
Connections
ZeroC’s Newsletter for the Ice community

Page 1 Issue 3, June 2005

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 3, June 2005

Invent It or Use It?
I recently had a conversation with a
prospective customer about an applica-
tion development project. The application
required publish–subscribe functional-
ity, but had no other unusual distribution
requirements. I was amazed when I learned
that the customer was seriously considering

implementing a complete publish–subscribe middleware layer for
this application, even though middleware was neither the focus of
the customer’s business, nor did the customer have any in-depth
experience in developing communications software. Unfortunately,
I see this sort of thinking a lot: the “not-invented-here” syndrome
is alive and well, often driven by the desire of engineers to work on
what they find interesting, rather than build what is needed in order
to make a profit.

Yes, building middleware can be rewarding and a lot of fun. At
least for a while—until reality sets in and you end up spending
weeks of effort porting to new platforms, working around bugs
in compilers and TCP/IP implementations, or hunting down that
pesky race condition that shows up only once every two weeks.
And you spend even more time improving performance, reducing
bandwidth consumption, creating portability libraries, and invent-
ing error handling strategies. I could go on in this vein for a long
time—suffice it to say that many thousands of hours of work by
very experienced developers have gone into Ice in order to turn it
into a robust, reliable, portable, and high-performance product.

The chance that any in-house middleware development, es-
pecially when carried out by people with little experience in the
field, will end up being cost-effective is very slim indeed. And
even slimmer is the chance that the result will end up performing
significantly better than Ice. For our customer, after a closer look
at the requirements, IceStorm turned out to be a good solution, and
one that did not require inventing anything.

Which brings me to Matthew Newhook’s article in this issue…
Matthew shows you how you can use IceStorm for your own appli-
cations, and with surprisingly little effort. Please, give this a good
look—chances are that you will consider it time well spent. And,
trust me: developing your own middleware is a lot less rewarding
and fun than you might think!

Michi Henning
Chief Scientist
ZeroC, Inc.

Issue Features

An Introduction to IceStorm
In this installment of his multi-part article series, Matthew
Newhook shows you how to extend the chat room application to
support multiple chat rooms with the help of IceStorm.

Interpreted Ice
Ice and Python form a powerful combination for rapid prototyp-
ing, debugging, and maintenance. This article provides many
tips and tricks that you can use to make your development more
productive, regardless of whether your application is written in
Python or another language.

The Grim Reaper
Stateful interactions between client and server are a fact of life
and raise the problem of how to clean up server-side state in
case something goes wrong with the client. This article presents
a simple and effective way to get rid of stale objects in a server
without writing reams of code.

Contents
An Introduction to IceStorm ... 2

Interpreted Ice: Distributed Application Development on
Steroids ... 8

The Grim Reaper: Making Objects Meet Their Maker 13

FAQ Corner ... 18

Connections
ZeroC’s Newsletter for the Ice community

Page 2 Issue 3, June 2005 Page 3Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Connections
ZeroC’s Newsletter for the Ice community

Page 2 Issue 3, June 2005 Page 3Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

An Introduction to IceStorm
Matthew Newhook, Senior Software Engineer

Introduction
The previous article focused on using advanced features of
Glacier2 to make the chat server more robust. This article discuss-
es how to add support for multiple chat rooms to the chat server
using IceStorm.

Interface Changes
The chat server we have developed up to this point is very limited.
An obvious extension to its functionality is to add support for
multiple chat rooms. First a review of the current ChatSession
interface:

// Slice
interface ChatCallback
{
 void message(string data);
};
interface ChatSession
 extends Glacier2::Session
{
 void setCallback(ChatCallback* callback);
 void say(string data);
};

From the perspective of a client, a ChatSession object has two
functions: it allows the client to send messages to a room, and it
informs the client when a message has arrived from a room via the
callback object. To extend this functionality to multiple rooms, we
could identify each chat room by a name and pass the room name
to the say and message operations, as follows:

// Slice
interface ChatCallback
{
 void message(string room, string data);
};
interface ChatSession
 extends Glacier2::Session
{
 void setCallback(ChatCallback* callback);
 void say(string room, string data);
};

This approach, while viable, isn’t very clean and is definitely
not object-oriented. It also lacks extensibility: as our application
evolves, we expect to add other room-specific data, such as a chat
room participant list.

A better approach is to use a separate interface that receives
state changes, but to make the identity of chat room implicit in the
instance of the interface:

// Slice
interface ChatRoomObserver
{
 void message(string data);
};

This interface is identical to the ChatRoomCallback class in the
previous implementation but, by using separate instances of this
interface, one for each chatroom, the client can receive messages
from different rooms. Similarly, we need an interface that allows
the client to send a message to a specific room; again, we can do
this with the room implicitly identified by the instance:

// Slice
interface ChatRoomParticipant
{
 void say(string data);
};

See Figure 1 for a class diagram. (The ChatRoomModel object in
the diagram is purely a server side-concept, and is not accessible to
the client.)

Figure 1: Class Diagram

������

������

�

�

��������
��������

��

��������
�����

��������
�����������

��

� �

�

�

We also need a method to allow the client to join a chat room.
Where should this go? Access to all the server-side functionality is
provided by the session interface, so this seems like a logical place:

// Slice
interface ChatSession
 extends Glacier2::Session
{
 ChatRoomParticipant* join(string room);
};

This allows the user to join a chat room. However, the new inter-
faces require one ChatRoomObserver proxy per chat room, not
a single ChatRoomObserver for all chat rooms. The simplest
way to deal with this is to pass the ChatRoomObserver proxy
as an extra parameter to the join operation. We can remove the
setCallback operation that was formerly on ChatSession,
as well as the say operation (which has been replaced by
ChatRoomParticipant::say). This leaves the following:

AN INTRODUCTION TO ICESTORM

Page 3Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Page 3Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

// Slice
interface ChatSession
 extends Glacier2::Session
{
 ChatRoomParticipant* join(string room,
 ChatRoomObserver* observer);
};

Client-Side Support
Let’s run through the changes that are required in the client to sup-
port multiple chat rooms.

Firstly, we replace the ChatCallback implementation with the
ChatRoomObserver implementation. It is largely unchanged from
its previous version:

// C++
class ChatRoomObserverI : public ChatRoomObserver
{
public:
 ChatRoomObserverI(const string& room) :
 _room(room)
 {
 }
 virtual void message(const string& data,
 const Current&)
 {
 cout << _room << ": " << data << endl;
 }

private:
 const string _room;
};

Next, we need to have a way of keeping track of the chat rooms the
client has joined. We’ll add a new class called ChatRoomManager:

// C++
class ChatRoomManager
{
public:
 ChatRoomParticipantPrx find(
 const string& room) const;
 void join(const string& roomName);
};

The class maintains a map of room names to
ChatRoomParticipant proxies.

map<string, ChatRoomParticipantPrx> _rooms;

The implementation of join then is as follows:

// C++
void ChatRoomManager::join(const string& roomName)
{
 Identity id;
 id.name = "observer." + roomName;
 id.category = _category;
 ChatRoomObserverPrx observer =
 ChatRoomObserverPrx::uncheckedCast(
 _adapter->add(
 new ChatRoomObserverI(roomName),id));
 ChatRoomParticipantPrx room = _session->join(
 roomName, observer);
 _rooms.insert(make_pair(roomName, room));
}

The object identity name is constructed from the name of the room.
(Recall that Glacier2 requires all client-side callback objects to use
a specific per-session category, as described in Session Manage-
ment with Glacier2 in Issue 1 of Connections.) The remainder of
the client-side implementation is straightforward—see the source
code for this application in the Ice distribution.

Server-Side Support
The server-side needs to be modified to support the new interfaces
as well.

ChatSessionI Implementation
First, we’ll look at the implementation of ChatSessionI.

// C++
ChatRoomParticipantPrx ChatSessionI::join(
 const string& room,
 const ChatRoomObserverPrx& observer,
 const Current& current)
{
 Lock sync(*this);
 Identity id;
 id.category = "_" + _userId;
 id.name = IceUtil::generateUUID();
 ChatRoomParticipantPrx proxy =
 ChatRoomParticipantPrx::uncheckedCast(
 current.adapter->add(
 new ChatRoomParticipantI(
 room, _userId, observer), id));
 _rooms.push_back(proxy);
 return proxy;
}

AN INTRODUCTION TO ICESTORM

Connections
ZeroC’s Newsletter for the Ice community

Page 4 Issue 3, June 2005 Page 5Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Connections
ZeroC’s Newsletter for the Ice community

Page 4 Issue 3, June 2005 Page 5Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

void ChatSessionI::destroy(const Current& current)
{
 Lock sync(*this);
 current.adapter->remove(current.id);
 list<ChatRoomParticipantPrx>::
 const_iterator p;
 for(p = _rooms.begin();
 p != _rooms.end();
 ++p)
 {
 current.adapter->remove(
 (*p)->ice_getIdentity());
 }
 _rooms.clear();
}

ChatSessionI maintains a list of ChatRoomParticipantPrx
that the user has created during a session. ChatSessionI::join
creates a new ChatRoomParticipant Ice object, adds the proxy
to the list of rooms, and returns the proxy to the caller. Note that
the category of the ChatRoomParticipant Ice object must be
"_" + userId. This is because of the object-level restrictions
that we have asked Glacier2 to impose. (See Advanced Use of
Glacier2 in Issue 2 of Connections).

ChatSessionI::destroy runs through the list of
ChatRoomParticipant proxies, removes each object from the
object adapter, and then destroys the session itself. (Removing the
objects from the adapter is necessary to avoid a memory leak.)

Multiple Chat Rooms
The chat server to this point only supports one chat room. The
chat room model was formerly implemented by a class called
ChatRoom. For consistency with the new class names that we
are using for this version of the application, we’ll rename this to
ChatRoomModel. The definition is as follows:

// C++
class ChatRoomModel : public IceUtil::Mutex,
 public IceUtil::Shared
{
public:
 void enter(const ChatRoomObserverPrx&);
 void leave(const ChatRoomObserverPrx&);
 void message(const string&);
};

One approach to support multiple chat rooms is to add a class
RoomManager that maintains a list of ChatRoomModel instances,
one per chat room. To make the chat server scale, it must be pos-
sible to distribute these chat rooms over a series of servers. It fol-
lows that ChatRoomModel must be an Ice object. Figure 2 shows a
class diagram of this architecture.

Figure 2: Proposed Class Diagram

�����������
�������

��������
��������

�

�

�

�

�

�

�

�

�����������
��������
�����������

� �

�����������
��������
�����

� �

Before we go too far down this road, let’s take a step back for a
moment. What does the ChatRoomModel class really do? It main-
tains a list of connected subscribers and distributes events to these
subscribers. Let’s take a look at an example of the event distribu-
tion code as it currently stands:

// C++
void ChatRoomModel::message(
 const string& data) const
{
 Lock sync(*this);
 list<ChatCallbackPrx>::const_iterator p;
 for(p = _members.begin();
 p != _members.end();
 ++p)
 {
 try
 {
 (*p)->message(data);
 }
 catch(const LocalException&)
 {
 }
 }
}

Now, consider: what would happen if were to add new types of
events ChatRoomObserver interface, such as an event to indicate
that a chat room has been closed? The resulting change would be
as follows:

AN INTRODUCTION TO ICESTORM

Page 5Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Page 5Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

// Slice
interface ChatRoomObserver
{
 void message(string data);
 void destroy();
};

In turn, this would force us to add another method to
ChatRoomModel to send the destroy event:

// C++
void ChatRoomModel::destroy(
 const string& data) const
{
 Lock sync(*this);
 list<ChatCallbackPrx>::const_iterator p;
 for(p = _members.begin();
 p != _members.end();
 ++p)
 {
 try
 {
 (*p)->destroy();
 }
 catch(const LocalException&)
 {
 }
 }
}

There may well be other events we would like to add to
ChatRoomObserver, such as notification of a member entering or
exiting a room. Each of these new events would require us to write
new methods to distribute the event to the chat room observers—
surely there is a better solution? The answer is, fortunately, yes. Ice
has the perfect solution to this problem: IceStorm.

IceStorm
IceStorm is a publish–subscribe service. Publishers send events
to connected subscribers. IceStorm manages a set of event chan-
nels called topics. Each topic is associated with a user-defined
Slice interface or class, all of whose operations must be callable as
oneway: they must have void return type, have no out-parameters,
and cannot throw user exceptions. Publishers use a topic to send
events to subscribers by calling operations on a proxy for the topic.
Figure 3 shows an object diagram for this.

The TopicManager allows applications to create and retrieve
Topic objects. (The interface definitions that follow are incom-
plete and leave out portions that are not relevant to this article. For
the complete documented interfaces please see the Ice manual.)
The salient pieces of the interface are as follows.

// Slice
interface TopicManager
{
 Topic* create(string name)
 throws TopicExists;
 nonmutating Topic* retrieve(string name)
 throws NoSuchTopic;
};

A Topic allows the connection and disconnection of subscribers as
well as the publishing of events. The abbreviated interface follows:

// Slice
interface Topic
{
 nonmutating Object* getPublisher();
 void subscribe(QoS theQoS,
 Object* subscriber);
 idempotent void unsubscribe(
 Object* subscriber);
 void destroy();
};

Using IceStorm in an application is very simple. The basic steps
are as follows:

1 Create an interface to describe the event data being distrib-
uted. In our case we already have this interface, namely
ChatRoomObserver.

2. Create a topic. Events are distributed on a topic to all con-
nected subscribers.

3. Subscribers must implement an interface that IceStorm calls
to deliver events. We’ve already done this on the client side
by implementing the ChatRoomObserver interface.

4. Connect any interested subscribers to the topic.
5. Publishers publish events on the topic. This is accomplished

by getting a publishing proxy, casting it to the correct type,
and then calling methods on the proxy.

The chat server can use IceStorm to send chat events to
ChatRoomObserver instances. As opposed to the ChatRoom solu-
tion that we discussed above, we don’t have to write any code to

Figure 3: IceStorm Diagram

���������

����������

������������ �����
� �

�

�

�

�

AN INTRODUCTION TO ICESTORM

Connections
ZeroC’s Newsletter for the Ice community

Page 6 Issue 3, June 2005 Page 7Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Connections
ZeroC’s Newsletter for the Ice community

Page 6 Issue 3, June 2005 Page 7Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

manage the subscriber set or to distribute events to the connected
subscribers. No new code has to be written if new methods are
added to the ChatRoomObserver interface and, if we encounter a
scalability problem in the future, we can deal with it by deploying
more IceStorm servers.

Each chat room is represented by a separate topic. The name of
the topic is the name of the chat room. In essence, the IceStorm
topic implements the ChatRoomModel. Figure 4 shows the archi-
tecture of the system.

RoomManager
The first step is to write some code to manage the mapping of chat
room name to topics. We’ll encapsulate this implementation in a
class named RoomManager.

As was the case for the ChatRoom class, we’ll need methods to
add and remove subscribers to a particular chat room. The interface
therefore looks something like this:

// C++
class RoomManager
{
public:
 void enter(const string& room,
 const ChatRoomObserverPrx& observer);
 void leave(const string& room,
 const ChatRoomObserverPrx& observer);
};

The steps required to add a subscriber to the chat room are:

1. Create the topic, if necessary.
2 Subscribe the observer. Because we leave the quality-of-ser-

vice parameter (IceStorm::QoS) empty, IceStorm uses its
configured defaults. (See the Ice manual for more information
on IceStorm’s quality-of-service parameters.)

The implementation is as follows. (As usual, for clarity, we
omit error handling.) _manager is a proxy to the IceStorm::
TopicManager interface.

// C++
void RoomManager::enter(const string& room,
 const ChatRoomObserverPrx& observer)
{
 Lock sync(*this);
 TopicPrx topic;
 map<string, IceStorm::TopicPrx>::
 const_iterator p = _rooms.find(room);
 if(p == _rooms.end())
 {
 topic = _manager->create(room);
 _rooms.insert(make_pair(room, topic));
 }
 else
 {
 topic = p->second;
 }
 topic->subscribe(IceStorm::QoS(), observer);
}

The implementation maintains a dictionary of room name to
IceStorm::TopicPrx. This avoids having to make a re-
mote method invocation on the IceStorm TopicManager to
locate the topic proxy for each RoomManager::enter, and
RoomManager::leave call.

RoomManager::leave is very simple: it locates the topic in the
dictionary and then unsubscribe the observer:

// C++
void RoomManager::leave(const string& room,
 const ChatRoomObserverPrx& observer)
{
 Lock sync(*this);
 map<string, IceStorm::TopicPrx>::iterator
 p = _rooms.find(room);
 p->second->unsubscribe(observer);
}

Figure 4: Architecture with IceStorm

������

�����������

��������

��������
��������

�

�

�

�

�

�

�����������
�������

�����������

�����������
��������
�����������

�

�

�

�

� �

����� ���������
� �

AN INTRODUCTION TO ICESTORM

Page 7Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Page 7Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

All that remains is to hook up this implementation with the
ChatRoomParticipant interface. (Recall that this is the interface
that is called by the client to publish a message on a chat room.)

// C++
class ChatRoomParticipantI :
 public ChatRoomParticipant
{
public:
 ChatRoomParticipantI(
 const string& room,
 const string& userId,
 const ChatRoomObserverPrx& observer) :
 _room(room),
 _userId(userId),
 _observer(observer),
 {
 RoomManager::instance()->enter(
 room, observer);
 }
 ~ChatRoomParticipantI()
 {
 RoomManager::instance()->leave(
 _room, _observer);
 }
 virtual void say(const string& data,
 const Current&)
 {
 // ???
 }
};

There is clearly a problem. What does say do? say must publish
an event to an IceStorm topic, by calling a method on the publisher
proxy. But where does this proxy come from? IceStorm makes it
available via the IceStorm::Topic::getPublisher opera-
tion. Since the RoomManager manages the topics, we can get the
proxy from the manager we subscribe an observer. Therefore, we’ll
change the implementation of RoomManager::enter to return
the topic publisher proxy, as follows:

// C++
IceStorm::TopicPrx topic = ...;
return ChatRoomObserverPrx::uncheckedCast(
 topic->getPublisher());

With this, the ChatRoomParticipantI constructor now stores
the publisher proxy in a member variable _publish, and we can
implement ChatRoomParticipantI::say in the obvious way:

// C++
virtual void say(const string& data,
 const Current&)
{
 _publish->message(_userId + " says: " + data);
}

Glacier2 Context Information
As discussed in Advanced Use of Glacier2 in Issue 2 of Connec-
tions, we must pass information to a Glacier2 router in a Context
to ensure that Glacier2 sends messages to the observer as oneway
invocations with compression enabled. How can we pass this
information using IceStorm? We could try to set the context on the
proxy that is subscribed to the IceStorm topic:

// C++
Context context;
context["_fwd"] = "Oz";
IceStorm::TopicPrx topic = ...;
topic->subscribe(IceStorm::QoS(),
 observer->ice_newContext(context));

However, this does not work, because this context information is
not part of the proxy, but is part of the information sent when we
make a call on the proxy. The correct solution is to set the context
information on the publisher proxy instead:

// C++
Context context;
context["_fwd"] = "Oz";
IceStorm::TopicPrx topic = ...;
return ChatRoomObserverPrx::uncheckedCast(
 topic->getPublisher()->
 ice_newContext(context));

Summary
Using IceStorm, we added multiple chat rooms to the server with
very little code. (In fact, the server line count has actually de-
creased from the version in Issue 2!) In addition, it is now easier to
add new features to the server, and we end up with a server that is
both more flexible and more scalable than its previous incarnation.

Note that the chat client itself is completely unaware of
IceStorm. Integrating IceStorm with the server backend did not
change the client side interfaces at all, which is quite a remarkable
feat!

If you have an application with any kind of publish–subscribe
functionality, you should give IceStorm serious consideration:

1. You do not need to write any event distribution code, nor
manage misbehaved subscribers.

2. You can leave your interfaces unchanged; IceStorm does not
require any special “event data types.”

3. Via federation, IceStorm scales extremely well. (See the Ice
Manual for more information on federation.)

4. IceStorm various levels of quality of service, which allow you
to easily fine-tune event delivery for the needs of your appli-
cation without writing extra code.

AN INTRODUCTION TO ICESTORM

Connections
ZeroC’s Newsletter for the Ice community

Page 8 Issue 3, June 2005 Page 9Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Connections
ZeroC’s Newsletter for the Ice community

Page 8 Issue 3, June 2005 Page 9Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Interpreted Ice: Distributed
Application Development on Steroids

Brent Eagles, Senior Software Engineer

Introduction
During a project, we often find ourselves dealing with a large num-
ber of unknowns. While a lot of time can be spent writing design
documents and attending meetings, at some point we have to sit
down and write code. Often we will find that our assumptions that
fed the design and planning process were inaccurate or just plain
wrong. If the solution is to be distributed, it can greatly increase
the amount of things that we can get wrong. While Ice takes much
of the pain out of creating distributed applications, how best to
design your architecture and distribute your workloads is still a bit
of an art.

The sooner we can see how to design an architecture and
identify the real problems and obstacles at hand, the sooner we
can establish accurate schedules and deadlines, nail down require-
ments, and acquire resources. What we need is a toolset that allows
us to quickly dive in and test our assumptions, so the overall shape
of our applications can take form quickly. The toolset should also
allow and encourage the creation of high-quality maintainable code
so the system can evolve and we do not waste time refactoring
poor-quality code.

Ice for Python is that toolset. Ice for Python brings all of the
great things about Ice and Python together. What that means is that
we have a dynamic and interpreted distributed programming envi-
ronment that enables rapid code creation, testing, and modification.
With this system, we can:

• quickly explore our assumptions and experiment with code,
• develop high-quality prototypes that can be evolved into the

final product,
• Test and debug our system thoroughly without complicated

third-party tools or debuggers.

Let’s look at some of the features of the Ice + Python system and
how they can affect how we develop distributed applications.

Programming Using an Interpreter
Code interpreters are everywhere. If you think that you have never
used an interpreter, think again. If you have ever written or modi-
fied a shell script or batch file, then you have worked on a program
that runs in an interpreter.

Being an interpreted language is among Python’s many appeal-
ing features. While interpreters are often disparaged because of rel-
atively slow performance, programming with them has advantages:
interpreters reduce development time by simplifying or omitting

the edit/compile/run cycle, and they often allow the developer to
directly interact and modify code in the runtime environment; this
facilitates rapid experimentation and testing of new code.

Running the Python Interpreter in Interactive Mode
To work with the Python interpreter in interactive mode, simply
run Python without passing it a source file. You will be greeted by
a short message and a prompt that might look something like the
following:

Python 2.3.4 (#1, Feb 2 2005, 12:11:53)
[GCC 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)] on
linux2
Type "help", "copyright", "credits" or "license"
for more information.
>>>

Let’s start our interactive experience by building the traditional
first program, the venerable Hello World application.

Python Interpreter
>>> print 'Hello World'

Pressing enter yields:

Hello World

Programming without functions is boring, so let’s try putting the
Hello World “logic” into a function.

Python Interpreter
>>> def HelloWorld():
 print 'Hello World'
>>>

If we want to test this function to make sure it works, we can try it
right away.

>>> HelloWorld()
Hello World

Modifying Code on the Fly
So far we have created new code in our interpreter, but what do
we do if we want to change what the HelloWorld function does?
Do we have to restart the interpreter and start over? No, we can
redefine the function immediately in the interpreter. Our first Hello
World function is pretty dull because it does not have enough em-
phasis! We want to greet the world with lots of enthusiasm, so let’s
modify our output a little.

Python Interpreter
>>> def HelloWorld():
 print 'Hello World!'

>>> HelloWorld()
HelloWorld!

This is pretty economical development: we wrote a Hello World
program in Python, modified it twice, ran all versions without leav-

INTERPRETED ICE: DISTRIBUTED APPLICATION DEVELOPMENT ON STEROIDS

Page 9Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Page 9Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

ing the Python environment, and we hit that enter key fewer than
10 times!

Being able to easily create, modify, and restructure code on the
fly is useful during the start-up phase of a project. But writing a
large program directly in the interpreter would quickly become
cumbersome, and it would not take long for us to miss the func-
tionality of our favorite editor. Fortunately, we can use an editor to
write the bulk of the code, import it into a running Python environ-
ment, and then run it interactively. Let’s put our function in a file
called Greetings.py:

Greetings.py
def HelloWorld():
 print 'Hello World'

Now we can import the module into a running Python session and
call our greeting function:

Python Interpreter
>>> from Greetings import *
>>> HelloWorld()
Hello World

The line from Greetings import * imports all of the
functions from the module Greetings into the local namespace.
We could simply write

Python Interpreter
>>> import Greetings

and then call the HelloWorld function through its fully qualified
name, including the Greetings namespace:

Python Interpreter
>>> Greetings.HelloWorld()
Hello World

If we need to modify the HelloWorld function now, we can do it
interactively as before, or we can edit the source file and reload it.
Here is the modified Greetings.py:

def HelloWorld()
 print 'Hello World!'

And here is how to reload the file into the interpreter:

>>>
>>> reload(Greetings)
>>> HelloWorld()
Hello World!

While this is a trivial demonstration of interactive programming,
the implications are intriguing and exciting. Imagine

• being able to write high-level routines that interact with serv-
ers and make ad-hoc queries and tests on the fly,

• writing a server that runs in an interactive session, providing
immediate feedback on server status and allowing control
of the server operation without the overhead of developing
custom user interfaces,

• dynamically modifying behavior by modifying object and
function definitions at runtime.

We could even transfer Python code over the wire and run it on the
server! While there are obvious safety and security issues with this
capability, it is a powerful feature for implementing administrative
functions.

Debugging
Debugging in an interactive interpreter session is very similar to
debugging compiled programs. A debugger is essentially a mecha-
nism for interactively stepping through code and examining state,
much like an interactive interpreter does. The difference is that, in
an interpreted system, each line of code is parsed and executed a
line at a time, while, in a compiled program, the executing machine
code is mapped to source through debug information. Besides step-
ping through code, some debuggers permit you to modify values
during execution. This is a valuable feature for synthesizing error
conditions and debugging hard-to-reach code. While most good de-
buggers allow you to do this with compiled code, debugging with
interpreters has the extra advantage that we have more control over
execution. We can:

• modify code at runtime
 This allows us to fix bugs as soon as we see them and pos-

sibly continue execution of the program.
• call arbitrary functions
 We can call functions to test the state of the program at any

time and synthesize hypothetical situations. This includes
creating new objects, files, etc.

The Python standard library contains a module called inspect
that is valuable for (you guessed it) inspecting objects in the Py-
thon environment.

The Python interpreter, Ice, and You
OK, so we have determined that running an interpreter in interac-
tive mode has some possibilities. How does this affect how we
work with Ice? Let’s look at some possibilities. As an example, we
use a simple sorting server.

// Slice Utility.ice
module Utility
{
 typedef sequence<int> IntegerSequence;
 interface Sorter
 {
 // Returns a sorted copy of the provided
 // integer sequence
 IntegerSequence sortIntegers(
 IntegerSequence unsorted);
 };
};

Python UtilityServer.py
import sys, traceback, Ice

INTERPRETED ICE: DISTRIBUTED APPLICATION DEVELOPMENT ON STEROIDS

Connections
ZeroC’s Newsletter for the Ice community

Page 10 Issue 3, June 2005 Page 11Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Connections
ZeroC’s Newsletter for the Ice community

Page 10 Issue 3, June 2005 Page 11Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Ice.loadSlice('Utility.ice')
import Utility

class SorterI(Utility.Sorter):
 def sortIntegers(self, unsorted,\
 current = None):
 sorted = unsorted
 j = 0
 while j < len(sorted) - 1:
 i = 0
 while i < len(sorted) - 1 - j:
 if sorted[i + 1] < sorted[i]:
 t = sorted[i]
 sorted[i] = sorted[i + 1]
 sorted[i+ 1] = t
 i = i + 1
 j = j + 1
 return sorted

class SortServer(Ice.Application):
 def run(self, args):
 adapter = self.communicator().\
 createObjectAdapter('Utility')
 object = SorterI()
 adapter.add(\
 object,Ice.stringToIdentity('sorter'))
 adapter.activate()
 communicator.waitForShutdown()
 return 0

app = SortServer()
sys.exit(app.main(sys.argv))

Load It Up with Ice.loadSlice()
Ice for Python takes full advantage of the interpreted environment
by providing the ability to translate and compile Slice code using
the Ice.loadSlice() command. No more makefiles! Making
the translation step part of the initialization process for the code
and skipping a build step simplifies adding, modifying, and remov-
ing Slice. The improved agility is a boon during the exploratory
and experimentation phases of a project. With fewer steps involved
in changing and using Slice, you are less likely to avoid necessary
changes, and you have more time to spend constructing good tests.

Structuring Code for Flexibility
We have some server code and we want to test our sorting routine.
Unfortunately, we find that the structure of our server code limits
us to simply running it. This is because the initialization of the
application is in the main line of execution. A better strategy is to
start the server code only if the code is being run as a script. We
can do this by checking the __name__ property, as follows:

Python
if __name__ == '__main__':
 app = SortServer()
 sys.exit(app.main(sys.argv))

If we run the code as a script (e.g. python UtilityServer.py),

it runs as before, but now we can also import the code into a test
suite or interactive session and test it.

Python Interpreter
>>> import UtilityServer
>>> sorter = UtilityServer.SorterI()
>>> print sorter.sortIntegers([5, 4, 10, 3])
[3, 4, 5, 10]

Satisfied that the basics are working, we can now proceed with
constructing a more exhaustive unit test by copying what we’ve
written and adding more test data sets.

What if we found a bug when we called SorterI.
sortIntegers()? One approach would be to exit the interpreter
and start over, but there is another way. We can reload the module
using the reload() function, create a new instance of the object,
and try again.

Python Interpreter
>>> reload(UtilityServer)
<module 'UtilityServer' from 'UtilityServer.pyc'>
>>> sorter = UtilityServer.SorterI()
>>> print sorter.sortIntegers([5, 4, 10, 3])
[3, 4, 5, 10]

We need to create a new instance of the sorter object because
reloading code doesn’t affect previously instantiated objects. If
there is a situation where creating new instances of objects is prob-
lematic and we want to be able to reload code, we can restructure
our code even further by delegating to helper methods. Moving
our sort implementation into a helper method and modifying our
servant, our server code becomes:

Python
def sortImpl(unsorted):
 values = []
 values.extend(unsorted)
 j = 0
 while j < len(values) - 1:
 i = 0
 while i < len(values) - 1 - j:
 if values[i + 1] < values[i]:
 t = values[i]
 values[i] = values[i + 1]
 values[i + 1] = t
 i = i + 1
 j = j + 1
 return values

class SorterI(Utility.Sorter):
 def sortIntegers(self, unsorted,\
 current = None):
 return sortImpl(unsorted)

We can now easily change our sorting algorithm to improve ef-
ficiency, debugging, etc. At some point, however, we will probably
realize that we’ve been wasting our time since Python implements
a sort routine for us! We could try it right away by modifying our
sortImpl implementation to delegate to it:

INTERPRETED ICE: DISTRIBUTED APPLICATION DEVELOPMENT ON STEROIDS

Page 11Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Page 11Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

INTERPRETED ICE: DISTRIBUTED APPLICATION DEVELOPMENT ON STEROIDS

def sortImpl(unsorted):
 values = []
 values.extend(unsorted)
 values.sort()
 return values

In most situations, it is probably overkill to implement objects in
terms of helper methods, just so we can change behaviors and fix
bugs at runtime. However, it is useful when experimenting with
code or implementing critical code that might need updating while
a program is running.

In contrast, restructuring source code so it can be used as a
module as well as a script is useful because it facilitates testing and
code reuse. If a Python source file is meant to be primarily used as
a module, we can use the same trick in reverse to create self-testing
modules. For example:

if __name__ == '__main__':
 runTests()

To run the tests, simply use the file as a script:

python myFunctionLibrary.py

If the file is imported as a module, the tests will not be run.

Interacting with Remote Objects
We’ve seen some of the advantages of changing our approach to
implementing servers to exploit the Python interpreter’s interactive
mode. The usefulness of Python’s interactive mode is not limited
to implementing servers. A little client boiler plate allows us to
interactively make calls on remote objects. For example:

Python Interpreter
>>> import sys, traceback, Ice
>>> Ice.loadSlice('Utility.ice')
>>> import Utility
>>> communicator = Ice.initialize([])
>>> obj = communicator.stringToProxy(\
 'sorter:tcp -p 15210')
>>> sorter = Utility.SorterPrx.checkedCast(obj)
>>> print sorter
sorter -t:tcp -h 192.168.1.6 -p 15210
>>> print sorter.sortIntegers(\
 [45, 32, 1, 56, 102])
[1, 32, 45, 56, 102]
>>> print sorter.sortIntegers([3])
[3]
>>> print sorter.sortIntegers([])
[]

How can this help us when working with distributed systems? Here
are some examples:

Dealing with Black Boxes
It is not uncommon to use objects that were implemented by other
developers. In such a situation, we often do not have access to
source code or to other resources required to unit test or otherwise
verify the correctness of the implementation, but we still want to
implement an acceptance test suite. We can use a Python session to
interactively access remote objects to try out scenarios that should
be added to the acceptance test suite. If we find a problem, we can
send snippets of Python code back to the third-party developers
so they can test on-site, or we can get on the phone and collabora-
tively test a server running in a debugger. Imagine a dialog like the
following:

Sanjay: We’ve discovered what we think is a problem in your
implementation of Utility::Sorter::sortIntegers().

Bob: I see. I happen to have this code running in a debugger
right now. You should be able to access it at xyz.foo.com on
port 8721. Give me a call when you are ready to test and what
sequence of values you are going to send.

Sanjay: OK, I’m ready to send the sequence right now.
(Startled silence...)
Bob: Uh, OK... go ahead.

Judging by Bob’s reaction, he has probably never used Python or,
at the very least, he has neglected to read ZeroC Connections.

The situation is also reversible. A third party can easily send
Python code to a client and have them run it to test a server being
debugged locally.

Pathological Tests
Sometimes we want to see what will happen to code if we throw
situations at it that we would not normally put in a test suite. We
might decide to create some transient code to see how robust a
server is under improbable or impossible fringe conditions, or even
out of simple curiosity. Interactive sessions or short scripts are
perfect for these kinds of test.

Live System Tests, Monitoring and Ad-hoc Invocations
Ad-hoc invocations are useful for occasional informal validation
and administration of a running system. A simple example might
be to use the Ice object method ice_ping() to check if an object
is alive and accessible. If a pattern emerges from repeated ad-hoc
queries, they can easily be captured in a script for later use. A se-
ries of pings, or more specific queries triggered by a crontab entry
can make for a cheap and efficient watchdog system.

Interpreting Servers
Running a server in the interpreter is not particularly special.
However, providing interactive access to a running server can
be valuable under certain conditions. In most situations, running

Connections
ZeroC’s Newsletter for the Ice community

Page 12 Issue 3, June 2005 Page 13Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Connections
ZeroC’s Newsletter for the Ice community

Page 12 Issue 3, June 2005 Page 13Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

a server in a debugger is prohibitively intrusive or even impos-
sible. However, running the server interactively in an interpreter is
almost the same as running it normally, and it provides pretty much
unlimited access to the live environment. Reasons for running a
server in an interactive session might be:

• testing and debugging servers during system testing
 It is hard to have too much information when testing and

debugging a program. Running the server in the interpreter in
interactive mode is simply debugging the server!

• performing hot updates on running server code
 Implementation of key parts of the server can be reloaded

using the methods described earlier in this article. Care must
be taken to consider dependencies when updating part of a
server, but it can be done. Updating the sort routine as we did
above is an example.

• local monitoring and administration
 While you might be familiar with running a server in interac-

tive mode for debugging, have you ever considered using the
interpreter as a simple text mode administration tool? While
not really appropriate for critical servers or servers handling
sensitive information, the interpreter makes a good starting
point for a very powerful text-based administrative console.

Ctrl-D
The Ice/Python combination is a potent toolset for creating distrib-
uted systems. With it, we can quickly create, test, and modify code
allowing rapid evolution of a nascent system. We can even change
the structure and behavior of a program while the system is run-
ning! The agility of the development system allows us to explore
a problem domain quickly and experiment with code to test our
assumptions. Because it is so easy to change things, there are fewer
excuses for making do with low-quality code, we end up with
better code and we can evolve our application smoothly. We also
saw how the Python system makes it easy to debug our systems by
allowing us full access to the objects in a running system.

Ice for Python can contribute greatly to the success of your next
project. If you are embarking on a new project or are caught in an
endless cycle of rewrites and back-tracking in your current project,
you should try Ice for Python. Get out and explore!

INTERPRETED ICE: DISTRIBUTED APPLICATION DEVELOPMENT ON STEROIDS

Page 13Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Page 13Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

The Grim Reaper: Making Objects
Meet Their Maker

Michi Henning, Chief Scientist

Introduction
One of the most commonly used patterns in distributed systems is
the factory pattern. Object factories are the distributed equivalent
of constructors. While constructors create and initialize objects in
the local address space, factories create and initialize objects in a
remote address space. Whenever you use the factory pattern, you
are also likely to encounter the problem of how to reclaim re-
sources in the server if clients are misbehaved. This article outlines
an approach to dealing with the problem that is both simple and
effective.

Object Factories and Object Lifespan
Clients invoke operations on object factories in order to create
objects in a server. Object factories are singleton objects. A typical
object factory interface looks as follows:

// Slice
interface SomeObject
{
 // ...
};

interface SomeObjectFactory
{
 SomeObject* create(/* params... */);
};

The create operation allocates whatever resources are needed by
the new object, initializes object state from the supplied param-
eters, and returns a proxy to the newly-created object. The flip side
of the coin, namely destruction of an object, is typically provided
by the object itself:

// Slice
interface SomeObject
{
 void destroy();
 // ...
};

Once a client is finished with an object it previously created, it
invokes the destroy operation, which reclaims any resources that
are used by the object.

For many applications, the objects that a factory creates on be-
half of a client have a lifespan that is limited by the lifespan of the
client: the client uses the created objects in order to do something
but, once the client is finished with its job or exits, the objects are
no longer needed and must be destroyed. This is a common pattern
for all kinds of stateful interactions between client and server. An

example is a shopping cart for an on-line retail application: the cart
stores the items that the client wants to order; the client destroys
the cart once the customer has submitted payment details and final-
ized the order.

Objects In, Garbage Out
Inherent in the factory pattern is a potential problem: the server
creates objects on behalf of a client (and, as a result, dedicates
resources such as memory, disk space, or database connections),
and the client is responsible for destroying these objects again once
they are no longer needed. Unfortunately, clients have a habit of
neglecting to do just that (and a lot more often than we care to ad-
mit). For example, with our on-line retail application, the customer
may simply lose interest or be otherwise occupied for hours or
even days. Similarly, the client may encounter a problem, such as
a network failure, power loss, or simply suffer a crash. For any of
these scenarios, the net result is that the client does not destroy its
objects as it should, and the server is left sitting on the objects and
their associated resources. Such abandoned objects are known as
garbage.

The server is presented with something of a dilemma by garbage
objects. The difficulty is not in how to remove the garbage objects
(after all, the server knows how to destroy each object), but how
to identify whether a particular object is garbage or not. The server
knows when a client uses an object (because the server receives an
invocation for the object), but the server does not know when an
object is no longer of interest to a client (because a dead client is
indistinguishable from a slow one).

Mechanisms that identify and reclaim garbage objects are
known as garbage collectors. Garbage collectors are well-under-
stood for non-distributed systems. (For example, many program-
ming languages, such as Java and C#, have built-in garbage collec-
tors.) Non-distributed garbage collectors keep track of all objects
that are created, and perform some form of connectivity analysis to
determine which objects are still reachable; any objects that are un-
reachable (that is, objects to which the application code no longer
holds any reference) are garbage and are eventually reclaimed.

Unfortunately, for distributed systems, traditional approaches to
garbage collection do not work because the cost of performing the
connectivity analysis becomes prohibitively large. For example,
DCOM provided a distributed garbage collector that turned out to
be its Achilles’ heel: the collector did not scale to large numbers of
objects, particularly across WANs, and several attempts at making
it scale failed.

An alternative to distributed garbage collection is to use time-
outs to avoid the cost of doing a full connectivity analysis: if an
object has not been used for a certain amount of time, the server
assumes that it is garbage and reclaims the object. The drawback of
this idea is that it is possible for objects to be collected while they
are still in use. For example, a customer may have placed a number
of items in a shopping cart and gone out to lunch, only to find on

THE GRIM REAPER: MAKING OBJECTS MEET THEIR MAKER

Connections
ZeroC’s Newsletter for the Ice community

Page 14 Issue 3, June 2005 Page 15Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Connections
ZeroC’s Newsletter for the Ice community

Page 14 Issue 3, June 2005 Page 15Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

return that the shopping cart has disappeared in the mean time.

Yet another alternative is to use the evictor pattern: the server
puts a cap on the total number of objects it is willing to create on
behalf of clients and, once the cap is reached, destroys the least-re-
cently used object in order to make room for a new one. This puts
an upper limit on the resources used by the server and eventually
gets rid of all unwanted objects. But the drawback is the same as
with timeouts: just because an object has not been used for a while
does not necessarily mean that it truly is garbage.

Neither timeouts nor evictors are true garbage collectors because
they can collect objects that are not really garbage, but they do
have the advantage that they reap objects even if the client is alive,
but forgets to call destroy on some of these objects.

Occam’s Scythe: Reaping Objects by the Swath
Traditional garbage collection fails in the distributed case for a
number of reasons:

• Garbage collectors require connectivity analysis, which is
prohibitively expensive. Furthermore, for distributed object
systems that permit proxies to be externalized as strings (such
as Ice and CORBA), connectivity analysis is impossible be-
cause proxies can exist and travel by means that are invisible
to the runtime. For example, proxies can exist as records in a
database and can travel as strings inside e-mail messages.

• Garbage collectors consider all objects in existence but, for
the vast majority of applications, only a small subset of all
objects actually ever needs collecting. The work spent in
examining objects that can never become garbage is wasted.

• Garbage collectors examine connectivity at the granularity of
a single object. However, for many distributed applications,
objects are used in groups and, if one object in a group is gar-
bage, all objects in the group are garbage. It would be useful
to take advantage of this knowledge, but a garbage collector
cannot do this because that knowledge is specific to each ap-
plication.

In the remainder of this article, we examine a simple mechanism
that allows you to get rid of garbage objects cheaply and effective-
ly. The approach has the following characteristics:

• Only those objects that potentially can become garbage are
considered for collection.

• Granularity of collection is under control of the application:
you can have objects collected as groups of arbitrary size,
down to a single object.

• Objects are guaranteed not to be collected prematurely.
• Objects are guaranteed to be collected if the client crashes or

suffers loss of connectivity.
• The mechanism is simple to implement and has low run-time

overhead.

It is equally important to be aware of the limitations of the ap-

proach:

• The approach collects objects if a client crashes, but offers
no protection against clients that are still running, but have
neglected to destroy objects that they no longer need. In other
words, the server is protected against client-side hardware
failure and catastrophic client crashes, but it is not protected
against faulty programming logic of clients.

• The approach is not transparent at the interface level: it re-
quires changes (albeit minor ones) to the interface definitions
for an application.

• The approach requires the client to periodically call the server,
thus consuming network resources even if the client is other-
wise idle.

Despite the limitations, this approach to garbage collection is ap-
plicable to a wide variety of applications and meets the most prag-
matic need: how to clean up in case something goes badly wrong
(rather than how to clean up in case the client misbehaves).

An Extra Level of Indirection
In the case of our object factory, the factory is a singleton object
that creates objects on behalf of arbitrary clients. It is important for
our garbage collector to know which client created what objects, so
the collector can reap the objects created by a specific client if that
client crashes. We can easily deal with this requirement by adding
the proverbial level of indirection: instead of making the factory a
singleton object, we provide a singleton object that creates facto-
ries. Clients first create a factory and then create all other objects
they need using that factory:

// Slice
interface SomeObject { /* ...*/ };

interface Session
{
 SomeObject* create();
 nonmutating string getName();
 void destroy();
 idempotent void refresh();
};

interface SessionFactory // Singleton
{
 Session* create(string name);
};

Clients obtain a proxy to the SessionFactory singleton and
call create to create a Session object. In turn, the Session
object provides a create operation to create new objects (of type
SomeObject in this case). Note that the name allows a client to
distinguish different sessions (assuming the client uses more than
one session). The name parameter is not used to identify clients or
to provide a unique identifier for sessions. The getName operation
on the Session object returns the name that was used by the client
to create it.

THE GRIM REAPER: MAKING OBJECTS MEET THEIR MAKER

Page 15Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Page 15Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Each Session object remembers which objects it created. Be-
cause each client uses its own Session object, the server knows
which objects were created by what client. In normal operation,
a client first creates a session, and then uses the session to create
the remaining objects it needs. Once the client has finished its job,
it calls destroy on the session. The implementation of destroy
destroys both the session and all objects that were created by that
session to reclaim resources.

To deal with crashed clients, the server needs to know when a
session is no longer in use. This is the purpose of the refresh
operation: clients are expected to periodically call refresh on
their session objects. For example, the server might decide that, if
a client’s session has not been refreshed for more than ten seconds,
the session is no longer in use and reclaim it. As long as the client
calls refresh at least once every ten seconds, the session (and the
objects it created) remain alive; if more than ten seconds elapse,
the server simply calls destroy on the session. Of course, there
is no need to hard-wire the timeout value—you can make it part of
the application’s configuration. However, to keep the implemen-
tation simple, it is useful to have the same timeout value for all
sessions, or to at least restrict the timeouts for different sessions to
a small number of fixed choices—this considerably simplifies the
implementation in both client and server.

Server-Side Implementation
The implementation on the server side almost suggests itself:

• Whenever refresh is called on a session, the session records
the time at which the call was made.

• The server runs a reaper thread that wakes up once every ten
seconds. The reaper thread examines the timestamp of all ses-
sions and, if it finds a session last time-stamped more than ten
seconds ago, it calls destroy on that session.

• Each session remembers the objects it has created and de-
stroys these objects as part of its destroy implementation.

Here then is the reaper thread in outline. (Note that we have sim-
plified the code in this article to show the essentials. For example,
we have omitted the code that is needed to make the reaper thread
terminate cleanly when the server shuts down. You can find the full
code in the demo/Ice/session directory in the Ice distribution.)

// C++
class ReapThread : public IceUtil::Thread,
 public IceUtil::Monitor<IceUtil::Mutex>
{
public:
 ReapThread();
 virtual void run();
 void add(const Demo::SessionPrx&,
 const SessionIPtr&);

private:
 const IceUtil::Time _timeout;

 struct SessionProxyPair
 {
 SessionProxyPair(
 const Demo::SessionPrx& p,
 const SessionIPtr& s) :
 proxy(p), session(s) { }
 const Demo::SessionPrx proxy;
 const SessionIPtr session;
 };
 std::list<SessionProxyPair> _sessions;
};

typedef IceUtil::Handle<ReapThread> ReapThreadPtr;

Note that the reaper thread maintains a list of pairs. Each pair
stores the proxy of a session and its servant pointer. We need both
the proxy and the pointer because we need to invoke methods on
both the Slice interface and the implementation interface of the
session. Whenever a client creates a new session, the server calls
the add method on the reaper thread, passing it the new session:

// C++
void ReapThread::add(const SessionPrx& proxy,
 const SessionIPtr& session)
{
 Lock sync(*this);
 _sessions.push_back(
 SessionProxyPair(proxy, session));
}

The run method of the reaper thread is a loop that sleeps for ten
seconds and calls destroy on any session that has not been re-
freshed for more than ten seconds:

// C++
void ReapThread::run()
{
 Lock sync(*this);

 while(true)
 {
 timedWait(_timeout);
 list<SessionProxyPair>::iterator p =
 _sessions.begin();
 while(p != _sessions.end())
 {
 try
 {
 //
 // Session destruction may take
 // time in a real-world example.
 // Therefore the current time
 // is computed for each iteration.
 //
 if((IceUtil::Time::now() -
 p->session->timestamp()) >
 _timeout)
 {
 p->proxy->destroy();
 p = _sessions.erase(p);
 }

THE GRIM REAPER: MAKING OBJECTS MEET THEIR MAKER

Connections
ZeroC’s Newsletter for the Ice community

Page 16 Issue 3, June 2005 Page 17Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Connections
ZeroC’s Newsletter for the Ice community

Page 16 Issue 3, June 2005 Page 17Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

 else
 {
 ++p;
 }
 }
 catch(const
 Ice::ObjectNotExistException&)
 {
 p = _sessions.erase(p);
 }
 }
 }
}

Note that the reaper thread catches ObjectNotExistException
from the call to destroy, and removes the session from its list in
that case. This is necessary because it is possible for a client to call
destroy explicitly, so a session may be destroyed already by the
time the reaper thread examines it.

The SessionFactory implementation is trivial:

// C++
class SessionFactoryI :
 public Demo::SessionFactory
{
public:
 SessionFactoryI(const ReapThreadPtr&);
 virtual Demo::SessionPrx create(
 const std::string&, const Ice::Current&);

private:
 ReapThreadPtr _reaper;
};

The constructor is passed the instantiated reaper thread and remem-
bers that thread in the _reaper member.

The create method adds each new session to the reaper thread’s
list of sessions:

// C++
SessionPrx SessionFactoryI::create(
 const string& name,
 const Ice::Current& c)
{
 SessionIPtr session = new SessionI(name);
 SessionPrx proxy = SessionPrx::uncheckedCast(
 c.adapter->addWithUUID(session));
 _reaper->add(proxy, session);
 return proxy;
}

Note that each session internally has a unique ID that is unrelated
to its name—the name exists purely as a convenience for the ap-
plication.

The server’s main function starts the reaper thread and instantiates
the session factory:

// C++
ReapThreadPtr reaper = new ReapThread();
reaper->start();
adapter->add(new SessionFactoryI(reaper), Ice::
stringToIdentity(“SessionFactory”));
adapter->activate();

This completes the implementation on the server side. Note that
there is very little code here, and that much of this code is essen-
tially the same for each application. For example, we could easily
turn the ReapThread class into a template class to permit the same
code to be used for sessions of different types.

Client-Side Implementation
On the client side, the application code does what it would do with
an ordinary factory, except for the extra level of indirection: the
client first creates a session, and then uses the session as its factory.

As long as the client-side calls refresh at least once every ten
seconds, the session remains alive and, with it, all objects the client
created via that session. Once the client misses a refresh call, the
reaper thread in the server cleans up the session and its objects.

To keep the session alive, you could sprinkle your application
code with calls to refresh in the hope that at least one of these
calls is made at least every ten seconds. However, that is not only
error-prone, but also fails if the client blocks for some time. A
much better approach is to run a thread in the client that automati-
cally calls refresh. That way, the calls are guaranteed to happen
even if the client’s main thread blocks for some time, and the ap-
plication code does not get polluted with refresh calls. Again, we
show a simplified version of the refresh thread here that does not
deal with issues such as clean shutdown and a few other irrelevant
details:

// C++
class SessionRefreshThread :
 public IceUtil::Thread,
 public IceUtil::Monitor<IceUtil::Mutex>
{
public:
 SessionRefreshThread(
 const IceUtil::Time& timeout,
 const SessionPrx& session) :
 _session(session),
 _timeout(timeout)
 {
 }

 virtual void run()
 {
 Lock sync(*this);
 while(true)
 {
 timedWait(_timeout);

THE GRIM REAPER: MAKING OBJECTS MEET THEIR MAKER

Page 17Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

Page 17Issue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

 try
 {
 _session->refresh();
 }
 catch(const Ice::Exception& ex)
 {
 return;
 }
 }
 }

private:
 const SessionPrx _session;
 const IceUtil::Time _timeout;
};

typedef IceUtil::Handle<SessionRefreshThread>
 SessionRefreshThreadPtr;

The only other code change in the client is to instantiate the reaper
thread after creating a session. We assume that the client has a
proxy to the session factory in the factory variable:

// C++
SessionPrx session = factory->create(name);
SessionRefreshThreadPtr refresh = new
SessionRefreshThread(
 IceUtil::Time::seconds(5), session);
refresh->start();

Note that, to be on the safe side and also allow for some network
delays, the client calls refresh every five seconds; this is to
ensure that at least one call to refresh arrives at the server within
each ten-second interval.

Thereafter, the only other code changes in the client are to clean
up the reaper thread before the client exits, which is trivial.

RIP
Reaping objects based on a session concept is a very effective
way to protect a server against resource exhaustion in the face of
failures, either of the clients themselves, or of the client-side hard-
ware or network. Note that, if a client forgets to call destroy on
an object but keeps the session alive, the object will not be reaped.
However, the approach we outlined solves the hard part of the
problem, namely how to do deal with catastrophic failures.

You can easily extend the approach to adapt it to your appli-
cation’s needs. For example, if you require different timeouts for
different types of objects, you can use multiple sessions, each
with a different timeout. And, by using multiple sessions, you can
reduce the granularity at which objects are reaped, down to a single
object. However, keep in mind that threads are a limited resource
as well, so if you have many separate sessions, you should proba-
bly use a single reaper and refresh thread for several sessions. Also
keep in mind that a larger number of sessions incurs a correspond-
ingly larger amount of network traffic. However, unless you have
hundreds of sessions and a very short timeout, this is not likely to

be a concern.

Overall, reaping objects is remarkably non-intrusive to existing
code: a few lines in the client and the server are sufficient. And,
as we suggested earlier, judicious use of templates can reduce the
amount of code even further. Most importantly, the additional code
has no impact on the object implementations, that is, it is transpar-
ent to the bulk of the application code. This means that you can
even back-patch a reaper into existing code with little effort.

We recommend that you give the Grim Reaper serious con-
sideration in your projects: unfortunately, remote objects come
with their own philosopher’s stone and, unless you want them to
literally live forever, you need to provide them with a tombstone to
match: RIP†

THE GRIM REAPER: MAKING OBJECTS MEET THEIR MAKER

Connections
ZeroC’s Newsletter for the Ice community

Page 18 Issue 3, June 2005 Page PBIssue 3, June 2005 Connections
ZeroC’s Newsletter for the Ice community

FAQ Corner

In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: If I run any client or server that uses the Ice for
C++ SSL plug-in, I get a pop-up window that says

“The ordinal XXXX could not be located in the dynamic
link library LIBEAY32.dll”. What does this mean, and how
can I fix this problem?

You get this error when your program attempts to load an in-
compatible copy of the DLL. The Ice for C++ SSL plug-in,
IceSSL<version>.dll, is linked with the OpenSSL DLLs
(libeay32.dll and ssleay32.dll) and needs the correct
version at run time. Often, you will get this error because another
application has installed an older version of the DLLs in your
Windows system directory (usually C:\Windows\System32).
One common application with this unfortunate behavior is Intel®
PROSet: the drivers for wireless Centrino network cards.

Windows looks for DLLs in the system directory before direc-
tories in your PATH (see http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/dllproc/base/load_time_dynamic_linking.
asp for details). Hence, if there is an old version of the OpenSSL
DLLs in the Windows system directory and the correct OpenSSL
DLLs are not in the same directory as your .exe, you will likely
encounter this problem.

The preferred solution is to put your program and all the DLLs
it needs (the Ice DLL, IceSSL DLL, OpenSSL DLLs, and so on) in
the same directory. This will ensure that the proper version is used,
no matter which DLL is installed elsewhere. If you deploy an ap-
plication, this is by far the safest packaging. Unfortunately, putting
everything in the same directory is not always practical.

Another solution is to rebuild the OpenSSL libraries with dif-
ferent names (e.g. libeay32-097e.dll and ssleay32-097e.dll) and
rebuild Ice for C++ using these names. This is very reliable, but
requires more build effort.

Yet another solution is to have a closer look at these conflicting
DLLs: which program actually uses them? Do you really need this
program? (For example, recent releases of Intel PROSet continue
to install these DLLs but do not appear to load them.) If the DLLs
are indeed used, we recommend Sysinternals Process Explorer

to identify the process or processes loading these DLLs. If they
are indeed essential, you may try to move them to another direc-
tory (such as C:\Windows\System32\openssl) and add this
directory to the system PATH before the directory containing the
Ice OpenSSL DLLs with the same names. In this way, the program
that depends on these old OpenSSL DLLs likely will continue to
work; for Ice applications, add the directory with the new
OpenSSL DLLs to your PATH before running them.

Q: How do I configure my Ice server for NAT?

First we should create a sample network configuration that we can
use for this discussion. We’ll assume that your firewall has the IP
address 123.4.1.1 and that your server host is in a private network
with the address 192.168.0.5. The firewall is configured to forward
all network traffic from its port 7000 to port 9999 on your server’s
host.

If your server’s object adapter is named LoginAdapter, you
can configure its endpoint with the property shown below:

LoginAdapter.Endpoints=tcp -h 192.168.0.5 -p 9999

This configuration is sufficient to allow the server to receive
port-forwarded requests from the firewall, but there is a potential
problem: proxies created by this object adapter contain the server
host’s private IP address and port, which are inaccessible to clients
on the other side of the firewall. In order for a client to communi-
cate with your server, the client must use a proxy that contains the
firewall’s address and port.

This is not an insurmountable problem. In simple situations,
where a client only uses one proxy to communicate with the server,
the client can bootstrap a proxy containing the firewall’s address in
a number of ways, such as by calling stringToProxy or reading
it from a file. However, when the server creates proxies dynami-
cally, the object adapter requires additional configuration.

An object adapter actually has two sets of endpoints: the physi-
cal endpoints on which it listens for requests, and the published
endpoints that appear in the proxies it creates. If no published end-
points are defined, then the physical endpoints are used by default.
The example above illustrates why it isn’t always appropriate to
publish the object adapter’s physical endpoints.

To correct the problem, we define an additional property:

LoginAdapter.PublishedEndpoints=tcp -h 123.4.1.1
-p 7000

Now all of the proxies created by the object adapter will advertise
the firewall’s address and port.

FAQ CORNER

http://www.zeroc.com/vbulletin/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/load_time_dynamic_linking.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/load_time_dynamic_linking.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/load_time_dynamic_linking.asp
http://www.sysinternals.com/ntw2k/freeware/procexp.shtml

