Ice header files, you will
find that Ice::Object derives from IceInternal::GCShared:

// C++
namespace Ice
{
 class Object : public IceInternal::GCShared
 {
 // ...
 };
}

In other words, every Slice-generated class provides a reference
count. You will also notice that the generated Simple class has a
protected destructor. Reference-counted classes must be allocated
on the heap, and making the destructor protected enforces this:
with a protected destructor, Simple instances can be allocated
only on the heap, but not on the stack or in a static variable; incor-
rect allocation causes a compile-time error.

The second part of the implementation is the smart pointer class
itself, which uses the __incRef and __decRef member functions
in GCShared to adjust the reference count. If you find the code that
follows somewhat intimidating, don’t despair—despite looking a
little complex, it is actually very simple. Again, the actual imple-
mentation of this template class in the Ice source code differs, in
order to reduce the size of the generated code; the version I show
here is functionally equivalent and more readable.

// C++
namespace IceInternal
{
 template<typename T>
 class Handle {
 private:
 T* _p;

 public:
 Handle(T* p = 0) : _p(p) {
 if(_p)
 _p->__incRef();
 }
 Handle(const Handle& h) {
 if(_p = h._p)
 _p->__incRef();
 }
 ~Handle() {
 if(_p)
 _p->__decRef();
 }
 T* operator->() {
 if(!_p)
 throw NullHandleException(
 __FILE__, __LINE__);
 return _p;
 }
 T& operator*() {
 if(!_p)
 throw NullHandleException(
 __FILE__, __LINE__);
 return *_p;
 }
 operator bool() const {
 return _p;
 }
 Handle& operator=(const Handle& h) {
 if(_p != h->_p) {
 if(_p)
 _p->__incRef();
 T* ptr = _p;
 _p = h->_p;
 if(ptr)
 ptr->__decRef();
 }
 return *this;
 }
 Handle& operator=(T* p) {
 if(_p != h->_p) {
 if(_p)
 _p->__incRef();
 T* ptr = _p;

Who’s Counting?

Connections
ZeroC’s Newsletter for the Ice Community

Page �2 Issue 25, July 2007 Page ��Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page ��Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

 _p = h->p;
 if(ptr)
 ptr->__decRef();
 }
 return *this;
 }
 };
}

Before we look at how this machinery works, let’s look at what the
slice2cpp compiler generates for our Simple class:

// C++
typedef IceInternal::Handle<Simple> SimplePtr;

This says that SimplePtr is a template instance of
IceInternal::Handle for Simple class instances. If you look
at the Handle class, you will find that it contains a private member
_p of type T*. For the template instantiation with Simple as the
template parameter, this means that SimplePtr contains a private
member of type Simple*, that is, a raw C++ pointer to a Simple
instance that lives on the heap.

To use the magic of smart pointers, we can write:

// C++
{
 SimplePtr s = new Simple;
 // ...
} // Instance is deleted automagically

Immediately after instantiation with new, the reference count of the
Simple instance is zero. As soon as the constructor of s runs, it
increases the reference count to one. Once s goes out of scope, its
destructor runs. The destructor calls __decRef on the underlying
Simple instance, which in turn decrements the reference count to
zero and, as a result, calls delete this.

Similar considerations apply if you step through scenarios that
involve copying and assignment of smart pointers: the Handle
class takes care of maintaining the reference count as appropriate,
and the GCShared base class provides the __decRef member
function that causes the instance to delete itself once the final smart
pointer to it goes out of scope.

Similarly, if the code leaves the enclosing scope of a smart
pointer because of an exception (or takes an early return), the
destructor of the smart pointer still runs, so it is impossible to leak
memory if the execution path takes an unexpected turn.

As an added bonus, if you dereference a null smart pointer, the
Handle template throws a NullPointerException, which gives
your code a chance to recover. (In contrast, if you dereference a
null C++ pointer, your program typically dies with a core dump.)

The operator bool of the Handle template allows you to test
whether a smart pointer is null:

// C++
SimplePtr s = ...;
if(s)
{
 // s is non-null.
}

Playing by the Rules
Smart pointers require you to play by two simple rules. The first is
that you must allocate reference-counted classes on the heap. This
is necessary because the GCShared destructor calls delete and,
of course, delete works only for heap-allocated instances.

The second rule is that, if you use smart pointers, you should not
mix them with ordinary pointers. This avoids the potential problem
of having a raw pointer point at an instance beyond its life time and
the code doing undefined things if the raw pointer is dereferenced
thereafter.

A corollary to the second rule is that, if you pass a class instance
to and from functions, you should pass its smart pointer by value
(or, for input parameters, by constant reference), instead of passing
a reference or pointer to the instance itself. To illustrate why, let us
consider a few examples:

// C++
SimplePtr getSimple();

getSimple returns a smart pointer by value. Doing this has the ad-
vantage that it is safe to ignore the return value. For example, you
can call getSimple as follows without incurring a memory leak:

// C++
getSimple(); // No leak here.

getSimple returns a SimplePtr instance that, because it is not
used by caller, is a temporary instance that is destroyed by the
compiler as soon as getSimple returns. In turn, the destructor of
SimplePtr ensures that the instance is deallocated as soon as the
statement completes (assuming there are no other smart pointers to
the same instance in the code). So, even though the returned smart
pointer refers to a heap-allocated instance, this code does not cause
a memory leak.

Similarly, in the implementation of getSimple, we can write:

// C++
SimplePtr
getSimple()
{
 return new Simple; // No leak here.
}

Because the return type is SimplePtr, the compiler constructs a
temporary SimplePtr instance and initializes it with the return
value from new (which sets the reference count of the instance to
one). This ensures that the heap-allocated Simple instance is

Who’s Counting?

Connections
ZeroC’s Newsletter for the Ice Community

Page �4 Issue 25, July 2007 Page �5Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �5Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

destroyed as soon as the caller discards its last smart pointer to that
instance (which, as we saw in the preceding example, may happen
immediately if the caller ignores the return value).

Most compilers will avoid an additional copy of the return
value:

// C++
SimplePtr s = getSimple();
// No extra copy here with most compilers.

A naïve compiler would create a SimplePtr instance inside the
implementation of getSimple and construct the caller’s variable s
by invoking its copy constructor. However, compilers that imple-
ment the return value optimization (RVO) avoid this additional
copy and instead initialize the caller’s variable s directly instead
of copying a temporary. (Most compilers implement RVO these
days.) Many modern compilers also implement the named return
value optimization (NRVO), which avoids a temporary even if
getSimple uses a named variable as the return value:

// C++
SimplePtr
getSimple()
{
 SimplePtr r = new Simple();
 // ...
 return r; // No copy here with NRVO.
}

Input parameters should be passed by constant reference, for
example:

// C++
void
setSimple(const SimplePtr& s)
{
 // ...
}

Note that setSimple accepts a constant reference to a
SimplePtr instead of accepting the smart pointer by value. Either
way is correct, but passing smart pointers by constant reference
is slightly more efficient because it avoids making a copy of the
smart pointer on the stack. In turn, this avoids unnecessarily lock-
ing, incrementing, and unlocking the instance’s reference count
when the function is called, and then locking, decrementing, and
unlocking the reference count again when the function completes.

Another advantage of passing input smart pointers by constant
reference (or value) is that the following code does not cause a
memory leak:

// C++
setSimple(new Simple);

This code does not contain a leak because the compiler uses the
constructor of SimplePtr to create a temporary smart pointer,
which it passes to setSimple. That way, the newly allocated

instance is immediately taken care of by a smart pointer and there-
fore cannot leak.

For output parameters, you should pass class instances by (non-
constant) reference to their smart pointer:

// C++
bool findSimple(KeyType key, SimplePtr& s)
{
 // ...
}

Similar arguments apply to output parameters as for input param-
eters and return values, so I won’t provide separate examples for
this case.

Using Smart Pointers with Non-Slice Classes
If you have classes that are not generated from Slice classes,
you can still use smart pointers with them. For this purpose,
Ice provides the IceUtil::Shared class and the IceUtil::
Handle template. IceUtil::Shared serves the same purpose as
IceInternal::GCShared, but omits a few things that are inter-
nal to the Ice C++ mapping implementation. (In addition, it cannot
deal with cyclic references, which I will discuss shortly.) Similarly,
the IceUtil::Handle template is functionally equivalent to
IceInternal::Handle, but omits a few things that are internal
to the mapping and not relevant to application code.

So, suppose you have an arbitrary class, and you would like to
automate memory management for instances of that class. As an
example, suppose you have the following Person class (not gener-
ated from any Slice definition):

// C++
class Person
{
public:
 // Constructor, destructor, etc. here...

 // Various member functions here...

private:
 // Private members here...
};

To make this class suitable for use with smart pointers, all you
need to do is publicly derive the class from IceUtil::Shared,
and define a smart pointer for it:

Who’s Counting?

Connections
ZeroC’s Newsletter for the Ice Community

Page �4 Issue 25, July 2007 Page �5Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �5Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

// C++
class Person : public IceUtil::Shared
{
public:
 // Constructor, destructor, etc. here...

 // Various member functions here...

private:
 // Private members here...
};

typedef IceUtil::Handle<Person> PersonPtr;

Having done this, you can use heap-allocated Person instances
just like any other Slice-generated class and enjoy the benefits of
automatic deallocation:

// C++
{
 PersonPtr p = new Person;
 // ...
} // Person is deleted automagically.

The benefits of smart pointers become particularly apparent when
you consider member variables. For example, suppose your
Person class also contains two pointers to Person instances
representing the mother and father of the person. Further, let’s also
assume that these instances must be dynamically allocated (for
example, because the father and mother are not always known at
construction time of a Person instance). Without smart pointers,
your Person class would look, in outline, something like this:

// C++
class Person
{
public:
 Person(): _mother(0), _father(0) {}
 virtual ~Person() {
 if(_mother)
 {
 delete _mother;
 }
 if(_father)
 {
 delete _father;
 }
 }

 // Copy constructor and assignment operator
here...

 // Various member functions here...

private:
 Person* _mother;
 Person* _father;
};

This code initializes the two raw pointer members to null in the
constructor and deletes the corresponding Person instances in

the destructor if the pointers are non-null at the time. Code such
as this is typical in many C++ programs. However, the above only
shows the tip of the iceberg. For real-world classes, you also have
to worry about copy construction and assignment because the com-
piler-generated default versions perform memberwise copy and as-
signment, which are almost always wrong for classes that contain
pointers to heap-allocated instances. This means that you either
need to disable copy construction and assignment, or implement
them to perform the appropriate memory management activities.
Doing this is not only tedious but also error-prone, particularly for
threaded programs that need to deal with race conditions.

Now compare this with the code using smart pointers:

// C++
class Person;
typedef IceUtil::Handle<Person> PersonPtr;

class Person : public IceUtil::Shared
{
public:
 Person() {}
 virtual ~Person() {}

 // No need to define explicit copy constructor
 // and assignment operator—the defaults are
 // fine.

 // Various member functions here...

private:
 PersonPtr _mother;
 PersonPtr _father;
};

This implementation is free from memory-management artifacts.
Because the member variables are smart pointers, when a Person
instance is destroyed, so are the person’s mother and father instanc-
es (provided these instances are not pointed at by smart pointers
elsewhere in the program). In addition, copying and assignment are
exception-safe and thread-safe.

In effect, the second implementation takes care of all thread- and
memory-management responsibilities of the first implementation,
at essentially zero cost in terms of development effort and run-time
overhead. I hope that this example is sufficient to convince you of
the value of smart pointers. They truly make code development
far safer and easier. And, if you use smart pointers for a while, you
will realize how much “development friction” they remove: things
that used to be complicated and error-prone suddenly seem to hap-
pen by themselves, leaving you to focus more on the application
logic, instead of having to worry about memory management and
threading issues.

As a final note, if you use multiple inheritance with your classes,
be sure to use virtual inheritance from IceUtil::Shared. Other-
wise, you end up with two separate instances of the base class, and
two separate reference counts, which does not work.

Who’s Counting?

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue 25, July 2007 Page �7Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �7Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Cyclic Dependencies
A general problem with reference counting is that cyclic references
cause leaks. In practice, this can occur, for example, with the fac-
tory pattern, where the factory creates a class and stores its smart
pointer, and the class stores a smart pointer back the factory:

// C++
class Factory;
typedef IceUtil::Handle<Factory> FactoryPtr;

class Item : public IceUtil::Shared
{
public:
 Item(int id, const FactoryPtr& f) :
 _myId(id), _myFactory(f) {
 // ...
 }

 void destroy() {
 _myFactory->removeMe(_myId);
 }

private:
 int _myId;
 FactoryPtr _myFactory;
};
typedef IceUtil::Handle<Item> ItemPtr;

class Factory : public IceUtil::Shared
{
public:
 ItemPtr create(int id) {
 ItemPtr i = new Item(id, this);
 _items[id] = i;
 return i;
 }

 void removeMe(_myId) {
 _items.erase(_myId);
 }

 void destroy() {
 _items.clear();
 }

private:
 map<int, ItemPtr> _items;
};

Here, the factory and its items point at each other so we cannot
simply let the factory’s smart pointer go out of scope because that
would leave all the cycles intact and leak memory for the factory
and all its items. (See the following example for an illustration
of how cycles prevent the reference count from ever reaching
zero.) Instead, we have to break the cycle somehow. In this case,
the destroy member function on the factory clears the factory’s
map, thereby breaking the cycle. Before letting the factory’s smart
pointer go out of scope, the caller must call the factory’s destroy
member function:

// C++
{
 FactoryPtr f = ...;

 // Use factory...

 f->destroy(); // Break cycles.
} // No leak here.

The cyclic dependency problem can also pop up in more general
form, especially if you manipulate graphs of objects. For example:

// C++
class MyClass;
typedef IceUtil::Handle<MyClass> MyClassPtr;

class MyClass : public IceUtil::Shared
{
public:
 MyClassPtr link;
 // ...
};

Each MyClass instance contains a pointer to another instance, so
instances can form graphs. As long as the graph does not contain
a cycle, everything works fine. For example, the following code
fragment creates a linked list of instances:

// C++
{
 MyClassPtr p = new MyClass;
 p->link = new MyClass;
 p->link->link = new MyClass;
} // No leak here.

This creates the three-node graph shown in Figure �. (Arrows indi-
cate the smart pointers, and the number inside each node indicates
the node’s reference count.)

Figure 1: A Graph of Three Nodes

p 1 1 1

When execution of the preceding code reaches the end of the
enclosing block, the destructor of p runs, which decrements the
first node’s reference count to zero. This causes the first node to
self-destruct by calling delete this, which decrements the sec-
ond node’s reference count and causes that node to self-destruct as
well, which in turn causes the final node to self-destruct.

However, if the graph of nodes contains a cycle, we have a more
interesting situation. Any cycle at all will do (even a cycle involv-
ing only a single node):

Who’s Counting?

Connections
ZeroC’s Newsletter for the Ice Community

Page �6 Issue 25, July 2007 Page �7Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �7Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

// C++
{
 MyClassPtr p = new MyClass;
 p->link = p;
} // Leak!

This code creates the situation shown in Figure 2, where a node
points at itself.

Figure 2: A Single-Node Cycle

p 2

Ordinary reference counting cannot take care of this situation.
Consider what happens when p goes out of scope. The destructor
of p calls __decRef on the node, which decrements the reference
count to one, as shown in Figure �.

Figure 3: Reference Count after Destruction of p

p 1

The problem here is that node’s reference count never drops back
to zero so, unless we do something else, the node is never deallo-
cated. Note that the same thing can happen if a node does not point
at itself immediately, but points at itself via a number of intermedi-
ate nodes. In this case, we end up with all the nodes in the cycle
with their reference count at one.

As for the factory example, the usual way to deal this problem
is to add a destroy method to the class that the caller must call
before allowing the final smart pointer to the graph to go out of
scope. The implementation of destroy traverses the graph, look-
ing for cycles and, if it detects a cycle, assigns zero to the smart
pointer causing the cycle. For the preceding MyClass example,
destroy could be implemented as follows:

// C++
void
MyClass::destroy()
{
 set<MyClass*> visited;
 while(link)
 {
 link = visited.insert(
 link.get()).second ? link->link : 0;
 }
}

The destroy implementation maintains a visited set of address-
es of MyClass instances. The get member function of a smart
pointer returns the address of the pointed-at instance, so link.get
returns that address. destroy follows the chain of links, inserting
each one into the visited set. If the insert returns true, destroy
proceeds to the next link. If the insert returns false, the address
of the current link is already in the set and, therefore, the current
link causes a cycle. In this case, the code assigns zero to the smart
pointer causing the cycle and then returns.

The caller must remember to call destroy before letting the last
smart pointer to the graph go out of scope:

// C++
{
 MyClassPtr p = new MyClass;
 p->link = p;
 // ...
 p->destroy();
} // No more leaks, even with a cycle.

Exactly how to write the destroy function varies with each class
and the actions destroy must take vary depending on the struc-
ture of the graph and how many smart pointers are contained in
each node. But the basic approach is the same: destroy performs
a traversal of the graph that visits every node and remembers each
node visited so far; if it finds that a particular smart pointer points
at a previously-visited node, it clears that smart pointer. The termi-
nating condition of the traversal depends on whether the graph can
contain more than one cycle. If so, destroy must continue to visit
nodes until it has examined all nodes; otherwise, if the graph can
contain only a single cycle (as in the preceding example), destroy
can terminate as soon as it has broken that cycle.

Slice Classes with Cyclic Dependencies
Consider the following Slice definition:

// Slice
class Node
{
 Node n;
};

The generated code for this looks something like the following:

// C++
class Node;
typedef IceInternal::Handle<Node> NodePtr;

class Node : public Ice::Object
{
public:
 NodePtr n;
 // ...
};

This looks suspiciously like the MyClass example we saw earlier:
instances of type Node can form cycles. However, if a graph of
Slice-generated classes contains a cycle, Ice does not leak memory.

Who’s Counting?

Connections
ZeroC’s Newsletter for the Ice Community

Page �8 Issue 25, July 2007 Page �9Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �9Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Ice includes a garbage collector that finds and deallocates all nodes
that are no longer reachable from the program’s code and, there-
fore, are part of a cycle that was left behind at some point. To see
why such a garbage collector is necessary, consider the following
interface:

// Slice
interface Graph
{
 Node makeGraph();
};

The makeGraph operation returns a graph of nodes that can con-
tain cycles. For example, the implementation of makeGraph in the
server might be as follows:

// C++
class GraphI : public Graph
{
 virtual NodePtr makeGraph(const Ice::Current&)
 {
 NodePtr p = new Node;
 p->link = new Node;
 p->link->link = new Node;
 p->link->link->link = p;
 return p;
 }
};

This returns the cyclic graph shown in Figure 4.

Figure 4: Graph Returned by makeGraph

p 2 1 1

Obviously, the implementation of makeGraph cannot call a
destroy method to break the cycle because it intentionally returns
a cyclic graph to the client. On the other hand, the Ice run time,
after marshaling the graph back to the client cannot call destroy
either because other parts of the server might still hold smart point-
ers to nodes in the graph and may not wish it to be destroyed just
yet.

The Ice garbage collector deals with this problem nicely because
it only deallocates cycles once they are no longer reachable from
other parts of the program, that is, once they have become fully
disconnected. For the preceding example, the collector will reclaim
the cycle only if no other smart pointer in the server still points at a
node in the graph; otherwise, the cycle will be reclaimed once the
last smart pointer to a node in the cycle goes out of scope, at which
point no part of the cycle can still be reached via smart pointers in
the application code.

By default, the garbage collector makes a collection pass when-
ever you destroy a communicator:

// C++
CommunicatorPtr comm = initialize(argc, argv);

// Lots of cyclic graphs left behind here...

comm->destroy(); // All garbage reclaimed here.

Collecting garbage during destruction of a communicator is use-
ful mainly if you use a memory management tool such as Purify
because this prevents the tool from reporting lots of memory leaks
on program exit. Of course, if your code repeatedly leaves cycles
of instances behind but does not destroy a communicator for some
time, chances are that the program will run out of memory. To deal
with this situation, Ice provides two additional ways for you to run
the garbage collector:

• You can set the property Ice.GC.Interval to a (positive)
time interval n in seconds. Doing so causes the Ice run time to
make a collection pass once every n seconds.

• You can explicitly call the static function Ice::
collectGarbage. Doing so instructs the garbage collector
to immediately collect all garbage that has accumulated up to
this point. The call is synchronous, that is, collectGarbage
does not return until the collection pass is complete.

Of the two options, the first one is less intrusive because it requires
no code changes at all. In contrast, the second option requires you
to insert calls to collectGarbage at appropriate points in your
program. Finding these appropriate points can be difficult because,
depending how the code is structured and how graphs are used, it
may be difficult or impossible to know whether garbage exists at a
particular point along the execution path. However, explicit calls to
collectGarbage are still useful in situations where, at a specific
point in the code, you know that garbage is likely to exist.

In general, however, it is easiest to simply set Ice.
GC.Interval to make a collection pass once very few seconds or
minutes (depending on how quickly garbage accumulates in your
program). You can tune the time interval by observing the collec-
tor’s statistics, as described below.

Collection Algorithm
The algorithm for how to implement garbage collection in con-
junction with reference-counting smart pointers is not well known
and not widely published, so I am presenting it here. I will not
go through all the details of the implementation, but give you an
illustration of the algorithm instead. (Note that you do not need to
understand how the algorithm works to use the Ice garbage col-
lector.) To give us a concrete example to work with, consider the
graph of nodes in Figure 5.

Who’s Counting?

Connections
ZeroC’s Newsletter for the Ice Community

Page �8 Issue 25, July 2007 Page �9Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page �9Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Figure 5: A Graph of Nodes

w

x

y

z

2 2 2

1

1

2 2

A B D

C E

F G

Such a graph could arise from a class that contains two smart
pointers in each instance (as was the case for the Person class
I discussed earlier). As before, boxes represent smart pointer
variables in the application code, circles represent nodes, and the
reference count is shown inside each node. The labels outside the
nodes denote their identity.

Suppose the application lets the variables w and z go out of
scope. After the destructors of w and z have adjusted the reference
counts, we end up with the situation shown in Figure 6.

Figure 6: The Graph from Figure 5 after Adjusting
 Reference Counts

z

w

x

y

1 2 2

1

1

1 2

A B D

C
E

F G

The shaded nodes are garbage because they can no longer be
reached from the program. Note that node D is not garbage
because it can still be reached via x and the intermediate node E.
Also note that the garbage collector cannot simply detect the cycle
involving A, B, and C and delete these three nodes because doing
so would leave D’s reference count too high: removing the cycle
also involves adjusting D’s reference count.

Here is an overview of the garbage collection algorithm that is
used by Ice. The algorithm relies on a set S that, at any point in
time, contains the addresses of all instantiated classes. (Whenever
a class instance is created, its address is added to S; whenever a
class instance is deleted, its address is removed from S.) On each
run, the garbage collector goes through the following steps:

• Initialize a map M of node–count pairs by adding to M the
address of each node in S together with the node’s current
reference count.

• Initialize a map R of node–count pairs to contain the address
of all nodes that are directly (but not recursively) reachable
from nodes in S via data members that can point at a node. Set
the count of each entry in R to the number of times the node is
pointed at by entries in S.

• For each entry in R, subtract that entry’s count from the cor-
responding reference count in M.

• Remove all entries from M that have a reference count greater
than zero, as well as all entries that are (recursively) reachable
from entries with a reference count greater than zero.

• Any entries that remain in M cannot be reached from the appli-
cation. Deallocate all nodes in M, together with all nodes that
are recursively reachable from these nodes.

• For each node that is still live and was pointed at by a deallo-
cated node, adjust that node’s reference count by decrement-
ing it once for each time it was pointed at by a deallocated
node in M.

The preceding is a fancy way of expressing a simple idea. Intui-
tively, the algorithm works by counting how many times each node
is pointed at by other nodes. For each time a node is pointed at by
another node, the algorithm decrements a copy of the reference
count of the node. If, after going through all existing nodes, a node
has a reference count of zero, the node can be reached only from
other nodes and therefore is part of a cycle; such a node can be
deleted. On the other hand, if after going through all the existing
nodes, a node has a reference count greater than zero, it is pointed
at (directly or indirectly) by something other than another node
(namely, a smart pointer instance in the application); such a node is
still in use and cannot be deleted.

To make this more concrete, let’s run through the graph in
Figure 6 and see how the collector deals with this graph.

Who’s Counting?

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue 25, July 2007 Page 2�Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

• Initially, S contains A, B, C, D, E, F, and G.
• The collector initializes M to contain the following pairs:

<A,�>, <B,2>, <C,�>, <D,2>, <E,�>, <F,�>, <G,2>.
• The collector initializes R to contain: <A,�>, <B,2>, <C,�>,

<D,2>, <G,2>. (E and F do not appear in R because they are
not pointed at by any node in S.)

• The collector reduces the reference counts in M by the corre-
sponding entry in R, so M now contains <A,0>, <B,0>, <C,0>,
<D,0>, <E,�>, <F,�>, and <G,0>.

• We now remove all entries with a reference count greater
than zero from M, as well as all entries that can (recursively)
be reached from these entries. This leaves <A,0>, <B,0>, and
<C,0> in M.

• The three instances that remain in M are garbage and can be
deallocated.

If you are interested in how all this is implemented, take a look
at src/Ice/GC.cpp in the Ice for C++ source distribution. It
contains the code that implements the preceding algorithm in the
CollectGarbage function.

Smart Pointer Implementation for Garbage
Collection
For the garbage collector to do its job, it needs to know which class
instances exist at the time it runs. A look at GCShared shows us
how this works:

// C++
class GCShared
{
public:
 virtual void __incRef() { ... }
 virtual void __decRef() { ... }
 // ...
protected:
 void __gcIncRef();
 void __gcIncRef();
};

Note that __incRef and __decRef member functions of
GCShared are virtual member functions, so derived classes can
override their implementation. As we saw earlier, the default
implementations of these functions simply increment and decre-
ment the reference count, respectively. If a Slice class does not
contain any data member that is a Slice class, the default imple-
mentations of these functions are sufficient. However, if a Slice
class (recursively) contains a data member that is a Slice class,
the slice2cpp compiler overrides these implementations. For
example, for our Node class, the compiler generates the following
(I have inlined the code for simplicity):

class Node
{
public:
 NodePtr n;

 virtual void __incRef() {
 __gcIncRef();
 }

 virtual void __decRef() {
 __gcDecRef();
 }
};

In other words, if a class contains a class member, its __incRef
and __decRef member functions behave differently. Here is the
(somewhat simplified) implementation of these functions:

// C++
void
IceInternal::GCShared::__gcIncRef()
{
 RecMutex::Lock lock(GC::gcRecMutex);
 if(_ref == 0)
 {
 gcObjects.insert(this);
 }
 ++_ref;
}

void
IceInternal::GCShared::__gcDecRef()
{
 RecMutex::Lock lock(GC::gcRecMutex);
 if(--_ref == 0)
 {
 gcObjects.erase(this);
 delete this;
 }
}

Looking at __gcIncRef, you can see that, the first time a class in-
stance’s reference count is incremented, the address of the instance
is added to a gcObjects set. This set corresponds to the set S
we saw in the description of the collector algorithm. Similarly,
__gcDecRef removes the address of a class instance from this set
once the reference count drops to zero. In this way, the collector’s
gcObjects set always contains the address of all existing class
instances that (recursively) have at least one class member.

The reason why slice2cpp overrides the __incRef and
__decRef member functions is that only classes that (recursively)
contain at least one class member can participate in a cycle: a class
that does not contain a class member cannot point at any other
class instance and, therefore, not be part of a cycle (other than
being pointed at by an instance of a different type that is part of a
cycle). By only adding those class instances to gcObjects that
potentially can form cycles, we reduce the amount of work that the
collector does during each collection pass because, that way, there
are fewer instances to examine.

To do its job, the garbage collector needs to know which class
instances are reachable from a particular class instance. Again,
slice2cpp contributes the relevant functionality by overriding the
implementation of a member function of GCShared:

Who’s Counting?

http://www.zeroc.com/download.html

Connections
ZeroC’s Newsletter for the Ice Community

Page 20 Issue 25, July 2007 Page 2�Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

// C++
class GCShared
{
public:
 virtual void __gcReachable(
 IceInternal::GCCountMap&) const;
};

The job of __gcReachable is to add all class instances and how
many times these instances are pointed at to the map that is passed
to the function. The default implementation of __gcReachable
does nothing. However, if a class contains class members,
slice2cpp overrides the default implementation. For example,
for our Node class, slice2cpp generates code equivalent to the
following:

// C++
void
Node::__gcReachable(IceInternal::GCCountMap& cm)
{
 if(n)
 {
 IceInternal::GCCountMap::iterator pos
 = cm.find(n.get());
 if(pos == cm.end())
 cm[n.get()] = 1;
 else
 ++pos->second;
 }
}

When the collector calls __gcReachable on a particular Node in-
stance, the instance reachable from that node is whatever its mem-
ber smart pointer n currently points at. The get member function
of NodePtr returns the address of its underlying instance, so the
preceding code either inserts the address of the node that is reach-
able from the current node with a count of one (if the reachable
node is not already in the map) or increments the count stored in
the map for that node (if the reachable node is already in the map).

This is how the collector builds the map R of node–count pairs
that we saw earlier in the description of the algorithm: it simply
calls __gcReachable on every instance in the gcObjects set of
all instances; each invocation either adds one or more reachable
nodes to the map, or if one or more nodes are already in the map,
increments the count of how many times they are pointed at by
other nodes.

For our simple Node class, the code generated by slice2cpp
is quite simple because Node only contains a single smart pointer
to other nodes, and contains that smart pointer directly. For more
complex classes, where sub-members of the class are smart point-
ers, the generated code is a little more complex because it has to
descend into those sub-members to the appropriate level to add the
addresses of reachable instances to the map. As an exercise, you
may want to examine the code that is generated for the following
Slice definition:

// Slice
class Person;
sequence<Person> PersonSeq;

struct Lineage
{
 PersonSeq maternalLine;
 PersonSeq paternalLine;
};

class Person {
 string name;
 Lineage line;
};

It is instructive to trace through the various levels of virtual
functions to see how the garbage collector maintains an accurate
picture of the graph of instances.

A final piece of the puzzle is the question of how the collector
manages to adjust the reference count of a node that is pointed at
by a garbage node (such as node D in Figure 6). In that case, it
needs to both clear the smart pointer inside node B (which points
at node D) and decrement D’s reference count. slice2cpp again
generates helper code that the garbage collector can call to achieve
this:

// C++
class GCShared
{
public:
 virtual void __gcClear() {}
};

The default implementation of __gcClear does nothing.
However, for classes that (recursively) contain class members,
slice2cpp overrides the default implementation. For example,
for our Node class, it generates code equivalent to the following:

// C++
void
Node::__gcClear()
{
 if(!n)
 return;
 if(n.get()->__usesClasses())
 {
 n.get()->__decRefUnsafe();
 n.__clearHandleUnsafe();
 }
 else
 {
 n = 0;
 }
}

The __decRefUnsafe member function of GCShared decre-
ments the reference count of an instance without first acquiring a
lock. Similarly, the __clearHandleUnsafe member function of
IceInternal::Handle sets the smart pointer to

Who’s Counting?

Connections
ZeroC’s Newsletter for the Ice Community

Page 22 Issue 25, July 2007 Page 2�Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

null without first acquiring a lock (for efficiency reasons). The
__usesClasses member function is generated by slice2cpp
and returns true if a class (recursively) contains class members. If
so, the collector has to “reach inside” the instances and adjust the
smart pointer and reference count using __decRefUnsafe and
__clearHandleUnsafe; otherwise, the pointed-at instance is a
leaf node without class members, and the collector can reclaim it
by simply assigning zero to its smart pointer, which causes the leaf
node’s destructor to run immediately.

Performance
Now that we know how the garbage collection machinery works,
let’s have a look at how well it performs.

In terms of memory footprint, the cost of the collector is small.
The code for the collector fits into around 10kB of code on a 32-bit
machine (not counting the generated code, which is also small, on
the order of a few dozen bytes per class type). For its data struc-
tures, the main overhead of the collector is the memory required
for the gcObjects set, which is 24 bytes per instance using the
GNU STL implementation. (Sizes for other implementations will
be similar). During a collection pass, the collector builds the map
of node–count pairs, which temporarily adds an additional 48 bytes
per instance. (This memory is reclaimed at the end of each pass.)

In terms of execution speed, the collector also has minimal
impact. The first observation is that all smart pointer operations
that increment or decrement the reference count are interlocked
on a single lock, gcRecMutex. So, if different threads concur-
rently manipulate smart pointers (not necessarily for the same class
instance), they are serialized on this lock: only one increment or
decrement of a reference count can take place at a time.

In practice, serializing these operations does not cause problems
because the critical region inside __incRef and __decRef is very
small. It is very rare for a thread to find the mutex already locked
and stall; almost always, the mutex is available and the cost of
locking and unlocking it is negligible.

Another observation is that the garbage collector locks
gcRecMutex during each collection pass. Doing this is necessary
because, while the collector builds the map of node–count pairs,
it must ensure that reference counts cannot change. Of course,
this means that, while the collector performs a collection run, all
threads that concurrently manipulate smart pointers stall until the
collection run completes. This is the inevitable price of using the
collector.

Fortunately, the collector is very efficient, so it finishes each
collection pass very quickly. The exact run-time cost of performing
a collection pass depends on a number of factors, including how
many class instances exist, how many of these instances are actu-
ally part of a cycle, and how highly connected the instances are.

The collection algorithm itself performs in O(n log n) time,
where n is the total number of instances in the gcObjects set,

independent of the degree of connectivity of the nodes. However,
the total time required also depends on node connectivity because
the collector, for each live node, needs to compute the set of recur-
sively reachable instances.

The worst-case time for computing the reachable set arises
for a fully connected graph, where each node points at all other
nodes (including itself), and all nodes can also be reached from the
program. Such a graph contains O(n2) smart pointers, and comput-
ing the recursively reachable set requires O(n log n) time. The
algorithm computes the recursively reachable set once for each
live node, so the overall worst-case time bound of the collector is
O(n2 log n). (Note, however, that deallocating the same graph with-
out a garbage collector would still incur O(n2) run-time cost.)

For graphs with lower connectivity, such that the total number of
smart pointers is proportional to n, the overall cost of the collector
is O(n log n). (Because such a graph contains O(n) smart pointers,
deallocating it without a garbage collector would still incur O(n)
run-time cost.)

Overall, the collector is most expensive if it is invoked on
graphs with high degree of connectivity that do not contain
garbage. For example, for a graph with �,000 nodes, each contain-
ing �,000 smart pointers to every node, and with all nodes reach-
able from the program, a collection run requires �0 seconds on a
2.�GHz Pentium 4 with �GB of memory, even though it does not
deallocate anything. (This graph contains 9 million edges, so the
collector examines around �00 nodes and 900,000 edges per sec-
ond). Once the entire graph becomes garbage, it takes �.5 seconds
to collect it. (This includes the cost of calling delete and invok-
ing destructors.) However, such a graph represents a pathological
case: realistic data structures are not as highly connected.

A more realistic example involves �00,000 instances that form
�50,000 two-instance cycles. While all �00,000 nodes are still
reachable from the program, each pass of the collector requires
�.5 seconds. (The graph contains 600,000 edges, so the collector
examines 200,000 nodes and 400,000 edges per second.) Once all
�50,000 cycles are garbage, it takes �.� seconds to deallocate them
all, including the cost of calling delete and invoking destruc-
tors. (Only one third of that time is spent inside the collector, the
remainder of the time is spent invoking destructors and inside
delete, so that cost would also be incurred without a garbage
collector.)

Keep in mind also that the preceding figures were obtained with
rather substandard hardware; with a faster machine and a faster
memory bus, execution times decrease accordingly. The upshot of
all this is that, in practice, the collector is simply too fast to notice,
except in pathological cases. However, even in such cases, much of
the cost is the cost of calling delete and running destructors, and
that cost is incurred whether you use a collector or not; by reducing
the frequency at which the collector runs, you can usually amortize
the execution time of each run to an acceptable level.

Who’s Counting?

Connections
ZeroC’s Newsletter for the Ice Community

Page 22 Issue 25, July 2007 Page 2�Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

Page 2�Issue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

If you want to watch how the collector performs, you can set
the property Ice.Trace.GC. With a setting of �, when the last
communicator is destroyed, the Ice run time prints the number
of collection runs, the total number of instances examined and
reclaimed, and the number of milliseconds spent in the collec-
tor. With a setting of 2, the run time also prints statistics for each
individual collection run.

Last Words
Having read this far, you may wonder why, instead of building our
own garbage collector, we didn’t simply bundle an available col-
lector (such as the Boehm collector) with Ice. There are a number
of reasons:

• The Boehm collector replaces the global ::new operator and
requires application code to replace the default allocator of
STL containers. This makes its use non-transparent to applica-
tion code.

• If an application uses malloc and free or uses a custom
allocator (often inadvertently, by linking against a third-party
library), it must ensure that data allocated by malloc or the
custom allocator does not contain pointers to data that was
allocated on the garbage collector’s heap. Depending on the
application, this can be difficult to enforce.

• The Boehm collector examines raw memory to perform live-
ness analysis. The code to do this requires adjustment for each
CPU architecture and C++ compiler, and the effort to port
the Boehm collector to a new hardware platform or com-
piler is non-trivial. For Ice, which must run on a variety of
architectures, including embedded platforms such as mobile
phones, porting the Boehm collector would incur substantial
additional cost for each new platform that we want to support.

Apart from these points, the most significant disadvantage of the
Boehm collector is that it affects the entire process. Ice is pro-
vided as a library that your applications link against; if we were to
include the Boehm collector with Ice, this would force garbage col-
lection on all of your application, for all its data. However, doing
so would be a significant change in policy that would be unaccept-
able to many companies: ZeroC cannot dictate its customers that
they all must use a general-purpose garbage collector (which, of
course, collects everything, not just Slice class instances).

In contrast, the Ice collector is completely portable, transparent
to application code, and only deals with Slice classes, so it suffers
none of these disadvantages.

I suggest that you give smart pointers a good look. They ease de-
velopment considerably and make it much less likely for memory
management bugs to cause grief, either during testing or in the
field. This not only saves you money, but also saves your sanity
and allows you to put more brain cycles towards the application
logic, instead of worrying about memory management. So, lean
back, let Ice do the counting, and enjoy your leak-free program.

Who’s Counting?

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Connections
ZeroC’s Newsletter for the Ice Community

Page 24 Issue 25, July 2007 Page PBIssue 25, July 2007 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner
In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from
our support forum at http://www.zeroc.com/forums/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: What are Ice Clients and Servers?

From a user’s perspective, a client is usually some interactive ap-
plication program that connects to a server, such as a web browser
or email client. Similarly, a server is usually seen as some program
that runs on a remote machine and serves one or more clients,
such as a web or email server. While this view is valid for simple
request–response systems, in the context of Ice, it is too loose.

An Ice client is any program that invokes an operation on an Ice
object. In other words, clients are active entities that issue requests
for service to servers. Conversely, an Ice server is any program
that implements an operation. In other words, servers are passive
entities that provide service in response to operation invocations
from clients.

On occasion, this definition of Ice client and server does not
neatly line up with the more loose view. For example, IceStorm is
generally thought of as a server. However, when IceStorm delivers
an event to a subscriber, it is IceStorm that invokes an operation on
the object registered for a topic, and it is the subscriber that imple-
ments the operation. In other words, a “client” program, such as a
stock ticker that subscribes to stock updates distributed by
IceStorm, is really an Ice server, and IceStorm is an Ice client.

The preceding example illustrates that the terms client and serv-
er really refer to the role that is played by each. Moreover, that role
applies only within the context of a particular operation invocation.
The client role is played by the invoking end, and the server role is
played by the responding end.

A pure Ice client is a program that only ever invokes operations
and never responds to them, and a pure Ice server is a program
that only ever responds to operation invocations and never makes
invocations of its own. (Any program that does not create an object
adapter is guaranteed to be a pure client.) However, many Ice ap-
plications are not pure clients or servers. In particular, a server that
makes an invocation on an Ice proxy in order to implement some
operation (typically, on a helper object in some other server) is no
longer a pure server. Instead, it acts as a server to the original cli-
ent, but also acts as a client to the server implementing the helper
object.

Of course, because Ice is location transparent, the server has no
idea where the helper object is implemented. In fact, the helper
object may be implemented by the server itself, in which case the
server ends up being both its own client and server. Alternatively, it
is possible for the helper object to be implemented by the original
client. If so, the helper object is known as a callback object. Call-
back objects are no different from ordinary objects; it just so hap-
pens that callback objects are implemented by clients and that the
server often (but not always) invokes an operation on a callback
object as part of executing an operation invoked by the client that
provided the callback object; such invocations are known as nested
callbacks.

From an Ice perspective, there is nothing special about call-
backs. They are simply operation invocations like any other
invocation. (However, for nested callbacks, the threading model
is important. How deeply callbacks can be nested depends on the
size of the client- and server-side thread pools. You can look at the
demo in demo/Ice/callback if you are interested in experiment-
ing with nested callbacks.)

In summary, an Ice client is any program that invokes an opera-
tion, and an Ice server is any program that responds to an operation
invocation. If a program both invokes operations and responds to
them, it is both a client and a server.

FAQ Corner

http://www.zeroc.com/forums/

	Beyond Freeze—Persistence with IcePart 2: Advanced Topics
	Who’s Counting?
	FAQ Corner

