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At a Loose End…
Over the past few weeks, an interest-
ing discussion has been taking place 
on Steve Vinoski’s and Ted Neward’s 
blogs. Much of the discussion was 
about whether CORBA has failed and 
if web services or REST are any better. 
Predictably, the discussion didn’t prog-
ress very far before the words “loose 
coupling” were mentioned.

Loose coupling has become the Holy Grail of distributed com-
puting in the past few years. Why is this? The answer, in a nutshell, 
is versioning: in real life, applications do not hold still; instead, 
they need to evolve, provide new functionality, change exist-
ing functionality, and remove old functionality. As people using 
CORBA found out, evolving an application is difficult. It is espe-
cially difficult if different versions of an application must be able to 
coexist and interoperate. And providing such backward compatibil-
ity is essential because of the difficulty of simultaneously upgrad-
ing all deployed clients and servers.

First of all, let me state that the main culprit for versioning prob-
lems is naïve system design. Of course it is difficult to evolve an 
application if all types and client–server interactions are hard-wired 
without any negotiation steps (for example, to acquire a boot-
strap object that supports the desired version). A few well-chosen 
interfaces that allow clients to negotiate a version with a server and 
to acquire objects that are at the desired version can go a long way 
toward mitigating the problem.

But, putting design flaws aside, what people in the CORBA 
world kept stumbling over is the inability to change types or inter-
faces because that invalidates the on-the-wire contract between cli-
ent and server, and so loses backward compatibility. WS and REST 
proponents immediately latched onto this point, and we ended up 
with XML as an encoding on the wire. It is XML that is supposed 
to provide the sought-after loose coupling and allow applications 
to evolve more easily. (“The receiver can always ignore the bits it 
doesn’t understand.”)

On closer examination, this argument turns out to be severely 
flawed. (For some of the reasons, check the abovementioned 
discussions as well as this issue’s article on facets.) In fact, using 
WS or REST, clients and servers are as tightly coupled as ever. The 
problem is in the nature of the beast: without an a-priori agreement, 
communication between clients and servers is impossible. The 
agreement goes far beyond mere issues of representation: whether 
the data is encoded as binary or as XML is irrelevant because the 
interesting problems raised by versioning are at the semantic level, 
not the syntactic one.

The situation is rather ironic: not only does XML fail to pro-
vide the loose coupling that we so dearly want, but it also fails to 
provide it at a truly stupefying cost in bandwidth and CPU cycles. 
And, to add insult to injury, WSDL, which is usually used to 
specify interfaces for WS, is in direct conflict with loose coupling: 
it nails down specific types just as much as any other interface 
definition language. To actually get loose coupling, the developer 
has to abandon WSDL and explicitly parse the incoming XML. But 
that burdens the application with the need to perform type checking 
at run time that, otherwise, would be performed by the middleware 
at compile time.

Which brings me to facets… Facets are an elegant and simple 
mechanism that allows Ice applications to evolve gracefully, with-
out a need to weaken or otherwise interfere with an application’s 
type system, without a need to compromise static type safety, and 
without a need to sacrifice bandwidth and CPU cycles on the altar 
of loose coupling. I suggest you give facets a closer look—when it 
comes to evolving your application, they won’t leave you at a loose 
end.

Michi Henning 
Chief Scientist

Issue Features

FreezeScript
Matthew  Newhook continues his series of articles by showing 
you how to add user profiles to the chat application, as well as 
how to use FreezeScript to migrate database contents to work 
with a new version of the application.

Can a Leopard Change its Spots?
In this article, Michi Henning explains how you can version your 
Ice application with the help of facets.

http://www.iona.com/blogs/vinoski/archives/000214.html
http://blogs.tedneward.com/CommentView,guid,070274e8-ccfd-4ebd-87b5-494564c39b77.aspx
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FreezeScript
Matthew Newhook, Senior Software Engineer

Introduction
This article, we add support for personal profile information to the 
user object, and demonstrate how to use FreezeScript to migrate a 
database after changing a Slice definition. 

Personal Profile
Most online chat systems have a profile section where a user can 
enter their personal information. Let’s add the following informa-
tion to the user object:

•	 First name and last name
•	 Country/Region
•	 Province
•	 City
•	 Date of birth
•	 Marital status
•	 Gender
•	 Occupation
•	 Personal information
•	 Email address
•	 Home page

At this point, we need to choose a representation for this informa-
tion. There are two choices: individual variables for each field or 
an un-typed string representation, such as a series of string–string 
pairs. Why would we consider an un-typed representation? The 
reason is versioning. Suppose the user profile for the deployed ap-
plication looks something like this:

// Slice 
struct UserProfile 
{ 
	 string lastName; 
	 string firstName; 
	 // ...  
};

In a later version of the application, you want to add a new field, 
zipCode:

// Slice 
struct UserProfile 
{ 
	 string lastName; 
	 string firstName; 
	 string zipCode; 
	 // ... 
};

Doing this forces you to redeploy the new clients because the old 
clients do not expect the zipCode to be present in the structure. 
To avoid having to redeploy all clients, an alternative that is often 
suggested is to use an un-typed representation, such as a collection 
of key–value pairs. For example:

// Slice 
dictionary<string, string> ProfileDetails;

In your code, you use the name of the variable as the key to store 
the value of the variable:

// C++ 
ProfileDetails pd; 
pd[″lastName″] = ″Newhook″;

Adding the zipCode field now does not change the type system 
because the zip code becomes an additional entry in the diction-
ary, so all the existing clients still work. You may think that this 
neatly solves your versioning problem but, unfortunately, reality is 
rarely that cooperative. It is true that old clients continue to work, 
but only because they can ignore the zipCode field; but, in many 
cases, old clients do have to know how to deal with new data and 
cannot just ignore it. As an example, consider a Boolean field 
displayEmailAddress. This field is used by the application to 
determine whether to show or hide the email address of users. For 
this to work, all the old clients must be updated (at least if you 
want them to indeed respect people’s privacy).

The dictionary approach also has another drawback: we have 
no type information for the lookup values—they are all strings, 
regardless of their real type. Of course, we can encode a Boolean 
value as true or false, which is fine until someone mistakenly 
uses 0 or 1, or yes or no. If this happens, it is highly likely that 
the code that looks up the value will parse the value incorrectly 
and then do the wrong thing. This loss of static type safety is the 
biggest drawback of the key–value approach to versioning and you 
should avoid using it. (Ice provides a better way to deal with ver-
sioning in the form of facets, which are the topic of Michi’s article 
in this issue.)

So, for the moment, we’ll ignore the versioning issue and look at 
the Slice definitions to support user profiles: 

FreezeScript
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// Slice 
enum ProfileGender 
{ 
	 GenderNotSet, 
	 GenderUndisclosed, 
	 GenderMale, 
	 GenderFemale 
}; 
 
enum ProfileMaritalStatus 
{ 
	 MaritalStatusNotSet, 
	 MaritalStatusUndisclosed, 
	 MaritalStatusMarried, 
	 MaritalStatusSingle 
}; 
 
class User 
{ 
	 // ... 
	 string lastName; 
	 string firstName; 
	 string countryRegion; 
	 string province; 
	 string city; 
	 int dobDay; 
	 int dobMonth; 
	 int dobYear; 
	 bool displayAge; 
	 ProfileMaritalStatus maritalStatus; 
	 ProfileGender gender; 
	 string occupation; 
	 string personalInfo; 
	 string emailAddress; 
	 bool displayEmail; 
};

How do we pass this information around? One option is to add 
methods like these:

// Slice 
class User 
{ 
	 nonmutating string getLastName(); 
	 nonmutating string getFirstName(); 
	 nonmutating string getCountryRegion(); 
	 // ... 
};

Consider a possible use case for these methods—a web form that 
users edit to update their details. With a separate operation to 
retrieve the value of each field, the code will need to make fifteen 
separate remote invocations to populate the form, which is ex-
tremely inefficient. It is far better to make a single invocation and 
get all of the information at once. This suggests an API such as:

// Slice 
struct UserProfile 
{ 
	 string lastName; 
	 string firstName; 

	 string countryRegion; 
	 string province; 
	 string city; 
	 int dobDay; 
	 int dobMonth; 
	 int dobYear; 
	 bool displayAge; 
	 ProfileMaritalStatus maritalStatus; 
	 ProfileGender gender; 
	 string occupation; 
	 string personalInfo; 
	 string emailAddress; 
	 bool displayEmail; 
}; 
 
class User 
{ 
	 // ... 
	 nonmutating UserProfile getProfile(); 
 
	 UserProfile profile; 
};

Once the user has edited the profile details, the client needs update 
the stored profile with the new values. Again, it is easiest to have a 
single operation that accepts all the details, as follows:

// Slice 
class User 
{ 
	 // ... 
	 idempotent void setProfile( 
		  UserProfile profile); 
};

The implementation of this is very simple. We add to 
UserI.java:

// Java 
synchronized public UserProfile 
getProfile(Ice.Current current) 
{ 
	 return profile; 
} 
 
synchronized public void 
setProfile(UserProfile p, Ice.Current current) 
{ 
	 profile = p; 
} 
 
public 
UserI(UserManagerI manager, String id, String pw) 
{ 
	 // ... 
	 profile = new UserProfile(); 
	 profile.maritalStatus = 
		  ProfileMaritalStatus.MaritalStatusNotSet; 
	 profile.gender = ProfileGender.GenderNotSet; 
}

FreezeScript
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Note that, if you were to add methods that mutate the contents of 
the member variable profile, you must ensure that the marshal-
ing of the UserProfile data in getProfile is thread-safe. (See 
Mark Spruiell’s article Thread-Safe Marshaling in Issue 2 of Con-
nections for a detailed discussion of this topic.)

After changing the user class definition, you need to wipe the 
Freeze databases. The reason is that, for efficiency reasons, Freeze 
databases contain a binary representation of the data. If the class 
definition changes, attempts to read the old data will fail with a 
MarshalException or give unexpected results. As an example, 
consider the following:

// Slice 
struct Foo 
{ 
	 int x; 
	 int y; 
};

The generated C++ marshaling code for this looks something like:

void 
Foo::__write(::IceInternal::BasicStream* __os) 
const 
{ 
    __os->write(x); 
    __os->write(y); 
} 
 
void 
Foo::__read(::IceInternal::BasicStream* __is) 
{ 
    __is->read(x); 
    __is->read(y); 
}

Freeze stores data in the same format as it is marshaled, so the 
database entry for an instance of this structure contains four bytes 
containing the value of x, followed by four bytes containing the 
value of y (in little-endian byte order). Suppose we now change the 
structure to:

// Slice 
struct Foo 
{ 
	 int y; 
	 int x; 
};

The generated code for this is:

void 
Foo::__write(::IceInternal::BasicStream* __os) 
const 
{ 
    __os->write(y); 
    __os->write(x); 
}

void 
Foo::__read(::IceInternal::BasicStream* __is) 
{ 
    __is->read(y); 
    __is->read(x); 
}

If you were to use the generated code for the new definition to 
read the contents of a database written using the old definition, the 
values of x and y would be swapped! 

FreezeScript
Fortunately, Ice provides a solution to this problem without requir-
ing us to delete the existing databases: FreezeScript.

Using the transformdb tool, you can migrate a database to 
work with updated Slice definitions. By comparing the old Slice 
definitions with the new Slice definitions using a set of user defined 
rules written in XML, transformdb makes whatever changes 
are necessary to the data contained within the database to support 
the new Slice types. In the above example, the FreezeScript rules 
would swap the values of x and y.

transformdb supports two modes of transformation: default 
transformation and custom transformation. Let’s first look at what 
a default transformation does to our user objects. (The discussion 
that follows assumes that you have both the code for this issue 
and the code for Issue 7 installed.) First, clean the issue 7 demo 
databases:

$ cd demo.7 
$ rm -rf db/node/* db/registry/*

Then run the issue 7 demo, create a user called "foo” with pass-
word “bar”, and shut down the server:

$ admin 
==> add foo bar 
==> quit 
$ icepackadmin --Ice.Config=config.icepack  -e 
shutdown

Next, copy the databases into the issue 8 demo directory:

$ cd ../demo.8 
$ cp -r ../demo.7/db .

This creates the situation we just discussed, namely, that the new 
version of the application ends up with a database written by the 
previous version of the application.

The FreezeScript tool dumpdb allows you to inspect the contents 
of a Freeze database if you have its Slice definitions available. We 
can use dumpdb to show the contents of the user manager database 
as follows:

$ dumpdb -e –I/opt/Ice/slice –I../demo.7 --load 
../demo.7/User.ice db/node/servers/UserManager/
dbs/UserManager user

FreezeScript

http://www.zeroc.com/newsletter/issue2.pdf
http://www.zeroc.com/newsletter/issue7/chat.zip
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Key: struct ::Ice::Identity 
{ 
  name = ‘c0:a8:1:65:c502b70:102e7965480:-7fff’ 
  category = ‘user’ 
} 
Value: struct ::Freeze::ObjectRecord 
{ 
  servant = class ::Chat::User (object #0) 
  { 
    userId = ‘foo’ 
    password = ‘bar’ 
    callback = ::Chat::InvitationCallback*(nil) 
  } 
  stats = struct ::Freeze::Statistics 
  { 
    creationTime = long(1111986952343) 
    lastSaveTime = long(9266) 
    avgSaveTime = long(9266) 
  } 
}

Cool huh? This shows the user you previously created. Now you 
can try this with the issue 8 demo User.ice:

$ dumpdb -e -I/opt/Ice/slice -I. --load User.ice 
db/node/servers/UserManager/dbs/UserManager user 
c:\Ice-2.1.0-VC60\bin\dumpdb.exe: ../../include\
Ice/BasicStream.h:104: Ice::UnmarshalOutOfBoundsE
xception: 
protocol error: out of bounds during unmarshaling

As predicted, this does not work: the user object has changed and 
now contains a UserProfile data member. When the run time 
tries to read the data for the profile, it encounters the end of the 
stream and raises this exception. Now we’ll try the default trans-
formation:

$ transformdb -e --include-old /opt/Ice/slice 
--include-old ../demo.7 --old ../demo.7/User.
ice --include-new /opt/Ice/slice --include-new . 
--new User.ice db/node/servers/UserManager/dbs/
UserManager user newdb

This transforms the database and puts the result in a directory 
called "newdb”. Let’s dump the content of this new database:

$ dumpdb -e --load User.ice newdb user 
Key: struct ::Ice::Identity 
{ 
  name = ‘c0:a8:1:65:c502b70:102e7965480:-7fff’ 
  category = ‘user’ 
} 
Value: struct ::Freeze::ObjectRecord 
{ 
  servant = class ::Chat::User (object #0) 
  { 
    userId = ‘foo’ 
    password = ‘bar’ 
    callback = ::Chat::InvitationCallback*(nil) 
    profile = struct ::Chat::UserProfile 
    { 
      lastName = ‘’ 

      firstName = ‘’ 
      countryRegion = ‘’ 
      province = ‘’ 
      city = ‘’ 
      dobDay = int(0) 
      dobMonth = int(0) 
      dobYear = int(0) 
      displayAge = bool(false) 
      maritalStatus = ::Chat::ProfileMaritalStatus
(MaritalStatusMarried) 
      gender = ::Chat::ProfileGender(GenderMale) 
      occupation = ‘’ 
      personalInfo = ‘’ 
      emailAddress = ‘’ 
      displayEmail = bool(false) 
    } 
  } 
  stats = struct ::Freeze::Statistics 
  { 
    creationTime = long(1111986952343) 
    lastSaveTime = long(9266) 
    avgSaveTime = long(9266) 
  } 
}

Amazing, almost like magic! Unfortunately, there is one glitch: 
for the maritalStatus and gender fields, the values provided 
by the default transformation are wrong. To fix this, we need to 
re-transform the database with a custom migration descriptor. To 
assist in writing a custom migration descriptor, transformdb can 
generate a descriptor that does the default transformation. Since the 
default is mostly correct, we’ll use it as the basis of our migration. 
The first step is to generate the default descriptor:

$ transformdb -e --include-old /opt/Ice/slice -
-include-old ../demo.7 --old ../demo.7/User.ice 
--include-new /opt/Ice/slice --include-new . --new 
User.ice -o migrate.xml 
$ cat migrate.xml 
<transformdb> 
  <database key=″::Ice::Identity″ 
   value=″::Freeze::ObjectRecord″> 
    <record/> 
  </database> 
 
  <!-- class ::Chat::User --> 
  <transform type=″::Chat::User″> 
    <!-- NOTICE: profile has been added --> 
  </transform> 
 
  <!-- enum ::Chat::ProfileGender --> 
  <init type=″::Chat::ProfileGender″/> 
 
  <!-- enum ::Chat::ProfileMaritalStatus --> 
  <init type=″::Chat::ProfileMaritalStatus″/> 
 
  <!-- struct ::Chat::UserProfile --> 
  <init type=″::Chat::UserProfile″/> 
</transformdb>

FreezeScript
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Now we need to change the rule for initializing UserProfile, as 
follows.

// migrate.xml 
//... 
<init type=″::Chat::UserProfile″> 
  <set target=″value.gender″ 
   value=″::New::Chat::GenderNotSet″/> 
  <set target=″value.maritalStatus″ 
   value=″::New::Chat::MaritalStatusNotSet″/> 
</init> 
//...

This rule says that, when initializing a UserProfile, 
different values should be used for the gender and 
maritalStatus fields, namely ::Chat::GenderNotSet and 
::Chat::MaritalStatusNotSet. Let’s try the transformation 
again with the custom rule:

$ rm newdb/* 
$ transformdb -e --include-old /opt/Ice/slice -
-include-old ../demo.7 --old ../demo.old/User.
ice --include-new /opt/Ice/slice --include-new . 
--new User.ice -f migrate.xml db/node/servers/
UserManager/dbs/UserManager user newdb 
$ dumpdb -e -I/opt/Ice/slice -I. --load User.ice 
newdb user 
Key: struct ::Ice::Identity 
{ 
  name = ‘c0:a8:1:65:c502b70:102e7965480:-7fff’ 
  category = ‘user’ 
} 
Value: struct ::Freeze::ObjectRecord 
{ 
  servant = class ::Chat::User (object #0) 
  { 
    userId = ‘foo’ 
    password = ‘bar’ 
    callback = ::Chat::InvitationCallback*(nil) 
    profile = struct ::Chat::UserProfile 
    { 
      lastName = ‘’ 
      firstName = ‘’ 
      countryRegion = ‘’ 
      province = ‘’ 
      city = ‘’ 
      dobDay = int(0) 
      dobMonth = int(0) 
      dobYear = int(0) 
      displayAge = bool(false) 
      maritalStatus = ::Chat::ProfileMaritalStatus
(MaritalStatusNotSet) 
      gender = ::Chat::ProfileGender(GenderNotSet) 
      occupation = ‘’ 
      personalInfo = ‘’ 
      emailAddress = ‘’ 
      displayEmail = bool(false) 
    } 
  }

  stats = struct ::Freeze::Statistics 
  { 
    creationTime = long(1111986952343) 
    lastSaveTime = long(9266) 
    avgSaveTime = long(9266) 
  } 
}

Pure gold—our database is ready to rock with the new version of 
the application!

FreezeScript and transformdb are powerful and flexible tools, 
and this article only scratches the surface of what you can do. 
Future articles will demonstrate how to do more complex trans-
formations. In the meantime, if you want to know more about 
FreezeScript, please consult the Ice manual or ask questions on our 
forums!

FreezeScript

http://www.zeroc.com/Ice-Manual.pdf
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Can a Leopard Change its Spots?
Michi Henning, Chief Scientist

Introduction
In this issue’s article on FreezeScript, Matthew touched on the is-
sue of application versioning. Versioning refers to the evolution of 
an application over time to incorporate changed or new function-
ality. The challenge of versioning is to achieve it in a way that is 
compatible with already-deployed application components because 
it is often impossible to upgrade all clients and servers simultane-
ously. Or, to put it differently, we would like to make our applica-
tions change spots a little, depending on who is using it.

The kinds of changes that are required for versioning can range 
from the simple, such as adding a single new interface, to the quite 
complex, such as renaming an operation or interface, adding or 
removing a field from a structure, adding a new exception to an 
operation, or changing the inheritance structure of interfaces. In 
general, such changes modify the type system of the application 
and are not backward (or forward) compatible because they invali-
date the on-the-wire contract between client and server.

A more interesting case of versioning (and one that is often 
ignored) is if, for a later version of an application, the behavior of 
one or more operations needs to change. In this case, the change 
does not affect the type system because all interfaces and types 
stay the same. However, the change may still be incompatible be-
cause other application components might rely on the old behavior 
and might break when presented with the new behavior.

Conventional Approaches to Versioning
One of the most common approaches to versioning is to incor-
porate changes by relaxing the type system. The basic idea is to 
make interfaces and types more generic, so they can accommodate 
changes. For example, as discussed in Matthew’s article, you can 
model parameters as name–value pairs:

// Slice 
dictionary<string, string> ParamList; 
 
interface Generic 
{ 
	 ParamList genericOp(ParamList pl); 
};

With this approach, genericOp becomes like a Swiss army knife: 
it can accept an arbitrary number of parameters of arbitrary type, 
and return an arbitrary number of return values of arbitrary type. 
Unfortunately, this idea is severely flawed (as are variations of 
it). One big problem with the approach is that it loses static type 
safety: a client can easily send too many or too few parameters, or 
send parameters of the wrong type, but, as far as the compiler is 

concerned, everything is fine. In other words, the loose type system 
of this approach means that errors are not detected at compile time 
but at run time, and the error-detection code has to be provided by 
the application.

Another big problem with this approach is that all values are 
encoded as strings, even if the natural type of a value is something 
else, such as an integer or a structure. This means that the sender 
must encode values as strings, and the receiver must parse these 
strings to recover the values in their native type. This not only 
requires a lot of extra coding effort, but is also wasteful in band-
width and CPU cycles. (It is far cheaper to send an integer as a 
binary 4-byte value than to encode it as a string, transmit the string, 
and decode the string again at the receiving end.) And, of course, 
the encoding and decoding machinery itself may not be perfect and 
add yet another potential source of errors.

These problems are indeed serious: errors are detected only if 
you happen to have test cases that expose them. But even for sys-
tems of moderate complexity, it is impossible to achieve complete 
test coverage, making it likely that errors will be detected only 
after the application is deployed. Ironically, the complexity of the 
loose typing approach makes it much more likely for errors to 
creep into the code, and you may well find that you need to create 
a new version of the application only to deal with a bug that would 
not be there had you not used loose typing in the first place.

But, even more seriously, the loose typing approach is flawed 
because the original idea is flawed. Versioning by loose typing re-
lies on anticipating the need for versioning: the expectation is that 
the designers of the system will provide loose typing at the points 
where they expect future changes. Unfortunately, this rarely works 
in real life: the versioning requirements of an application are typi-
cally not known in advance, and designers are not prescient.

Another frequently-advocated approach to versioning is version-
ing by derivation. The basic idea is to extend an application by 
deriving new interfaces from old ones, and implementing the new 
functionality in the derived interfaces. For example, we might have 
a version 1 interface that provides some functionality:

// Slice 
interface Thing 
{ 
	 void doSomething(); 
};

For version 2, we can add new functionality to a derived interface:

// Slice 
interface ThingV2 extends Thing 
{ 
	 void doSomethingNew(); 
};

Initially, this looks attractive: version 2 clients attempt to down-
cast a Thing proxy to ThingV2 proxy; if the down-cast succeeds, 
they are dealing with a version 2 instance and, if the down-cast 
fails, they are dealing with a version 1 instance.

Can a Leopard Change its Spots?
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Unfortunately, versioning by derivation creates more problems 
than it solves. For one, once an application has undergone a few 
revisions, chances are that you will end up with an impenetrable 
mess of interface inheritance that is incomprehensible to mere mor-
tals. Secondly, and more importantly, versioning by derivation is 
naïve because it assumes that all future versions of an application 
are fully backward compatible with all previous versions: version-
ing by derivation allows you to add new functionality to derived 
interfaces, but it does not allow you to change anything. However, 
real-life versioning requirements are rarely that simple. It is often 
necessary to add a field to a structure, add a new exception to an 
operation, or change the type of a parameter, but derivation cannot 
handle any of these things. Finally, versioning sometimes requires 
removing functionality that was present in an earlier version, 
but derivation cannot deal with that either. The best you can do 
is to throw an exception if a conceptually-removed operation is 
invoked. But this perverts the type system which, after all, states 
that the operation exists; unconditionally throwing an exception 
whenever the operation is invoked is the moral equivalent of hav-
ing a machine with a button labeled “Don’t Press Me”—why put 
the button there in the first place if no-one is supposed to press it?

Yet another approach to versioning is to explicitly version every-
thing:

// Slice 
sequence<string> SomeTypeV1; 
dictionary<string, string) SomeOtherTypeV1; 
 
interface OtherThingV1 
{ 
	 string getName(); 
}; 
 
interface ThingV1 extends OtherThingV1 
{ 
	 SomeTypeV1 op(SomeOtherTypeV1 param); 
}; 
 
sequence<string> SomeTypeV2; 
dictionary<string, double> SomeOtherTypeV2; 
 
interface OtherThingV2 
{ 
	 string getName(); 
	 double getSize(); 
}; 
 
interface ThingV2 extends OtherThingV2 
{ 
	 SomeTypeV2 op(SomeOtherTypeV2 param); 
	 void otherOp(SomeOtherTypeV2 param); 
};

Even for this simple contrived example, it is clear that this ap-
proach is unspeakably clumsy. It is typically not known what might 
change at the time version 1 is created, so everything has to be 
tagged with a version label, even though it may never change. And 
because every version uses its own separate types, all type compat-
ibility is lost: a version 2 type cannot be passed where a version 1 

type is expected (even if it would be compatible) without explicit 
copying. Worst of all, client code must be written to explicitly deal 
with every version. In effect, the approach does not create back-
ward compatible versions, but multiple unrelated versions, and 
application components have to know how to deal with all possible 
versions and how to convert between them. This quickly leads to 
incomprehensible (and untestable) code.

A variation of the preceding approach is to version at the module 
level:

// Slice 
module V1 
{ 
    sequence<string> SomeType; 
    dictionary<string, string) SomeOtherType; 
 
    interface OtherThing 
    { 
        string getName(); 
    }; 
 
    interface Thing extends OtherThing 
    { 
	     SomeType op(SomeOtherType param); 
    }; 
};

module V2 
{ 
    sequence<string> SomeType; 
    dictionary<string, string) SomeOtherType; 
 
    interface OtherThing 
    { 
        string getName(); 
    }; 
 
    interface Thing extends OtherThing 
    { 
	     SomeType op(SomeOtherType param); 
    }; 
};

At first glance, this looks better than the previous attempt because 
it does not use mangled names that include a version number; in-
stead, the enclosing module carries the version identifier. However, 
this really is no better than the previous approach because ver-
sion 1 and version 2 types are completely unrelated, so there is no 
compatibility or type substitutability of any kind.

Ice Facets
When versioning an application, we must trade off two conflicting 
desires:

•	 We want things to be statically type safe, so we would like to 
change the type system to match each new version.

•	 We want things to be backward compatible, so we would like 
to not change the type system to match each new version.

Can a Leopard Change its Spots?
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Resolving this tension is difficult and, as we saw in the preceding 
section, naïve approaches create more problems than they solve. To 
address this issue, Ice provides facets. Correctly used, facets allow 
you to have your cake and eat it too: you can use facets to version 
an application while retaining both static type safety and backward 
compatibility.

Facets allow an Ice object to present multiple interfaces to the 
world. Figure 1 shows a view of an Ice object that consists of five 
facets, each corresponding to an interface.

Figure 1: Ice Object with Five Facets

Each facet has a name, known as the facet name. The names of 
the facets of an Ice object must be unique within that object. Facet 
names are arbitrary strings that are assigned by the server. If a 
server does not explicitly use facets, each Ice object has a single 
facet, known as the default facet, whose name is the empty string. 
By default, operation invocations made by clients are directed to 
the default facet.

It is important to note that all facets of an Ice object share the 
same object identity. (The facet name is not part of the object iden-
tity.) If a client holds proxies to two different facets of the same Ice 
object and compares their identities, they compare equal.

Typically, the facets of an Ice object each will have a different 
interface (although it is legal for several facets of an Ice object to 
have the same interface). Normally, each facet is implemented by 
a separate servant. The Ice object adapter provides operations that 
allow a server to control the facets of an Ice object:

// Slice 
namespace Ice 
{ 
	 dictionary<string, Object> FacetMap; 
 
	 local interface ObjectAdapter 
	 { 
		  Object* addFacet(Object servant, 

			   Identity id, string facet); 
		  Object* addFacetWithUUID(Object servant, 
			   string facet); 
		  Object removeFacet(Identity id, 
			   string facet); 
		  Object findFacet(Identity id, 
			   string facet); 
		  FacetMap findAllFacets(Identity id); 
		  FacetMap removeAllFacets(Identity id); 
		  // ... 
	 }; 
};

These operations have the same semantics as the corresponding 
“normal” operations to manipulate the Active Servant Map (ASM), 
but they also accept a facet name. (The “normal” operations use 
the default facet name so, in fact, add(servant) is equivalent to 
addFacet(servant, “”).)  Here is a C++ code fragment that 
shows how a server can create an Ice object with two interfaces, 
File and Stat:

// C++ 
// Create a File instance. 
// 
Filesystem::FilePtr file = new FileI(); 
 
// Create a Stat instance. 
// 
FilesystemExtensions::StatPtr stat = 
	 new StatI(/* ...*/); 
 
// Register the File instance as the default 
facet. 
// 
Filesystem::FilePrx filePrx = 
	 myAdapter->addWithUUID(file); 
 
// Register the Stat instance as a facet with 
// the name “Stat”. 
// 
myAdapter->addFacet(stat, 
	 filePrx->ice_getIdentity(), “Stat”);

The code registers the File instance as the default facet, and 
adds the Stat instance with the facet name Stat, using the same 
identity as for the File instance. Even without seeing the corre-
sponding Slice definitions, you can tell from the code what is going 
on here: the original version uses an interface called File, and 
the new version adds functionality by creating a Stat interface in 
a separate module called FilesystemExtensions. This illus-
trates an important advantage of facets: any type definitions that 
are relevant to a newer version are completely independent of the 
type definitions of previous versions, and can even be placed into 
an unrelated module. This not only avoids polluting the older Slice 
definitions when creating a newer version, but also avoids unneces-
sary recompilation. (Those parts of the system that only deal with 
the original version do not need to be recompiled.)

On the client side, the facet to which an operation invocation is 
sent is implicit in the proxy for the invocation. By default, op-
eration invocations are directed to the default facet. Clients can 
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navigate among the facets of an Ice object using a checkedCast 
that specifies the facet name. For example:

// C++ 
// Get a File proxy. 
// 
Filesystem::FilePrx file = ...; 
 
// Get the Stat facet. 
// 
FilesystemExtensions::StatPrx stat = 
	 FilesystemExtensions::StatPrx::checkedCast( 
		  file, “Stat”); 
 
// Go back from the Stat facet to the File facet. 
// 
Filesystem::FilePrx file2 = 
	 Filesystem::FilePrx::checkedCast(stat, “”);

If an Ice object does not provide the specified facet, the 
checkedCast returns null. A client can find out which facet is 
targeted by a proxy by calling its ice_getFacet method.

Normally, if a client invokes on a proxy for an Ice object that 
only has the default facet, the call either succeeds or, if the Ice 
object no longer exists, raises an ObjectNotExistException. 
With facets, it is possible for the Ice object to exist, but for the 
specified facet to not exist. An invocation to such a non-existent 
facet raises FacetNotExistException. In other words, clients 
see ObjectNotExistException only if the Ice object for a 
request truly does not exist, that is, if the Ice object has no facets at 
all.

Versioning Using Facets
Suppose we have deployed an application that contains the follow-
ing interface:

// Slice 
module Filesystem 
{ 
	 // Original version 
	 // ... 
	 interface Directory extends Node 
	 { 
		  nonmutating NodeSeq list(); 
		  // ... 
	 }; 
};

The list operation returns a sequence of Node proxies in ver-
sion 1. For version 2, we decide to change the list operation to 
return more detail for each node, to avoid having clients call list 
only to immediately make more calls to retrieve the details for 
each node:

// Slice 
module FilesystemV2 
{ 
	 // ... 
	 enum NodeType { Directory, File }; 
	 class NodeDetails 
	 { 
		  NodeType type; 
		  string name; 
		  DateTime createdTime; 
		  DateTime accessedTime; 
		  DateTime modifiedTime; 
		  // ... 
	 }; 
	 interface Directory extends Filesystem::Node 
	 { 
		  nonmutating NodeDetailsSeq list(); 
		  // ... 
	 }; 
};

Note that we now have two Directory interfaces, 
Filesystem::Directory for version 1, and FileSystemV2 
for version 2. For a version 1 client, nothing unusual hap-
pens at all. The client can construct a proxy and down-cast to 
Filesystem::Directory as always:

// 
// Create a proxy for the root directory 
// 
Ice::ObjectPrx base = communicator() 
	 ->stringToProxy(“RootDir:default -p 10000”); 
 
// 
// Down-cast the proxy to a Directory proxy 
// 
Filesystem::DirectoryPrx rootDir = 
	 Filesystem::DirectoryPrx::checkedCast(base);

A version 2 client bootstraps itself in exactly the same way, except 
that it down-casts to the V2 facet:

// 
// Create a proxy for the root directory 
// 
Ice::ObjectPrx base = communicator() 
    ->stringToProxy(“RootDir:default -p 10000”); 
 
// 
// Down-cast the proxy to a V2 Directory proxy 
// 
FilesystemV2::DirectoryPrx rootDir = 
    FilesystemV2::DirectoryPrx::checkedCast( 
					     base, “V2”);

If the down-cast fails, the server does not provide the V2 facet and 
so must be a version 1 server. In that case, the client can either fall 
back on the version 1 interface or, once you no longer want to sup-
port version 1, print an error message.

Can a Leopard Change its Spots?
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Note that the two versions do not interfere with each other and 
do not make a mess of the type system: each version’s Slice defini-
tions are contained in stand-alone modules. Moreover, each client 
that understands the application up to a particular version number 
is completely oblivious of any later versions that may since have 
been added to the application, so later versions do not interfere 
with earlier ones at the source code level. Also, versioning using 
facets avoids having to mangle names with version numbers: the 
two Directory interfaces with their respective list operations 
co-exist without problems.

Earlier, I mentioned behavioral changes, in which only the be-
havior of an operation changes, but not its signature. For example, 
we may have an operation that, as a side effect, changes the state of 
an object. Something like:

// Slice 
interface SomeObject 
{ 
    void changeState(); 
    State getState(); 
};

A client calls changeState to affect a state change and can 
read the changed state back with getState. For version 2 of the 
application, we might decide that changeState has to work dif-
ferently and produce a state change that differs in some way from 
version 1. However, this is not necessarily a backward-compatible 
change because version 1 clients might break if they end up calling 
the version 2 implementation of the operation and vice-versa. The 
problem though is that the changeState operation has exactly the 
same signature in both versions. We can deal with this in one of 
two ways:

•	 We can add separate facet servants for version 1 and version 2 
to the Ice object, and implement the changeState operation 
accordingly in each servant. This is the same approach we 
illustrated with the preceding example.

•	 Alternatively, we can register the same servant as both a ver-
sion 1 and version 2 facet, and check which facet is addressed 
by the client at run time.

With the latter approach, the client uses a version 1 or version 2 
proxy as usual, and the server adjusts its implementation by look-
ing at the Current object for the invocation:

void 
SomeObjectI::changeState(const Ice::Current& c) 
{ 
	 if(c.facet == “V2”) 
	 { 
		  // Provide version 2 behavior... 
	 } 
	 else 
	 { 
		  // Provide version 1 behavior... 
	 } 
}

The Current object contains the facet name of the target of the 
operation in the facet member, so the server can choose the cor-
rect behavior for each invocation.

Limits of Versioning
Facets are a surprisingly powerful and flexible mechanism to ad-
dress the versioning problem. In particular, using facets, you do 
not need to compromise static type safety by loosening the type 
system. Another advantage of facets is that they are both simple 
and non-intrusive: versions are shielded from each other, so the 
impact of versioning on the code base is limited to those parts 
of the code that actually need to deal with different versions; the 
remainder of the code is ignorant of versioning (and does not even 
require recompilation). This avoids the contortions that conven-
tional approaches suffer because there is no need to interfere with 
the type system of an existing version when adding a new version. 
In addition, facets do not extract a performance penalty: the only 
run-time overheads are storing the facet name in each proxy and 
sending that name on the wire with each invocation, which are 
insignificant.

However, despite their elegance, facets do not solve all version-
ing problems. In particular, you need to worry about the semantics 
of versioning. For example, if a version 1 object is passed as a 
parameter to a version 2 operation, you must, in the application 
code, take explicit action to deal with the situation; the invocation 
must have appropriate semantics (or raise an exception), neither of 
which is free in terms of implementation effort. What makes the 
versioning problem hard (despite the simplicity of facets) is the 
semantic complexity that can arise from the interactions of types at 
different version levels with each other. Versioning is often limited 
by the complexity rising to the point where developers can no 
longer keep up with it.

There is also a point where it no longer makes sense to version 
an application. If you look at an application and find that, while 
each pair of adjacent versions is similar, the first and the final ver-
sion might as well be considered completely different applications, 
it is a good sign that versioning has gone far enough. At that point, 
you should consider dropping compatibility with older versions 
and refactor the code to reduce complexity.

So, can a leopard change its spots? Yes, thanks to facets, it can. 
But it’s still a leopard and no amount of versioning will turn it into 
a lion (or turn a payroll application into a first-person shooter). 
Facets cannot perform miracles but, used judiciously, they go a 
long way towards allowing you to evolve your application without 
having to replace every piece of deployed software at once.

Can a Leopard Change its Spots?
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FAQ Corner

In each issue of our newsletter, we present a few frequently-asked 
questions about Ice. The questions and answers are taken from our 
support forum at http://www.zeroc.com/vbulletin/ and deal with 
specific problems that developers tend to encounter, and for which 
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this 
section useful.

Q: How do I find out how much memory my Ice 
process really uses? 

The simple answer to this question is to look at the resident set 
size using the task manager (under Windows) or the ps command 
(under Linux). Unfortunately, either way, you are likely to get 
misleading figures with no practical relevance.

To see why, consider how an operating system such as Windows 
or Linux allocates physical memory to a process. When the OS 
starts a process, it initially allocates only a small amount of physi-
cal memory to a process (at the very least, one page of memory 
that contains the instructions at which the process starts executing). 
As the process runs, it may access virtual memory locations for 
which the operating system has not allocated a physical page of 
memory as yet. If this happens, the memory management hardware 
raises an interrupt (known as a page fault) and transfers control to 
the OS kernel: in response to the page fault, the kernel suspends 
the current process, allocates a physical page of memory, initializes 
that memory with the appropriate text or data, and then resumes 
the process that caused the page fault. This is known as demand 
paging. The net effect of demand paging is that the OS does not 
need to allocate physical memory to a process until that memory 
is actually needed: if a process never accesses some of its virtual 
pages of memory, no physical memory is ever allocated for the 
corresponding pages of virtual memory.

In a demand-paged operating system, it can happen that a pro-
cess incurs a page fault at a time when all physical memory pages 
are in use. When this happens, the kernel must choose a page of 
memory that it can take away from its current process so it can 
allocate it to the process that caused the page fault. Usually, the 
page is chosen using a least-recently-used page replacement strat-
egy: the idea is to choose a page for eviction that is unlikely to be 
used in the near future. However, unless you have a machine that 
runs a number of large processes, it is quite possible that physical 
memory actually is never fully in use: with main memory often 
exceeding a gigabyte, it is entirely possible for all running pro-
cesses on a machine to actually fit into main memory, so the kernel 
actually never evicts any physical memory page when servicing a 
page fault.

If you instrument a process for memory access (pretty much any 
kind of process will do), you will find that memory access follows 
the 80/20 rule: a process spends around 80% of its time access-
ing around 20% of its virtual memory. The 80/20 rule, together 
with a large main memory size, are responsible for the misleading 
figures reported by the task manager and the ps command: these 
tools show the total number of memory pages that are physically 
allocated to a process, even though most of these pages are touched 
only once during process start-up and will never be touched again 
(and could be given to another process without any performance 
penalty).

What we would like these tools to report instead is the working 
set size of a process, which is the amount of memory that is used 
frequently. This number is hard to define because it depends on 
the exact definition of “frequently”. Intuitively, it is the number 
of pages of physical memory required by a process to continue 
running under its normal workload without incurring page faults. 
Or, in other words, the working set size is the “real” amount of 
memory that is used by a process while it is running. The difficulty 
of determining the working set size is the reason why it is not 
reported by tools such as the task manager and the ps command.

While there is no direct way to measure the working set size of 
a process, there is simple trick that you can use to find it, at least 
under Windows: Windows trims the physical memory pages given 
to a process to the bare bones when you minimize the window 
the process runs in. To try this out, take an Ice server and start it 
in its own command window, and access the server from a cli-
ent running in another window. Finally, make sure that the client 
is idle for the time being, so it does not invoke more operations 
in the server. Now start the task manager and look at the size or 
your server. Most likely, the task manager will report quite a large 
figure (around 4MB). Of course, that number includes all the pages 
that are not really used by the server anymore. Now minimize the 
window the server is running in. You will see the process size drop 
dramatically, most likely to less than 100kB, because Windows 
frees up most of the memory pages that are allocated to the process 
at this point. Unfortunately, that new number is not the working set 
size either, because Windows is quite aggressive at freeing memory 
and ends up removing pages that, in normal operation, would be 
needed. To get around this, go back to the client and exercise the 
server again, but do it while the server’s window is still minimized. 
You will see the process size jump back up again because Windows 
allocates physical memory pages to the server as it incurs page 
faults in response to the client activity. That new size gives you an 
accurate working set size and represents the “real” memory use for 
your server. (For a minimal server, that size is at around 600kB.)

Unfortunately, under Linux, there is no simple trick you could 
use to determine the working set size because there is no way 
to coerce Linux into artificially trimming the physical memory 
allocated to a process—the kernel will remove physical pages of 
memory from a process only once all physical memory is in use. 
You can force this to happen by writing a program that allocates 
an array of memory that is as large as the physical memory of 

FAQ Corner

http://www.zeroc.com/vbulletin/


Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 8, November 2005 Page 13Issue 8, November 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 13Issue 8, November 2005 Connections
ZeroC’s Newsletter for the Ice Community

your machine. The program should write at least one byte to every 
page of the array. You will need super user privileges to run this 
program because it will most likely require a larger than normal 
memory limit (see setrlimit(2) or the limit command of 
your shell). Running this program causes most of the machine’s 
physical memory to be allocated to it. (It would be polite to not 
do this on a multi-user machine—using up all available physical 
memory is a great way to bring a machine to its knees…) If you 
run the memory-waster program while your Ice client and server 
are running, per force, the kernel will trim the physical memory of 
your Ice processes. Now let the memory-waster program exit and 
use the still-running Ice client to exercise the server. When you 
now look at the resident set size of the server with ps, you will get 
a figure that accurately reflects the working set size.

Finally, before you go and give your machine a good work-out 
in this way, consider simply running your server under Windows 
and determining its working set size there. Chances are that the 
Linux figure will be within 20% of the Windows figure, so you 
can use the Windows working set size as an estimate of the Linux 
working set size.

Q: When should I use thread-per-connection instead 
of thread pool?

“Thread-per-connection” and “thread pool” are the names of the 
two concurrency models supported by Ice.

Thread pool is the default concurrency model because it is an 
appropriate choice for most applications. With the thread pool 
model, the Ice run time devotes one or more threads to servic-
ing requests. The maximum size of a thread pool determines the 
number of concurrent requests a server is capable of dispatch-
ing. Although the default maximum size is one, this value can be 
increased to satisfy the requirements of your application. During 
periods of increased activity, the Ice run time will automatically 
add new threads to the pool, up to the configured maximum size. 
As activity decreases, idle threads are terminated to conserve 
resources. You can also specify a minimum size for the thread pool 
so that Ice will keep at least that many threads active for handling 
new requests.

As its name implies, the thread-per-connection model dedicates 
a new thread to each incoming and outgoing connection. This mod-
el was initially added to support the requirements of the Glacier2 
router; the model makes it easier for the router to defend against 
certain types of attacks by hostile clients. But there are times when 
the thread-per-connection model is useful, and sometimes its use is 
mandatory. For example, since Java does not provide the necessary 
support for using SSL with a thread pool, the IceSSL plug-in for 
Java can only be employed by applications that use the thread-per-
connection model.

The thread-per-connection model also comes in handy when 
you need to serialize requests from a client. For instance, suppose 
that a transaction processing server must ensure that requests are 
dispatched in the order they are received. If the thread-per-connec-
tion model is enabled, only one thread can dispatch the requests 
received on a connection, and therefore serialization is guaranteed 
(assuming the client is not sending requests on multiple connec-
tions).

This requirement could also be satisfied with the thread pool 
model, but only if you limit the maximum size of the thread pool 
to one or, alternatively, if you can guarantee that the client does 
not send requests from multiple threads and does not send oneway 
requests. The disadvantage of using a thread pool restricted to one 
thread is that it serializes requests from all clients, rather than just 
the requests from a single connection. If you use a larger thread 
pool, and the client sends requests from multiple threads or uses 
oneway requests, then the operating system’s thread scheduling 
behavior in the server could cause requests to be dispatched out of 
order.

One distinct advantage of the thread-pool model over the thread-
per-connection model is scalability. Since thread-per-connection 
creates a new thread for each connection, a program that establish-
es hundreds of connections also creates hundreds of threads. The 
use of active connection management to reap idle connections (and 
therefore the threads associated with them) can mitigate this some-
what, but thread-per-connection clearly does not scale as well as a 
thread pool. In fact, the ability to set the maximum size of a thread 
pool allows you to tune an Ice application to match the hardware 
capabilities of its host. On a multi-processor machine, for example, 
you may decide to limit the thread pool to the number of physical 
processors in order to minimize the overhead of thread context 
switches. No such control is available with thread-per-connection.

Earlier we mentioned a use case in which the serialized nature of 
requests when using thread-per-connection is an advantage, but it 
could just as easily be considered a disadvantage in a use case with 
different requirements. For example, the thread-per-connection 
model might be an inappropriate choice for a server with long-run-
ning operations when the client needs the ability to have several 
operations in progress simultaneously. There are ways to achieve 
the client’s concurrency requirements while using the thread-
per-connection model. One option is to design the client so that 
it forces new connections to be established, however this tightly 
couples the client with the server implementation. Another alterna-
tive is for the server to use asynchronous dispatch in order to avoid 
blocking the connection’s thread, and use a work queue to execute 
the requests in separate threads. However, unless the server needs 
to track the order of requests, the thread pool model provides simi-
lar functionality with less effort.

In general, we recommend using the thread pool model, unless 
your application has very specific requirements that only thread-
per-connection can satisfy and scalability is not a concern.
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