
Connections
ZeroC’s Newsletter for the Ice Community

Page 1 Issue 6, September 2005

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 6, September 2005

Contents
Advanced IcePack .. 2

New Ice Training Courses get Developers up to Speed . 8

Taxing Times .. 9

FAQ Corner .. 16

Caveat Emptor
The hot standard at the OMG these
days is the Data Distribution Service,
or DDS. DDS provides a simple
publish-subscribe mechanism with a
real-time focus; as such, it is not really
comparable to a distributed object
infrastructure such as Ice or CORBA.
DDS grew out of NDDS, a product
from Real Time Innovations. RTI’s

defense customers like products that implement open standards, so
RTI crafted a standard for NDDS within the OMG. Because several
companies have announced that they will implement it, this stan-
dard is already considered a success—a rare feat for recent OMG
specifications. But let’s look beyond the hype: from a user’s point
of view, standardization suggests many benefits, such as the ability
to easily port to another implementation, interoperability between
different implementations, and a long lifespan for the technology.
Does DDS deliver on these?

DDS defines a portable API using CORBA IDL: even though
DDS itself has nothing to do with CORBA or distributed objects, if
you want to write portable code, you’ll have to familiarize yourself
with the CORBA language mappings. This is not ideal, given that
CORBA is widely considered a legacy standard, and its language
mappings show their age: for example, the C++ mapping, conceived
before the standardization of C++ in 1998, has its own private types
(such as for strings and sequences) and overly complicated memory
management rules. It’s hard to see how the standardization commit-
tee could have avoided this dependency; if you want an OMG stan-
dard, some CORBA baggage is expected. Unfortunately, in addition
to this CORBA dependency, the DDS API itself is quite complex
and arcane; for example, just like C, the API reports errors with er-
ror numbers rather than exceptions. The proprietary API of existing
DDS implementations is simpler; RTI still highlights the simplicity
of NDDS programming over CORBA: “...a simple program based
on CORBA takes 659 lines of code to NDDS’s 107”). So if you use
NDDS, you have to choose between a complex portable API and a
simple non-portable one—not an easy trade-off.

Even if the portability of DDS comes at a price, at least it is
interoperable—or is it? This recent press release provides some
insight: work on DDS interoperability is about to start. At best, this
means a specification in two or three years, with the hope that some
vendors eventually will make their products interoperable; at worst,
it could mean a specification in five years (or no specification at all),
or a specification without implementations because, by the time the
standard is finalized, vendors have lost interest and moved on to
greener pastures.

So why bother creating a standard for DDS? Pushing a specifica-
tion through the OMG is a difficult and long process; why do this
just for a new complicated API? OMG standards are created by ven-
dors; in this case, RTI, Thales, and OIS. The main return on invest-
ment for their efforts is the new “standard-compliant” check-box on
their existing products (NDDS for RTI, SPLICE for Thales). Even
better, these companies can now lobby to make the DDS standard—
and their respective products—a mandatory choice in some defense
programs. It’s ironic to see standardization being used to curtail
competition and serve the interests of a few vendors (who advertise
“no vendor lock-in”) while, at the same time, customers end up with
an API that makes it harder for them to write their software. Caveat
emptor: before you commit to a standard, ask yourself whom that
decision will serve—it may not be you.

Bernard Normier
Senior Software Engineer
ZeroC, Inc.

Issue Features

Advanced IcePack
In this installment of the series of articles on the chat applica-
tion, Matthew Newhook shows you how to use IcePack to de-
ploy the application over multiple servers and how to dynami-
cally scale the application as user demand increases.

Taxing Times
Excel is a popular and powerful calculation tool, and you don’t
have to be a programmer to use it effectively. In this article,
Michi Henning shows you how you can seamlessly integrate Ice
and Excel, and allow non-programmers to provide the bulk of
application-specific code.

http://www.omg.org/docs/formal/04-12-02.pdf
http://www.rti.com/
http://groups-beta.google.com/group/comp.object.corba/msg/c4a593dcf792cdfb?hl=en
http://rti.com/products/ndds/nddsworks6.html
http://rti.com/products/ndds/nddsworks6.html
http://www.omg.org/news/releases/pr2005/07-06-05.htm
http://www.thalesgroup.com/home/home/
http://www.ois.com/
http://www.cotsjournalonline.com/home/article.php?id=100296
http://www.prismtechnologies.com/section-item.asp?sid4=&sid3=205&sid2=55&sid=18&id=427

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 6, September 2005 Page 3Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Connections
ZeroC’s Newsletter for the Ice Community

Page 2 Issue 6, September 2005 Page 3Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Advanced IcePack
Matthew Newhook, Senior Software Engineer

Introduction
In the previous article, we introduced IcePack and demonstrated
how it can simplify the development and deployment of a complex
application. This article will continue to focus on IcePack.

Recap
Let us recap the various Ice Objects in our application so far.

• ChatSessionManager. Used by Glacier2 to create new
ChatSession objects.

• PermissionsVerifier. Used by Glacier2 for validating
user name and password.

• ChatSession. Entry point to the chat service from chat
clients. Using this object, clients subscribe to new chat rooms.
It also manages the life cycle of current subscriptions to chat
rooms.

• ChatRoomParticipant. Interface for chat clients to send
new messages to a chat room.

• ChatRoomObserver. Interface for chat clients to receive new
messages in a chat room.

• InvitationCallback. Interface for chat clients to receive
invitations into a chat room.

• IceStorm. Responsible for distributing events from the chat
room publishers to the chat room subscribers.

In addition, the chat server itself uses the following non-Ice ob-
jects:

• UserManager. Provides a mapping of user id to
InvitationCallback proxies.

• RoomManager. Repository of chat rooms. This maps the
name of the chat room to the chat room topic proxy. Manages
the life cycle of a chat room.

Figure 1 shows a class diagram of the application.

Figure 2 shows the deployment of the server back end.

Deployment Issues
The deployment described in the previous article is not all that
flexible. In particular, it is currently impossible to have multiple
deployments of any of the servers, but it is reasonable to expect
that, once the number of users logged into the system becomes
large, we will need multiple Glacier2 routers, multiple chat session
servers, and multiple IceStorm servers. (Figure 3 depicts a more
scalable deployment.)

So, what prevents us from deploying multiple chat session serv-
ers? Apart from some configuration issues, the major obstacle is
the way we have used IceStorm. Consider what would happen if
we were to deploy multiple chat session and IceStorm servers with
the current setup: each server would act as an island, that is, a chat
room "global" in one server would be separate from a chat room
"global" in another server. In order to hook the chat rooms up, they
both would need to use the same IceStorm instance. However, the

Figure 1: Class Diagram

1

*

1 *

* 1

*

1

*

1

1

*

1

*

RoomManager

ChatSession
Manager

ChatSession

ChatRoom
Participant

ChatRoom
Observer

*

1

IceStorm

Permissions
Verifier

UserManager

Invitation
Callback

1 1

1

*

Figure 2: Server Deployment

����

��������

������

��������

����

�������

ADVANCED ICEPACK

Page 3Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 3Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

major impediment to this is the RoomManager, which expects to
exclusively manage the IceStorm instance. If two RoomManager
objects manage the same IceStorm instance, the current implemen-
tation of the Topic life cycle management breaks down. To make
matters worse, it’s very hard to change the RoomManager imple-
mentation to work in this way.

Fortunately, there is an easier solution: make the RoomManager
a separate service. The RoomManager only acts as an intermediary
between the ChatSession and IceStorm when the user enters and
leaves a chat room. This is not a frequent operation in comparison
to the actual act of chatting and therefore not performance-sensi-
tive: a single RoomManager should be able to manage a large
number of users.

Perceptive readers will also notice that the server has the same
problem with the UserManager. If the UserManager does not
become its own service, users using one chat session server cannot
invite users using a different chat session server. For the purposes
of this article, we will ignore this issue and return to it in the next
installment.

Room Manager Service
The implementation of the RoomManager is quite straightforward.
Essentially, we're taking the existing implementation and turning it
directly into an Ice object. First, the interface:

// Slice
interface RoomManager
{
 ChatRoomObserver* enter(string room,
 ChatRoomObserver* observer);
 void leave(string room,
 ChatRoomObserver* observer);
};

Now we take the implementation of the RoomManager and make
it into a servant. First, we rename it to RoomManagerI, and add
Current to the end of each of the methods as follows:

// C++
class RoomManagerI : public RoomManager,
 public IceUtil::Mutex
{
public:
 RoomManagerI(
 const IceStorm::TopicManagerPrx&);
 ~RoomManagerI();

 virtual ChatRoomObserverPrx enter(
 const string&, const ChatRoomObserverPrx&,
 const Current&);
 virtual void leave(
 const string&, const ChatRoomObserverPrx&,
 const Current&);

private:

 // ...

};

The implementation of this object has not changed, except
each method has the Current argument. The next step is
to create an IceBox service for the RoomManager object,
which follows the same pattern as the implementation for the
ChatSessionService. The implementation is as follows:

// C++
class RoomManagerServiceI :
 public ::IceBox::Service
{
public:
 virtual void start(
 const string& name,
 const CommunicatorPtr& c,
 const StringSeq& args)
 {
 TopicManagerPrx tm =
 TopicManagerPrx::checkedCast(
 c->stringToProxy(
 "IceStorm/TopicManager"));
 _adapter = c->createObjectAdapter(
 "RoomManager");
 _adapter->add(new RoomManagerI(tm),
 stringToIdentity("RoomManager"));
 _adapter->activate();
 }

Figure 3: More Scalable Deployment

��������

������

��������

������

����

�������

��������

������

��������

������

����

�������

������

��������

ADVANCED ICEPACK

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue 6, September 2005 Page 5Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Connections
ZeroC’s Newsletter for the Ice Community

Page 4 Issue 6, September 2005 Page 5Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

 virtual void
 stop()
 {
 _adapter->deactivate();
 }

private:
 ObjectAdapterPtr _adapter;
};

Next, we convert the chat session server to use a room manager
proxy. First, we must retrieve the proxy. Since IcePack man-
ages the RoomManager object, we can retrieve the proxy via
a well-known identity. Note that, by virtue of this change, the
ChatSessionService neither uses nor is aware of IceStorm. The
ChatSessionServiceI::start method becomes:

// C++_
void
ChatSessionServiceI::start(
 const string& name,
 const CommunicatorPtr& c,
 const StringSeq& args)
{
 _adapter = c->createObjectAdapter(
 "ChatServer");
 RoomManagerPrx rm =
 RoomManagerPrx::checkedCast(
 c->stringToProxy("RoomManager"));
 _adapter->add(
 new DummyPermissionsVerifierI,
 stringToIdentity("verifier"));
 _adapter->add(new ChatSessionRmI(rm),
 stringToIdentity("ChatSessionRm"));
 _adapter->activate();
}

Next, we remove the local RoomManager implementation from
the ChatSessionService, and change the remaining references
from RoomManagerPtr to RoomManagerPrx.

The last step is to add the room manager service to the ap-
plication deployment. We'll add a deployment descriptor called
roommanager.xml, as follows:

// XML
<icepack>
 <service name="${name}"
 entry="RoomManagerService:create">
 <adapters>
 <adapter name="RoomManager" endpoints="tcp">
 <object identity="RoomManager"
 type="::Chat::RoomManager"/>
 </adapter>
 </adapters>
 </service>
</icepack>

Our deployment now has three services: IceStorm, chat ses-
sion, and the room manager. The IceStorm service descriptor,
icestorm.xml, looks like this:

// XML
<icepack>
 <service name="${name}"
 entry="IceStormService,21:create">
 <dbenv name="${service}"/>
 <adapters>
 <adapter name="${service}.TopicManager"
 endpoints="tcp">
 <object identity="${service}/TopicManager"
 type="::IceStorm::TopicManager"/>
 </adapter>
 <adapter name="${service}.Publish"
 endpoints="tcp"/>
 </adapters>
 </service>
</icepack>

The chat session service descriptor, chatsession.xml, look as
follows.

// XML
<icepack>
 <service name="${name}"
 entry="ChatSessionService:create">
 <properties>
 <property name="Ice.ThreadPool.Client.Size"
 value="4"/>
 </properties>
 <adapters>
 <adapter name="ChatServer" endpoints="tcp">
 <object
 identity="${name}-ChatSessionManager"
 type="::ChatContract::ChatSession"/>
 <object identity="${name}-verifier"
 type="::Glacier2::PermissionsVerifier"/>
 </adapter>
 </adapters>
 </service>
</icepack>

Note that we changed the identity of the ChatSessionManager
and PermissionsVerifier object. Why do this? The answer is
simple: because we want to deploy multiple chat session services
and because distinct objects must have unique identities, we must
make the identities of these objects different for each service.

 It is clear that we need multiple ChatSessionManager
objects. Do we really need multiple PermissionsVerifier
objects as well? We first must decide whether each
PermissionsVerifier is actually unique. Do they all have the
same state? The answer is yes; otherwise a user would have dif-
ferent passwords when they try to log on to a separate front end.
This means that, if there are multiple PermissionVerifier
objects, they are actually replicas of one another—that is, they are
conceptually instances of the same object. Of course, the purpose
of replicas is fault tolerance: if one replica dies, the system can
continue to function. However, the cost is that the state of replicas
must be shared, which can be quite complex. (You might think
that a simple way to share the state would be to put the informa-
tion in a central database and have the different instances access

ADVANCED ICEPACK

Page 5Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 5Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

this state. However, you now must ensure that the database itself
doesn't become a single of point of failure.) For now, we'll ignore
this problem and simply deploy multiple PermissionVerifier
objects.

Note that, because the identity of the session manager object and
the permissions verifier object has changed, the Glacier2 configu-
ration has to reflect this change.

Next, we'll create a single node deployment, single_node.
xml. This deployment is convenient for testing since the entire
deployment is on one node:

// XML
<icepack>
 <application name="ChatServer">
 <node name="node">
 <server name="ChatApplication"
 kind="cpp-icebox"
 endpoints="tcp -h 127.0.0.1"
 activation="on-demand">
 <include name="IceStorm"
 descriptor="icestorm.xml"/>
 <include name="RoomManager"
 descriptor="roommanager.xml"/>
 <include name="ChatSession"
 descriptor="chatsession.xml"/>
 </server>
 </node>
 </application>
</icepack>

A Better Room Manager
Is this setup that much better? With the deployment descriptor as
outlined above, not really. However, the beauty of this setup is that
we can change the deployment to add more IceStorm servers and
more chat session services without having to change the code.

Or can we? It turns out that, actually, we cannot do this yet
because the RoomManager implementation uses only one Ic-
eStorm instance (namely the one with the Identity IceStorm/
TopicManager). Let's remedy that.

Consider what the RoomManager object really needs to do.
At the time of channel creation, it needs to locate an IceStorm
instance to use and create a new Topic on that instance. Does the
RoomManager care which instance of IceStorm it’s using to create
a new Topic? The answer is no; each IceStorm instance to the
RoomManager is equivalent and each provides the same service
so, from a service point of view, it doesn't matter which IceStorm
instance the RoomManager uses.

How about load balancing? Would it be a good idea to keep a
list of channels created on each instance of an IceStorm service and
try to keep the number of channels on each roughly equivalent?
The short answer is that this really is not a good idea: as it turns
out, in most cases, a random selection scheme is just as good

as more sophisticated schemes (and random selection is certainly
much simpler).

So, at channel creation time, the RoomManager needs to pick an
instance of an IceStorm service at random. What's the easiest way
to do that? Let’s review the IcePack::Query interface. (You can
find full documentation for the interface in the Ice distribution.)

// Slice
module IcePack
{
interface Query
{
 nonmutating Object*
 findObjectById(Identity id)
 throws ObjectNotExistException;
 nonmutating Object*
 findObjectByType(string type)
 throws ObjectNotExistException;
 nonmutating ObjectProxySeq
 findAllObjectsWithType(string type)
 throws ObjectNotExistException;
};
};

There are two sets of operations. findObjectById locates objects
by identity, and the other two methods locate objects by type:

• findObjectByType returns a random object from all objects
that support the given type.

• findAllObjectsWithType returns all objects that support
the given type.

The RoomManager could call findAllObjectsWithType upon
start-up, cache the return value, and then pick an IceStorm object
at random from the cached list. This has the advantage that the
RoomManager::enter method would not need to call on IcePack
each time a user enters a chat room. However, it has a serious
disadvantage: with this implementation, it is no longer possible
to add new IceStorm services at runtime without restarting the
RoomManager, but the RoomManager currently does not support
restart.

On the other hand, findObjectByType fits the bill nicely:
when it is time to create a new Topic for a chat room, this method
can be called to pick an instance at random from all the available
instances.

Let’s run through the changes necessary to do this. First, we
need to get a proxy to the IcePack Query interface:

// C++
IcePack::QueryPrx query =
 IcePack::QueryPrx::checkedCast(
 communicator->stringToProxy("IcePack/Query"));

We'll store this value in the member variable _query of the
RoomManager implementation. When it’s time to create a new
chat room, we’ll use IcePack to find an instance of TopicManager
at run time.

ADVANCED ICEPACK

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue 6, September 2005 Page 7Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Connections
ZeroC’s Newsletter for the Ice Community

Page 6 Issue 6, September 2005 Page 7Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

// C++
IceStorm::TopicManagerPrx manager =
 TopicManagerPrx::uncheckedCast(
 _query->findObjectByType(
 "::IceStorm::TopicManager"));
topic = manager->create(room);

With this approach, we have much more flexibility: we can deploy
any number of IceStorm services and the RoomManager uses them
to create new chat rooms. Furthermore, we can deploy more IceS-
torm services at run time, and the RoomManager will start to use
these without a restart!

Changing Deployments
The previous deployment was on a single node, with all services
provided within a single physical server, as shown in Figure 4.

For testing and development purposes, this is convenient. How-
ever, this particular deployment can also cause problems.

Start-up Ordering Problems
Note that the ordering of the services in single_node.xml de-
scriptor is very important. The services must be ordered as shown
because of their start-up dependencies.

In response to the call to ChatSessionServiceI::start, the
implementation makes Ice-mediated invocations upon the room
manager service in form of calls to checkedCast, which make re-
mote call to verify that the Ice object supports the given interface.

// C++
RoomManagerPrx manager =
 RoomManagerPrx::checkedCast(
 communicator->stringToProxy("RoomManager"));

It follows that IcePack must deploy the services in a particular or-
der. Note that this is necessary only because the services are in the
same IceBox server, and because the Ice-mediated invocations are
done within the context of the Service::start method. If the
services were deployed in separate servers, or the calls were done
after Service::start had completed, this wouldn't be necessary.
(Frequently, you can avoid making invocations in the Service::
start method. For example, you could use an uncheckedCast
instead of a checkedCast to avoid the Ice-mediated call, at the
expense of error checking.)

Instability
If the services are all deployed in a single server, all services die if
one of them crashes. With our application in its present state, this
is no big deal because the restart time is short. However, for more
sophisticated applications, the start-up time could be significant.

On the other hand, if services are deployed over multiple physi-
cal servers, then a crash won’t take down the whole application.
Of course, for this to work, the application must be able to recover
from the failure of a component gracefully. (Also note that a failure
doesn’t necessarily indicate a programming bug. Hardware failures
can and do occur!)

Can the current implementation recover from a failure? That’s
a good question and the short answer is no. We will discuss the rea-
sons for this in a future article.

Ability to Restart
A common scenario is that you’ve discovered a bug, or added a
new feature, and want to test your changes. Quite often, this means
that you want to restart a service, but not necessarily the entire de-
ployment. If all services are located within one physical server and
you are using C++, this is typically not a problem because shared
libraries can be unloaded and reloaded at run time. However, if you
are using Java, this is a real problem because you cannot unload a
.jar file: if you want to restart a Java service, you must restart the
entire server.

Separate Service Deployment
Fortunately, it is easy to create a deployment that puts each service
in its own server:

// XML
<icepack>
 <application name="ChatServer">
 <node name="node">
 <server name="IceStorm" kind="cpp-icebox"
 endpoints="tcp -h 127.0.0.1"
 activation="on-demand">
 <include name="${server}"
 descriptor="icestorm.xml"/>
 </server>

Figure 4: Deployment in a Single Server

����

��������

������

��������

����
�������

����
�������

ADVANCED ICEPACK

Page 7Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 7Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

 <server name="RoomManager" kind="cpp-icebox"
 endpoints="tcp -h 127.0.0.1"
 activation="on-demand">
 <include name="${server}"
 descriptor="roommanager.xml"/>
 </server>
 <server name="ChatSession" kind="cpp-icebox"
 endpoints="tcp -h 127.0.0.1"
 activation="on-demand">
 <include name="${server}"
 descriptor="chatsession.xml"/>
 </server>
 </node>
 </application>
</icepack>

This configuration uses ${server} as the service name. (The
point of this will become apparent shortly.) If you need to restart
a service after a bug fix, such as the chat session service, you can
stop and start the service selectively:

$ icepackadmin.exe --Ice.Config=config.icepack -e
"server stop ChatSession"

$ icepackadmin.exe --Ice.Config=config.icepack -e
"server state ChatSession"

The second command should report the state as inactive. When
you re-run the chat client, IcePack will restart the chat session
service on demand, and you can test your bug fix!

Real-World Deployment
The preceding deployment descriptor is also more suitable for a
real-world deployment. If you refer to Figure 1 in the document
we’ll need to deploy additional Glacier2 routers, chat session ser-
vices and additional IceStorm services as the need arises. For each
chat session service we will need an additional Glacier2 router.
(We will only ever have one room manager.) Let’s try adding an
additional chat session service.

First, we clean out the IcePack node databases. We start
icepacknode, deploy single_node_separate.xml, start up
Glacier2, and run the chat client to test the deployment.

Now, to deploy an additional chat session service, we alter
the deployment descriptor as follows and save it as a new file,
single_node_separate2.xml.

// XML
<icepack>
 <application name="ChatServer">
 <node name="node">
 <server name="IceStorm" kind="cpp-icebox"
 endpoints="tcp -h 127.0.0.1"
 activation="on-demand">

 <include name="IceStorm"
 descriptor="icestorm.xml"/>
 </server>
 <server name="RoomManager" kind="cpp-icebox"
 endpoints="tcp -h 127.0.0.1"
 activation="on-demand">
 <include name="RoomManager"
 descriptor="roommanager.xml"/>
 </server>
 <server name="ChatSession" kind="cpp-icebox"
 endpoints="tcp -h 127.0.0.1"
 activation="on-demand">
 <include name="${server}"
 descriptor="chatsession.xml"/>
 </server>
 <server name="ChatSession-2"
 kind="cpp-icebox"
 endpoints="tcp -h 127.0.0.1"
 activation="on-demand">
 <include name="${server}"
 descriptor="chatsession.xml"/>
 </server>
 </node>
 </application>
</icepack>

The use of ${server} means that only the name of the chat ses-
sion service needs to be changed. Now we can update the applica-
tion.

$ icepackadmin.exe --Ice.Config=config.icepack -e
"application update 'single_node_separate2.xml'"

Figure 5: Separate Deployment

����

��������

������

��������

������

����
�������

������

����
�������

ADVANCED ICEPACK

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue 6, September 2005 Page 9Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Connections
ZeroC’s Newsletter for the Ice Community

Page 8 Issue 6, September 2005 Page 9Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Next, we must change the session manager and permissions veri-
fier proxies that the Glacier2 router uses. We can write a new
configuration file for each Glacier2 router instance, or we can pass
the proxies to the permissions verifier and session manager on the
command line. For ease of maintenance we'll pass them on the
command line.

We start an additional Glacier2 router for the newly-deployed
ChatSession-2. Since we are running them on the same host,
we’ll need to use a different port for the second Glacier2 router.
The configuration file properties are overridden on the command
line:

$ glacier2router --Ice.Config=config.glacier2 --
Glacier2.SessionManager=ChatSession-2-ChatSessionM
anager --Glacier2.PermissionsVerifier=ChatSession-
2-verifier --Glacier2.Client.Endpoints="ssl -p 100
06"

Now this new Glacier2 instance needs to be provided to the client.
For this demo, we'll modify the properties on the command line as
we did with the Glacier2 router.

$ client --Ice.Default.Router="Glacier2/router:ssl
-p 10005:ssl -p 10006" --Chat.Client.Router="Glaci
er2/router:ssl -p 10005:ssl -p 10006"

There we have it! We have deployed a second Glacier2 router and
chat session service. Clients can use the new service immediately,
without a restart of the chat server!

ADVANCED ICEPACK

ZeroC is in the process of developing two new training courses to
help programmers get up to speed on developing Ice applications.
The courses (one using C++, the other one using Java) are devel-
oped by middleware training expert Michi Henning. Apart from
covering the basics, such as the Slice language and the C++/Java
language mapping, the courses cover everything developers
need to quickly become productive using the Ice platform.

Particular emphasis is placed on topics that are of
real-world relevance, such as various
servant implementation techniques
to achieve an application’s scalabil-
ity and performance require-
ments, how and when to
use asynchronous
invocation and
dispatch, and
how to use parts
of Ice that are
important for deploy-
ment, such as Ice’s
configuration mecha-
nism and deployment and
server activation service.
The courses do not shy away
from more complex issues that
commonly cause problems, such
as threaded programming and how
to manage object life cycle, giving
developers an opportunity to explore

application development as it relates to building real applications,
as opposed to toy examples.

Each training course extends over three days and includes
several practical programming exercises to help attendees become

familiar with Ice, and gain first-hand experience of how to
build real-life applications. Presented by Michi Henning and

other members of ZeroC’s staff, course attendees also
have plenty of opportunities to “pick the brains”

of some of the world’s foremost
experts on middleware design and
middleware application develop-

ment.

The first pub-
lic-enrolment
course (using
C++) will take

place in Florida,
November 16-18,

2005. Apart from
offering public-enrol-

ment courses, ZeroC
can also provide training

at customer premises and
tailor course content to meet

customer’s specific require-
ments. Please visit http://www.

zeroc.com/training/ for details.

2-29

Client-Side Slice-to-C++ Mapping

Copyright © 2005 ZeroC, In
c.

��������
����������

Operation invocations can throw exceptions:

ex
ce
pt
io
n
Ta
nt
ru
m
{
st
ri
ng

re
as
on
;
};

in
te
rf
ac
e
Ch
il
d
{

vo
id

as
kT
oC
le
an
Up
()

th
ro
ws

Ta
nt
ru
m;

};

You can call ��
��
��
��
��
��

 like this:

��
��
��
��

��
��
�
�
��
��

��
��
�
��
��
��
��

��
�
�
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
�
��
��
��

�
��
��
�
��
��
��

��
��
��
��

��
�

��
��

��
��
��

��
��
�
��
��
�
�
��

��
��
��
��

��
��
��
�

�

For efficiency reasons, you should catch exceptions by const re
ference

instead of by value.

Exception inherita
nce allows you to handle errors at different levels with

handlers for base exceptions at higher le
vels of th

e call hierarchy.

2-15
Server-Side C++ Mapping

Copyright © 2005 ZeroC, Inc.

����������������������������
Each adapter maintains a map that maps object identities to servants:

? Incoming requests carry the object identity of the Ice object that is
the target.

? The ASM allows the server-side run time to locate the correct
servant for the request.

? Object identities must be unique per ASM.

Fred
Joe
Carl

ASM
Servant

Object Adapter

Server

Endpoint

Client

Proxy
Joe

212.8.7.33

212.8.7.33
Joe

2-4

The Slice Interface Definition Language

Copyright © 2005 ZeroC, Inc.

��������������������������
Slice-to-Java
Compiler

ClientDeveloper

C++ IceRun-timeLibrary

Java IceRun-timeLibrary

C++

Java

ServerExecutable

ClientExecutable

�����������

���

������

SliceDeveloper

Slice-to-C++
Compiler

���������

�����������

����������

ServerDeveloper

�����������

New Ice Training Courses get Developers up to Speed

http://www.zeroc.com/training/
http://www.zeroc.com/training/

Page 9Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 9Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Taxing Times
Michi Henning, Chief Scientist

In Australia (which is where I live), it is yet again the time where
people have to submit their annual tax return. (The Australian
financial year runs from July to June.) And, this year, income tax
rates have changed, so the handy income tax calculator I wrote
a few years ago is out of date. Well, no problem, I’ll just write
another one. And, of course, in keeping with my day-to-day activi-
ties, the calculator uses Ice.

The interface to the tax calculator couldn’t be simpler:

// Slice
module Tax
{
 interface Calculator
 {
 double calculateTax(double income);
 };
};

Below is an example session showing the interactions of a simple
command-line client with the server.

$./client
Enter income (0 to quit): 78500
Tax is: 21270
Enter income (0 to quit): 98000
Tax is: 29610
Enter income (0 to quit): 0
$

As you can see, someone earning $78,000 pays $21,270 in tax,
whereas someone earning $98,000 pays $29,610 in tax.

“So what?” you may ask—after all, this isn’t exactly exciting. In
fact, the client code is so trivial that I won’t even bother showing
it. (Although, as usual, you can download the code for this article
from our web site.) And, the server code, apart from the tax calcu-
lation itself, is not very exciting either, so what’s the big deal?

Integrating the Calculator with Excel
Well, having been left with an outdated tax calculator once, I
decided that writing tax calculations in C++ (or any other program-
ming language for that matter) is somewhat archaic. It would be
nicer to have the tax calculation outside the server code so, next
time there is a change in tax rates, it won’t be necessary to modify
the source code and redeploy the server. Moreover, Microsoft Ex-
cel is a popular tool for such calculations, so why not use it? The
next time tax rates change, my accountant can send me an updated
spreadsheet and, to get my server to use the latest tax rates, all I’ll
have to do is save the spreadsheet. Figure 1 shows this architecture.

Of course, my tax example is somewhat contrived, but the ap-
proach is attractive: by using Excel, we allow a non-programmer
with domain-specific knowledge (such as an accountant) to imple-
ment or customize the application logic; an Ice server then makes
the data available to remote clients, but delegates the actual calcu-
lation to the spreadsheet. If there is a change to some aspect of the
calculations, only the spreadsheet need change, not the server, and
no programmer need be involved. And, of course, this idea can be

applied to any number of other business calculations; an obvious
example would be inventory and pricing information for an online
web store for which we definitely do not want to call a programmer
every time new stock arrives or the price of an item changes.

Figure 2 shows a screen shot of the Excel spreadsheet that
implements the tax calculation.

Cell D2 is an input field where you enter the income, and cell E2
contains a formula that calculates the tax due on that income and
displays it. (The remaining cells contain the tax rates for various
income thresholds and are used in the formula that is attached to
E2.)

Given this spreadsheet, how can we access it from an Ice server?
As it turns out, Excel comes with a COM library that allows you
to drive the application via “remote control.” The library allows a
program to do anything that you could do interactively, which is
just what we need.

Figure 1: Delegating Calculations to Excel

Figure 2: Server Deployment

������
���

������
�����

TAXING TIMES

http://www.zeroc.com/newsletter/issue6/excel.zip

Connections
ZeroC’s Newsletter for the Ice Community

Page 10 Issue 6, September 2005 Page 11Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Connections
ZeroC’s Newsletter for the Ice Community

Page 10 Issue 6, September 2005 Page 11Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Figure 3 shows the dialog that adds a reference to the Excel
COM library to a Visual Basic project. (I have written the code that
follows in Visual Basic, mainly because that is a popular language
for application integration; however, you can write the server in
whatever language you prefer.)

Note that, on my machine, there are two versions of the library (5.0
and 9.0) because I have two versions of Excel installed. (The ver-

sion on your machine may differ from either of these—simply use
the highest-numbered version if you have more than one.) Having
added a reference to the library to the Visual Basic project (as well
as a reference to the Ice run time, of course), we can be on our
merry way. Here is the bulk of the server code:

Imports System

Module ExcelServer
 Private Class TaxCalculator
 Inherits Tax._CalculatorDisp

 Public Sub New(_
 ByVal worksheet As Excel.Worksheet)
 Me.worksheet = worksheet
 End Sub

 ' More code here...

 Private worksheet as Excel.Worksheet
 End Class

 Sub Main(ByVal args As String())
 Dim status As Integer = 0
 Dim xl As Excel.Application = _
 Microsoft.VisualBasic. _
 CreateObject("Excel.Application")
 xl.Visible = True
 xl.UserControl = True
 Dim wb As Excel.Workbook
 Dim file As String = _
 IO.Directory.GetCurrentDirectory() _
 & "\Tax.xls"
 Try
 wb = xl.Workbooks.Open(file)
 Dim app As Calculator = _
 New TaxCalculator(wb.ActiveSheet)
 status = app.main(args)
 Catch ex As Exception
 Console.Error.WriteLine(ex)
 status = 1
 Finally
 If Not wb Is Nothing Then
 wb.Close(False)
 End If
 xl.Quit()
 End Try
 Environment.Exit(status)
 End Sub
End Module

The TaxCalculator class is the servant class that implements the
calculateTax operation. For the moment, the calculateTax
method is omitted—we’ll get to that shortly. For now, no-
tice that the class has a private member worksheet of type
Excel.Worksheet (initialized by the constructor), which we use
to interact with the spreadsheet as the client calls calculateTax.

If you have a look at Main, you will see that the program in-
stantiates an object xl of type Excel.Application. This is the
main handle that is used by the program to interact with a running
instance of Excel. The code sets the Visible and UserControl
properties of the application to True, so Excel is visible and allows
a user to interactively manipulate the contents of the spreadsheet
while the server is running. (You can, for example, change the
formulas or tax thresholds while the server is running and the
client gets to see the effects of your changes as soon as it calls
calculateTax.)

The code then opens a spreadsheet called Tax.xls (which is
expected to be in the server’s current directory) and instantiates the
TaxCalculator servant class, passing the active worksheet to the
constructor. Once the server shuts down, it closes the spreadsheet
without saving the contents and quits Excel.

What remains to be shown is the code for the implementation of
calculateTax, which is very simple:

Figure 3: Adding a Reference to the Excel COM
Library

TAXING TIMES

Page 11Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 11Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Public Overloads Overrides Function _
 calculateTax(ByVal income As Double, _
 ByVal current As Ice.Current) _
 As Double
 worksheet.Cells(2, 4) = _
 income worksheet.Calculate()
 Return Double.Parse(_
 worksheet.Cells(2, 5).Value)
End Function

As you can see, the operation simply inserts the income into the
fourth cell in the second row, calls Calculate on the worksheet,
and returns the contents of the fifth cell in the second row as a
Double value. As shown, the application is not particularly robust
and needs obvious improvements such as better error handling and
configuration. However, it illustrates that you can easily integrate
the functionality provided by Excel with your Ice applications.

Excel as an Ice Client
Delegating calculations to Excel in this manner is useful, but you
may have noticed that there is nothing all that Ice-specific to this
example—it just so happens that the application that controls Excel
is also an Ice server. A more interesting use case is to have Excel
act as an Ice client, for example, to populate an Excel spreadsheet
with data that is provided by an Ice server. “No problem,” you
may think. After all, Excel includes Visual Basic for Applications
(VBA), so we could use that to make Excel an Ice client. Unfor-
tunately, this does not work: VBA has a number of quite drastic
limitations (such as the inability to call constructors that require
arguments), which make it impossible to call into the Ice run time
(or into Slice-generated code) from VBA.

Fortunately, there is a way out: if you have the Visual Studio
Tools for Office (sold as an add-on product for Visual Studio), you
can create.NET code that is callable directly from within Excel.
This method does not suffer the limitations of VBA, which means
that you can interact with an Ice server directly from within Excel.
(You need Office 2003 or later for this.). Figure 4 shows the system
architecture using Excel as an Ice client.

To illustrate how all this works, let’s stay with the tax example.
Suppose we have a number of employees and their address details
in a business database. The database is remotely accessible via an
Ice server. At the end of the tax year, we need to produce a report
that shows each employee’s name, address, salary earned for that
year, and the tax payable on that salary. The Slice definitions for
this application are as follows:

module Employees
{
 struct EmployeeDetails
 {
 string name;
 string address;
 // ...
 };

 interface Employee
 {
 EmployeeDetails getDetails();
 void setAnnualSalary(double salary);
 void setTaxPayable(double amount);
 // ...
 };

 ["vb:collection"]
 sequence<Employee*> EmployeeSeq;

 interface EmployeeFinder
 {
 EmployeeSeq list();
 // ...
 };
};

The list operation of the EmployeeFinder interface returns
a sequence of Employee proxies; the getDetails operation
returns the name and address of an employee. The application uses
Excel as a client to this server to retrieve the list of employees and
display their details. The user then enters the salary for each em-
ployee; Excel calculates the tax payable on that salary. When the
user closes the spreadsheet, Excel invokes the setAnnualSalary
and setTaxPayable operations on each employee to update the
server.

Figure 5 shows the spreadsheet after start-up. The highlighted
cells are filled with the details that are returned by the Ice server.

The user enters the salary for each employee in column C, and
Excel calculates tax payable for each employee in column D. The
result is shown in Figure 6; the highlighted cells show the salary
entered by the user and the tax calculated by Excel. When the user

Figure 4: Using Excel as an Ice Client

���

������
����� ���

Figure 5: Initialized Spreadsheet

TAXING TIMES

Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 6, September 2005 Page 13Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 6, September 2005 Page 13Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

closes the spreadsheet, Excel sends the content of these cells to the
Ice server.

Now on to the code… (I am only discussing the client code here
because the server code is not relevant to this topic. But, of course,
you can download the complete code for this article from our web
site.) A Visual Studio Excel project produces a DLL that is called
by Excel, provided that the spreadsheet and your machine are con-
figured correctly. (I will discuss the configuration issues shortly.)
The DLL that is called by Excel contains a class with two methods,
ThisWorkbook_Open and ThisWorkbook_BeforeClose. Your
application code forms the body of these two methods. Visual
Studio creates an outline of this code for you when you create an
Excel project:

Imports Excel = Microsoft.Office.Interop.Excel
Imports System
Imports Employees

' Office integration attribute.
' Identifies the startup class for the workbook.
 <Assembly: System.ComponentModel. _
 DescriptionAttribute("OfficeStartupClass, _
 Version=1.0, Class=OfficeCodeBehind")>

Public Class OfficeCodeBehind

 Friend WithEvents ThisWorkbook _
 As Excel.Workbook
 Friend WithEvents ThisApplication _
 As Excel.Application

 ' Generated code here...

 ' Called when the workbook is opened.
 Private Sub ThisWorkbook_Open() _
 Handles ThisWorkbook.Open

 ' Your start-up code here...
 End Sub

 ' Called before the workbook is closed.
 ' Note that this method
 ' might be called multiple times and the
 ' value assigned to Cancel might be ignored
 ' if other code or the user intervenes.
 ' Cancel is False when the event occurs.
 ' If the event procedure sets this to True,
 ' the document does not close when the
 ' procedure is finished.
 Private Sub ThisWorkbook_BeforeClose(_
 ByRef Cancel As Boolean) _
 Handles ThisWorkbook.BeforeClose
 ' Your finalization code here...
 End Sub
End Class

To turn our spreadsheet into an Ice client, we need to flesh out
this class. To start with, we add a few private data members to the
class, which we initialize in ThisWorkbook_Open. These data
members store the active worksheet, the Ice communicator, the
sequence of Employee proxies returned by the list operation, and
the row index at which we will fill the spreadsheet with employee
details.

The ThisWorkbook_Open method initializes the Ice run time,
creates a proxy to the Finder object, and calls list on that object
to obtain the sequence of Employee proxies, which it stores in the
employees data member. The code then enters a loop in which it
retrieves the details for each employee and fills the corresponding
cells in the spreadsheet with these details.

Private sheet As Excel.Worksheet
Private communicator As Ice.Communicator
Private employees As EmployeeSeq
Private Const firstRow = 10 ' Employees start
 ' on row 10

Private Sub ThisWorkbook_Open() _
 Handles ThisWorkbook.Open
 Try
 ThisApplication.Visible = True
 ThisApplication.UserControl = True
 sheet = ThisWorkbook.ActiveSheet

 Dim args As String() = {""}
 communicator = Ice.Util.initialize(args)

 Dim prx As Ice.ObjectPrx = _
 communicator.stringToProxy(_
 "Finder:tcp -p 10000")
 Dim finder As EmployeeFinderPrx = _
 EmployeeFinderPrxHelper. _
 uncheckedCast(prx)

 Dim row = firstRow
 employees = finder.list()
 For Each emp As EmployeePrx In employees
 Dim details As EmployeeDetails = _

Figure 6: Initialized Spreadsheet

TAXING TIMES

http://www.zeroc.com/newsletter/issue6/excel.zip

Page 13Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 13Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

 emp.getDetails()
 sheet.Cells(row, 1) = details.name
 sheet.Cells(row, 2) = details.address
 row += 1
 Next
 Catch ex As Exception
 If Not communicator Is Nothing Then
 Try
 communicator.destroy()
 Catch
 End Try
 communicator = Nothing
 End If
 End Try
End Sub

Once the user closes the spreadsheet, Excel calls the
ThisWorkbook_BeforeClose method. Note that the method
sets Cancel to False before returning. This ensures that Excel
will actually close the spreadsheet; if you set Cancel to True, the
spreadsheet stays open. You can use this functionality to perform
data validation and present a dialog with an error message if
anything is wrong. For this simple application, we do not perform
any validation, but simply extract the salary and tax details from
the spreadsheet and update them in the Ice server before shutting
down.

Private Sub ThisWorkbook_BeforeClose(_
 ByRef Cancel As Boolean) _
 Handles ThisWorkbook.BeforeClose

 If Not communicator Is Nothing Then
 Try
 Dim row As Integer = firstRow
 For Each emp As EmployeePrx _
 In employees
 emp.setAnnualSalary(_
 Double.Parse(_
 sheet.Cells(row, 3).Value))
 emp.setTaxPayable(_
 Double.Parse(_
 sheet.Cells(row, 4).Value))
 row += 1
 Next
 communicator.destroy()
 Catch
 End Try
 communicator = Nothing
 Cancel = False
 End If
End Sub

This is all there is to writing the code for our Excel client. How-
ever, before you can launch the spreadsheet and have it talk to the
Ice server, you must take care of a few configuration issues. As it
turns out, this is somewhat complex (at least when you do it for
the first time), so I’ll discuss the configuration step by step. I also
recommend that you read Brian Randell’s and Ken Getz’s article
on deploying Visual Studio Tools for Office applications, which

provides a good overview of how Office applications determine
whether to trust a particular piece of code.

The first step is to ensure that your spreadsheet actually knows
that it is supposed to execute your code when it is launched.
To do this, you must set two properties in the spreadsheet,
_AssemblyLocation0, which determines in which directory your
code can be found, and _AssemblyName0, which determines the
name of the DLL that Excel should call. In this case, the name of
the DLL is Client.dll. Figure 7 shows the Properties dialog of
the spreadsheet in which you can set these properties. In this exam-
ple, the spreadsheet looks for the assembly containing your code in
its current directory. (For a real-world application, you would use a
full path name and place the assembly in a directory that cannot be
written to by ordinary users.)

When Excel starts up, it loads the assembly that is specified by
the _AssemblyName0 property. The assembly, in turn, contains
an attribute OfficeStartUpClass, which provides the name
of the class (OfficeCodeBehind, in this case) that contains
your ThisWorkbook_Open and ThisWorkbook_BeforeClose
methods. (You can see the corresponding attribute being set at the
start of the excel client code on page 12.) So, Excel knows which
assembly contains your code by looking at its _AssemblyName0
and _AssemblyLocation0 properties, and it knows which class
contains your code by looking at the OfficeStartUpClass at-
tribute inside the assembly. However, Excel will not execute your

Figure 7: Setting Excel Properties

TAXING TIMES

http://msdn.microsoft.com/msdnmag/issues/04/03/ToolsforOffice2003/default.aspx

Connections
ZeroC’s Newsletter for the Ice Community

Page 14 Issue 6, September 2005 Page 15Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Connections
ZeroC’s Newsletter for the Ice Community

Page 14 Issue 6, September 2005 Page 15Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

code unless the .NET Framework determines that Excel can actu-
ally trust that code. (If your code is not trusted, you get an error
message during Excel start-up telling you so.)

To get .NET to conclude that your assembly should be trusted
for the purpose of being executed inside an Office application, you
must add code groups to the .NET configuration. Each code group
determines which assemblies belong to the group, and what level
of trust should be granted to the assemblies in the group. In other
words, code groups are a mapping of assemblies to sets of permis-
sions.

The .NET Framework uses a number of different permission
sets, each of which represents a particular level of trust. (There
are permission sets that grant no permissions at all, grant execute
permission only, and so on.) For Excel to execute the code in your
assembly, your assembly must have FullTrust (which is the name
of one of the permissions sets). In addition, any assemblies that are
loaded by your assembly (such as the Ice run time) also must have
full trust.

So, to complete our configuration, we must tell the .NET Frame-
work that your assembly and the Ice run time are to be trusted
when executed by an Office application. There are several ways to
configure the .NET framework: using a GUI tool, via the command
line (using caspol.exe), and programmatically (via a number of
classes in the System.Security namespace). For this example,
I will show how to do this using the GUI tool. You can launch the
tool from the Control Panel, by selecting “Administrative Tools”
and “Microsoft .NET Framework 1.1 Configuration.”

Figure 8 shows a screen shot of this program.

.NET determines trust at a number of levels: the user, local
machine, enterprise, and application domain level. In addition,
trust can be established based on the zone from which an assembly
originates. For example, you can assign different trust to assem-
blies on the local machine and assemblies on the local intranet.
Excel not only requires full trust, but also requires full trust at the
application domain level so, for this example, we configure .NET
at the application domain level.

As you can see in Figure 8, within the user level, we have a node
called “Code Groups”, with a sub-group called “All Code”. If you
examine the settings for the “All Code” group, you will find that it
has full trust. However, because the Office loader applies trust at
the application domain level, this is not sufficient. Underneath the
“All Code” node, the Office loader looks for a node called “Office_
Projects”; child nodes underneath this node establish the required
application domain-level trust. To get Excel to trust our assembly,
we need two nodes here, one that grants trust to the client assem-
bly, and one that grants trust to the Ice run time (because the client
assembly loads the Ice run time).

To make matters more interesting, you can establish trust based
on a number of membership conditions. For example, you can state
that an assembly is to be trusted based on its location in the file
system, its hash code, or its strong name (among other choices).
For this example, we will establish trust for the client assembly
based on its location, and establish trust for the Ice run time based
on its strong name.

To configure trust for the client
assembly, we add a code group
underneath the “Office_Projects”
group. You have to assign a name
to the code group (“ExcelDemo”,
in this case), specify a membership
condition, and specify a permission
set (which must be “FullTrust”).
Figure 9 shows the dialog that
specifies the membership condition.

The condition type is set to
“URL”. By specifying a file: URL,
you can determine for which as-
sembly in the file system trust is to
be granted. Note that the path name
ends in a wildcard, meaning that all
assemblies in the specified directory
will be trusted. (You can also target
a specific DLL by providing its full
path name.)

Figure 10 shows the dialog that
specifies trust for the Ice run time.
In this case, trust is based on the
assembly’s strong name, that is,

Figure 8: .NET Configuration Tool

TAXING TIMES

Page 15Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 15Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

its public key. In addition, you can also specify the name of the
assembly and, if desired, a specific version of the assembly. Note
that, with this form of trust, it does not matter where the assembly
is located—the usual algorithm to locate assemblies is used by
.NET and, once the assembly is found, the run time checks whether
it is to be trusted or not, based on the membership condition and
permission set. Note that using the strong name of an assembly to
establish trust is particularly useful if the assembly is installed in
the Global Assembly Cache (GAC).

Summary
The technique I outlined in this article does not only apply to Ex-
cel, but also to Word, so you can exchange data between Word and
an Ice server in the same fashion. Application integration in this
way is not only easy to achieve, it can also be immensely useful
for a variety of business processes, such as updating sales figures,
checking stock levels, reporting field data back to head office, or,
as for this article, computing tax.

Excel also provides a number of other features that you can use
in your program, such as interactive dialogs, meaning that using
Excel as a client front end can save you a lot work: instead of writ-
ing a complete application from scratch, you can reuse a lot of the
features that are already built into Excel. Keep this idea in mind
for the next time you are asked to write a simple client to access
remote data: by reusing existing applications as much as possible,
you can avoid reinventing the wheel in these taxing times...

Figure 9: Membership Condition for Client Assembly Figure 10: Membership Condition for the Ice Runtime

TAXING TIMES

Connections
ZeroC’s Newsletter for the Ice Community

Page 16 Issue 6, September 2005 Page 17Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Connections
ZeroC’s Newsletter for the Ice Community

Page 16 Issue 6, September 2005 Page 17Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner

In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: Does Ice catch any signal?

This answer applies to Ice for C++ on all platforms except Win-
dows.

During the creation of the first communicator in a process, Ice
changes the signal disposition of SIGPIPE to SIG_IGN (ig-
nore). When the last communicator in a process is destroyed, Ice
changes SIGPIPE’s disposition to SIG_DFL; the default action for
SIGPIPE terminates the process without core dump.

Ice does not interact with any other signal; in particular, Ice does
not install any signal handler. That said, Ice also provides helper
classes with signal-handling capabilities:

• IceUtil::CtrlCHandler handles CTRL-C and CTRL-C-
like signals (SIGINT, SIGTERM and SIGHUP) by calling a
function registered by the application. See the “Portable
Signal Handling” section in the Ice manual for details on this
class.

• Ice::Application and Ice::Service each use a
CtrlCHandler to shut down or destroy the communicator
when the process receives a CTRL-C or similar signal.

These three classes are helper classes: they simplify coding, but
you do not have to use them. In particular, if Ice::Application
or Ice::Service do not handle SIGINT, SIGTERM and SIGHUP
in the way you like, you can implement your Ice application with-
out their help.

Q: Why do I get an Ice::UnknownException?

UnknownException has two subclasses
UnknownUserException, and UnknownLocalException.

• UnknownUserException is raised if the server implementa-
tion throws an Ice user exception that isn’t in the exception
specification for the operation.

• UnknownLocalException is raised if any Ice run-time
exception (any exception derived from LocalException)
other than ObjectNotExistException,
FacetNotExistException and
OperationNotExistException is thrown by the server
implementation.

• UnknownException is raised if any other exception is
thrown by the server implementation. Typically, the server
will give more information in the debug log if the property
Ice.Warn.Dispatch has a non-zero value. Some language
mappings, such as Java, also provide comprehensive informa-
tion in the reason string.

If you have a C++ server under Windows that raises an
UnknownException, this often means the server has suffered an
access violation, causing the C++ run time to raise a structured
exception that is later caught by a “catch(...)” handler in the
Ice dispatch code. During debugging with Visual C++, you can
trap such exceptions by setting “Debug/Exceptions/Win32 Excep-
tions/Access violation” to “Stop always” instead of “Stop if not
handled.”

You might wonder why there is an
UnknownLocalException. The Ice run time knows all of the
possible run-time exceptions, so why does it not return the true
error to the caller? The primary reason is security: the Ice run time
will not tell the client more than it needs to know. Another reason
is that the client cannot do anything meaningful with more infor-
mation. From a client-side perspective, you are interested in only
two outcomes: did it work, or did it not work? If it didn’t work,
you need to know whether the problem is a client-side or a server-
side issue. The run-time exceptions that are returned to the client
allow you to make this decision; other details about the exception
are a server-side concern, and therefore not provided to the client.

FAQ CORNER

http://www.zeroc.com/vbulletin/

Page 17Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 17Issue 6, September 2005 Connections
ZeroC’s Newsletter for the Ice Community

Q: What are the various forms of stringified proxies?

There are two types of stringified proxies, direct proxies and indi-
rect proxies.

Direct proxies have the form <identity>:<endpoints>. In turn,
the stringified form of an object identity is <category>/<id>.
The category is optional and, if not present, the category is the
empty string. The endpoints comprise a colon-separated list of
possible addresses for the server. Each address has a protocol
identifier, followed by protocol-specific addressing information.
Currently, Ice supports tcp, udp, and ssl. The addressing infor-
mation for each of these protocols is the same: -h <host> and
–p <port>. When a client makes the first invocation on a proxy,
the Ice run time tries to bind to each of the endpoints in a random
order. If binding to all of the endpoints fails, the run time raises an
exception (in most cases, a ConnectFailedException.)

Indirect proxies have the form <identity>@<adapter-name>,
with the adapter name being optional. Note that an indirect proxy
contains no addressing information: you cannot specify both an
adapter name and a list of endpoints, that is, a proxy of form
<identity>@<adapter>:<endpoints> is syntactically invalid. To
get a list of addresses from an indirect proxy so it can bind to the
target object, the client-side run time consults a locator, the address
of which is controlled by the Ice.Default.Locator property,
and asks the locator for the addresses at which an object with the
given identity and adapter name can be found.

FAQ CORNER

	Advanced IcePack
	New Ice Training Courses get Developers up to Speed
	Taxing Times
	FAQ Corner

