
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 9, December 2005

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 9, December 2005

Contents
Grid Computing with IceGrid ... 2

Migrating from IcePack to IceGrid ................................. 8

FAQ Corner ... 16

Exciting Times
I have just returned to Australia from
the C++ Connections conference. This
was a conference well worth attend-
ing. With a stellar lineup of speakers
(including yours truly), the conference
featured a raft of submissions of excel-
lent quality. Many of the presentations
mentioned the upcoming C++ 0x stan-
dard (with x likely to be 9). Among the

things you can expect to make it into the standard are many of the
facilities provided by the Boost library, including nice features such
as better generic programming support, new data structures, and
functional programming constructs. In addition—and, to me, more
important than almost everything else—the standard will finally
include a memory model that defines how threads interact with
memory, as well as library (and, possibly, language) extensions for
writing portable threaded code.

You may wonder why I am getting so excited by the addition of
threading to the standard; after all, thread abstraction libraries, such
as the one provided by Ice, have been around for a long time and
do the job quite nicely. Of course, it’s nicer to have a standard for
threading than not having one, but a more important reason why
threading will play a much bigger role in the future is that Moore’s
Law is dead in the water: CPUs will not continue to get faster at the
rate we are used to. At a clock speed of 4GHz, light travels 7.5cm
(or, for the metric-impaired, 3″) per clock tick. That’s barely fast
enough to make it from one side of the chip to the other within a
clock tick. And we won’t get much beyond the 4GHz speeds we
have today. For one, it becomes increasingly difficult to maintain a
clean clock signal at high frequencies. (Fast CPUs already devote
around 30% of the chip surface to circuitry whose sole purpose is
to keep the clock signal clean across the chip.) Second, heat dis-
sipation is reaching physical limits. (The heat density inside a fast
CPU is approaching the heat density inside a nuclear reactor.) And
third, miniaturization won’t go much further. (Quantum tunnel-
ing effects are making it increasingly difficult to reduce the size of
devices much beyond what we have today.)

All this means that, for continued performance improvements,
we can no longer rely on increased CPU speed to do all the hard
work for us. Vendors are responding to the problem with architec-
tures that better support parallel execution. (We recently saw the
introduction of dual-core CPUs, and the trend is likely to continue
to multi-core CPUs.) Increased parallelism results in better perfor-
mance but, despite our best efforts, compilers are not all that good
at parallelizing general-purpose application code. To realize the po-
tential gains, we will have to write threaded code ourselves (and we
will be writing a lot more of that kind of code than we do today).

And this is where standardized threading will be most welcome.

Just as increased parallelism within a single machine will be im-
portant, so will be increased parallelism among different machines:
the performance bottleneck will make distributed computing a
much more important concern. And, of course, distribution requires
middleware.

To me, this is good news. Not just because I like middleware, but
because threads and distribution can take us only so far: as we are
increasingly squeezed between the demand for faster applications
and the hardware speed limit, we will no longer be able to afford
bloatware. In this upcoming new world, simplicity, efficiency,
minimalism, and elegant design and implementation will be de ri-
gueur. Of course, these are the very principles that drive the design
and implementation of Ice. And it goes to show that, long-term,
technical excellence is indeed a necessary precondition for success,
regardless of fashion trends in the market. (Need I mention web
services here?)

I look forward to this new world, in which engineering skills
will once again be more important than marketing skills. These are
exciting times indeed!

Michi Henning
Chief Scientist

Issue Features

Grid Computing with IceGrid
Benoit Foucher provides an overview of the new features
provided by IceGrid. IceGrid is a replacement for IcePack with
many new powerful features.

Migrating from IcePack to IceGrid
In this article, Matthew Newhook explains how you can migrate
your existing IcePack applications to IceGrid.

http://www.devconnections.com/shows/cppfall2005/default.asp?s=67
http://www.boost.org
http://en.wikipedia.org/wiki/Moore's_law
http://en.wikipedia.org/wiki/Moore's_law

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 9, December 2005 Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Grid Computing with IceGrid
Benoit Foucher, Senior Software Engineer

Introduction

This past month, ZeroC released Ice 3.0, which includes an excit-
ing new service—IceGrid. IceGrid replaces IcePack and enables
you to build Ice applications to be deployed on a grid network.
Grid computing is the use of a network of relatively inexpensive
computers to perform the computational tasks that once required
costly “big iron”. This article discusses the many improvements
that IceGrid has over IcePack and talks a little about IceGrid’s
future direction.

The Past

Active Registry to Start a Node
With IcePack, an IcePack node could only start when the cor-
reponding IcePack registry was running. This could make it
inconvenient to start an IcePack node on system boot because, if
the registry wasn’t up when a machine was booting, you had to
manually start the node.

IceGrid removes this restriction: a node can be started even if
the registry isn’t up. The node periodically tries to contact the reg-
istry until it succeeds. Once it succeeds, the node creates a session
with the registry and periodically sends keep-alive messages. If the
registry does not receive a keep-alive message in the time interval
configured by the IceGrid.Registry.NodeSessionTimeout
property, the registry considers the node dead and destroys its ses-
sion. Similarly, if the registry becomes unreachable for some time,
the node also destroys its session and then tries again to contact the
registry to create a new session.

This new session mechanism between the node and the regis-
try also improves response times and reliability in case a node is
down: a node is only contacted if it has an active session with the
registry.

Active Nodes for Deployment
To deploy an IcePack application, all the nodes participating in
the application had to be running. Each node stored data about the
servers it was managing and, in the event that some nodes were
temporarily down, it wasn’t possible to update the application.

With IceGrid, nodes no longer have an internal database; in-
stead, all the information about the deployed application is stored
in the registry database. However, the IceGrid node still maintains
a directory per server in its data directory. Each server directory
contains the server configuration files and the server database envi-

ronments (if any). After establishing a session with the registry, the
node retrieves the descriptors for the servers it manages and then
synchronizes the content of the server directories accordingly. The
synchronization may include activities such as updating the server
configuration files, adding or removing server directories, and add-
ing or removing database environments.

No Explicit Support for Templates
IcePack descriptors did not have explicit support for server or
service templates. To emulate templates, you had to use XML
includes. For example, in a server.xml file, you could define the
following descriptor:

// IcePack XML descriptor
<icepack>
 <server name="${name}" kind="cpp" exe="server">
 <adapters>
 <adapter name="Hello" endpoints="default"
 register="true"/>
 </adapters>
 </server>
</icepack>

You then could include this server descriptor in your application
descriptor:

// IcePack XML descriptor
<icepack>
 <application name="HelloApplication">
 <node name="localhost">
 <include descriptor="server.xml"
 name="HelloServer-1"/>
 <include descriptor="server.xml"
 name="HelloServer-2"/>
 </node>
 </application>
</icepack>

Although this worked fine, it wasn’t possible to deploy a new
server based on the server descriptor without the included XML.
Also, from just reading the XML server descriptor, it was not very
clear what parameters were necessary to instantiate a new server.

To remedy this, IceGrid adds explicit support for server and
service templates. These template descriptors are stored with the
application descriptor in the registry. This allows easy reuse of the
template descriptor to instantiate new servers. Here is the IceGrid
server template for the server descriptor from the example above:

// IceGrid XML descriptor
<icegrid>
 <application name="HelloApplication">
 <server-template id="HelloServer">
 <parameter name="instance-name"/>
 <server id="${instance-name}" exe="server">
 <adapter name="Hello" endpoints="default"
 register-process="true"/>
 </server>
 </server-template>

Grid Computing with IceGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 9, December 2005 Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

 <node name="localhost">
 <server-instance template="HelloServer"
 instance-name="HelloServer-1"/>
 <server-instance template="HelloServer"
 instance-name="HelloServer-2"/>
 </node>
 </application>
</icegrid>

As you can see, we no longer need include files to define the two
server instances. The server template includes a declaration of
the required parameters, which makes it easy to work out which
parameters must be provided to instantiate a new server. Because
server templates are stored with the registry, you can view them
with the IceGrid GUI or the IceGrid admin tool:

$ icegridadmin –-Ice.Default.Locator=...
>> server template describe HelloApplication
HelloServer
server template `HelloServer’
{
 parameters = `instance-name’
 server `${instance-name}’
 {
 exe = `server’
 activation = `manual’
 properties
 {
 Hello.Endpoints = `default’
 }
 adapter `Hello’
 {
 id = `${server}.Hello’
 endpoints = `default’
 register process = `true’
 wait for activation = `true’
 }
 }
}

With templates, it is trivial to deploy a new instance of the server
on a new node:

$ icegridadmin –-Ice.Default.Locator=...
>> server template instantiate HelloApplication
newnode HelloServer instance-name="HelloServer-3"

This instantiates a new server named HelloServer-3, based on
the HelloServer template on the node newnode.

To experiment with server templates yourself, you can try the
demo/IceGrid/simple demo provided with your Ice distri-
bution. In the demo directory, you will find a descriptor named
application_with_template.xml that makes use of templates
to deploy multiple instances of the server.

Deployment Update Dependent on XML Descriptors
IcePack did not provide a way to update an existing deployment
without the XML descriptors. The only way to update the deploy-
ment was to keep the XML descriptors around, edit them, and run

a command to synchronize the deployment with the content of the
updated XML descriptors.

With IceGrid, it is possible to edit a deployment without having
the XML descriptors that were used to initially deploy the appli-
cation. After transforming the XML descriptors to Slice, they are
stored in the IceGrid registry database. You can programmatically
retrieve these descriptors with the IceGrid admin interface, change
them, and save them again in the registry. The Slice descriptors are
defined in the slice/IceGrid/Descriptor.ice file in your Ice
distribution. Of course, an easier way to update a deployment is to
use the IceGrid admin GUI tool. The tool presents descriptors in
graphic form and also allows you to edit them. (It is still possible
to update a deployment with the XML descriptors, provided you
keep them synchronized with the deployment if you make changes
via the GUI.)

The Present

Replication
Prior to IceGrid, Ice provided a limited form of replication via
proxies with multiple endpoints, for example: myobject:tcp –p
10000 –h host1:tcp –p 10000 –h host2:tcp –p 10000
–h host3. However, this form of replication is not practical in a
grid environment because it requires the client to have knowledge
of all the replicas and their endpoints that are deployed on the grid.
The Ice run time and IceGrid now support a more elaborate form
of replication: replica groups. A replica group is a virtual object
adapter that is composed of multiple object adapters and can be
referred to by its identifier in indirect proxies, just like a regular
object adapter.

Consider the deployment shown in Figure 1. The IceGrid XML
descriptor for this deployment is as follows:

// IceGrid XML descriptor
<icegrid>
 <application name="HelloApplication">
 <replica-group id="HelloAdapter"/>
 <server-template id="HelloServer">
 <parameter name="index"/>
 <server id="HelloServer-${index}"
 exe="server">
 <adapter name="Hello"
 id=HelloAdapter-${index}"
 replica-group="HelloAdapter"
 endpoints="tcp"/>
 </server>
 </server-template>
 <node name="host1">
 <server-instance template="HelloServer"
 index="1"/>
 </node>
 <node name="host2">
 <server-instance template="HelloServer"
 index="2"/>
 </node>

Grid Computing with IceGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 9, December 2005 Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

 <node name="host3">
 <server-instance template="HelloServer"
 index="3"/>
 </node>
 </application>
</icegrid>

The descriptor declares a replica group HelloAdapter and makes
the Hello adapter a member of this group.

Figure 1 also shows the interaction between the client, the
location service, and the servers. When the client invokes the
ice_ping operation on an indirect proxy, the client-side run time
first asks the locator service for the endpoints of the adapter or
replica group identifier HelloAdapter. HelloAdapter refers to
a replica group; depending on the load balancing policy selected
for this replica group, the location service returns a set of endpoints
to the client. (In this case, the locator returns all endpoints for the
object adapters in the replica group because no load balancing is
specified.)

You can select among different load balancing policies: random,
round-robin, and adaptive. The adaptive policy selects a replica
on the least loaded node. You can specify the load balancing
policy with the load-balancing element in the XML descriptor, for
example:

// IceGrid XML descriptor fragment
<replica-group id="HelloAdapter">
 <load-balancing type="round-robin"
 n-replicas="2"/>
</replica-group>

Here, we’ve selected the round robin load balancing and we choose
to return the endpoints of at most two replicas to the client when it
requests the replica group endpoints through the location service.

Once the client has the endpoints corresponding to the Hel-
loAdapter identifier, it can invoke on the server. If the location
service returns multiple endpoints, the Ice run time applies the
same rules as for a direct proxy with multiple endpoints to select
the endpoint to use.

Again, to experiment yourself with replication, you can use the
demo/IceGrid/simple demo provided with your Ice distri-
bution. In the demo directory, you’ll find a descriptor named
application_with_replication.xml which makes use of
replication for the simple server.

Load monitoring and system information
An IceGrid node monitors the load of its host and sends the
load information to the IceGrid registry. This allows the registry
to select the replica on the least-loaded node when a client re-
quests the endpoints of a replica group with the “adaptive” load
balancing policy. The load information is also used to imple-
ment the findObjectByTypeOnLeastLoadedNode method
on the IceGrid::Query interface. You can retrieve the load
information of each node with the getNodeLoad method on the
IceGrid::Admin interface; alternatively, you can view the load
with the IceGrid admin GUI. On UNIX machines, the load is based
on the load average of the machine; on Windows, the load is based
on the average of the CPU utilization. In each case, the load is
calculated over the previous one-, five-, or fifteen-minute period.

Grid Computing with IceGrid

Figure 1: Replica Groups

Server: HelloServer-1

Server: HelloServer-2

Server: HelloServer-3

Client

Object adapter;
id = HelloAdapter-2
endpoints = tcp -p 28763 -h 192.168.0.2

Object adapter;
id = HelloAdapter-1
endpoints = tcp -p 34897 -h 192.168.0.1

Object adapter;
id = HelloAdapter-3
endpoints = tcp -p 49034 -h 192.168.0.3

Ice.ObjectPrx obj;
obj = ...// "id@HelloAdapter"
obj.ice_ping()

IceGrid Location Service
Replica group:
id = HelloAdapter
object adapters = {
 HelloAdapter-1 = tcp -p 34897 -h 192.168.0.1
 HelloAdapter-2 = tcp -p 28763 -h 192.168.0.2
 HelloAdapter-3 = tcp -p 49034 -h 192.168.0.3
}

2: ice_ping
1: query

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 9, December 2005 Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Each node also provides information about its machine:

•	 the name of the operating system
•	 the release and version of the operating system
•	 the hostname
•	 the number of processors and the hardware type

This information can be retrieved via the getNodeInfo method
on the IceGrid::Admin interface or viewed with the IceGrid
admin GUI. The same information can also be used in deployment
descriptors with the reserved variables ${node.os},
${node.hostname}, ${node.release}, ${node.version},
and ${node.machine}.

GUI
The IceGrid GUI allows you to browse and view deployed applica-
tions and see the status of the nodes and servers in the grid. You
can also use it to create, update, or remove a deployment. When
modifying a deployment, the GUI acquires an exclusive lock on
the registry database to ensure the database is not concurrently
modified by other processes.

To start the GUI, you can use the command

$ java –jar IceGridGUI.jar

The IceGridGUI.jar is located either in the bin or lib directo-
ry of the Ice distribution, depending on the platform. Once the GUI
is started, it prompts for the IceGrid registry to connect to. There
are two ways to connect to the registry: directly or via a Glacier2
router.

To connect directly to the registry, the GUI requires the follow-
ing information:

•	 User name: You can specify any user name; this user name
is used for IceGrid registry error messages in case there are
concurrent modifications of the IceGrid registry database.

•	 Instance name: This name must match the value of the
IceGrid.InstanceName property of the IceGrid registry to
connect to.

•	 Endpoints: The endpoints much match the value of the
IceGrid.Registry.Client.Endpoints property of the
IceGrid registry to connect to.

To connect via a Glacier2 router, you must specify:

•	 User name and password: The user name and password used
to authenticate with the Glacier2 router.

•	 Instance name: The instance name must match the value of
the Glacier2.InstanceName property of the Glacier2
router to connect to.

•	 Endpoints: The endpoints must match the value of the
Glacier2.Client.Endpoints property of the Glacier2
router to connect to.

Distributions
The IceGrid node has an integrated IcePatch2 client that enables
it to download files for an application or server deployed on the
node. This enables the download of files from an IcePatch2 server
for an application or server deployed on the node.

To configure the directories to download, you need to setup
a distribution. A distribution can be specified at the application
descriptor level and/or the server descriptor level. An application
distribution is downloaded by all the nodes for the application.
A server distribution is downloaded only on the node where the
server is deployed.

Let’s look at an example:

// IceGrid XML descriptor
<icegrid>
 <application name="HelloApplication">
 <node name="localhost">
 <server id="HelloServer"
 exe="${server.distrib}/bin/server">
 <distrib
 icepatch="IcePatch2/server:tcp –p 11000">
 <directory>bin</directory>
 <directory>lib</directory>
 </distrib>
 <env>LD_LIBRARY_PATH=${server.distrib}/lib
:$LD_LIBRARY_PATH</env>
 <adapter name="Hello" endpoints="tcp"/>
 </server>
 </node>
 </application>
</icegrid>

In this example, we deploy a server named HelloServer. This
server specifies a distribution that includes a bin and lib directory
and specifies the IcePatch2 server proxy to use. When the applica-
tion is deployed, IceGrid will download the server distribution.
You can also explicitly request IceGrid to refresh the distribution
on the node with the following icegridadmin command:

$ icegridadmin –-Ice.Default.Locator=...
>> server patch HelloServer

If the server is inactive, this command will start the patch, other-
wise, the patch will fail. You can either first stop the server, or use
the -f option with the server patch command to force the patch by
automatically stopping the server. Of course, you can also use the
IceGrid admin GUI to initiate the patch of the server distribution.

Note that the preceding server descriptor uses another reserved
variable: ${server.distrib}. This variable can only be used
in the scope of a server descriptor. Its value is the absolute path of
the directory where the server distribution is downloaded by the
IceGrid node.

Similarly, ${server.distrib} is used in the definition of
the LD_LIBRRARY_PATH environment variable. This is new with
IceGrid: it is now possible to refer to environment variables in the

Grid Computing with IceGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 9, December 2005 Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

definition of an environment variable.

Now, let’s see a descriptor containing an application distribution:

// IceGrid XML descriptor
<icegrid>
 <application name="HelloApplication">
 <distrib
 icepatch="IcePatch2/server:tcp –p 11000">
 <directory>data</directory>
 </distrib>
 <node name="localhost">
 <server id="HelloServer" exe="server">
 <adapter name="Hello" endpoints="tcp"/>
 <property name="DataDir"
 value="${application.distrib}/data"/>
 </server>
 </node>
 </application>
</icegrid>

The application distribution is specified directly in the applica-
tion descriptor. All the servers for the application depend on
this distribution and can access its files. As you can see, the
${application.distrib} reserved variable specifies the ap-
plication distribution directory on the node. All the servers for the
application must be inactive to patch the application distribution.
Furthermore, if a server depends on the application distribution,
patching the server also implies patching the application distribu-
tion. If you do not want a given server to depend on the application
distribution, you can set the application-distrib attribute to
false, for example:

// IceGrid XML descriptor
...
 <server id="HelloServer" exe="server"
 application-distrib="false">
...

Distributions allow you to drop all your binaries in a central reposi-
tory and get them distributed automatically to the nodes of your
grid via IcePatch2. Except to install the IceGrid node binary itself,
you don’t need to login on the machine to deploy a new applica-
tion.

Default Templates
With the Ice 3.0 distribution, you will find a number of templates
for the Ice services (IceStorm, Glacier2, and IcePatch2) in the
config/templates.xml XML descriptor. This descriptor is a
special application descriptor where only templates can be de-
fined. To use it, you need to specify its path to the IceGrid registry
with the IceGrid.Registry.DefaultTemplates property.
Once the registry is properly configured, you can import the
default templates into your application descriptor. If you are using
an XML descriptor to deploy your application, you need to set
the import-default-templates attribute of the application
element to true. If you use the GUI to create the application, the
default behavior is to import the default templates.

Let’s see how to use the IcePatch2 template in the descriptor from
the previous section to deploy an IcePatch2 server with the ap-
plication:

// IceGrid XML descriptor
<icegrid>
 <application name="HelloApplication"
 import-default-templates="true">
 <distrib>
 <directory>data</directory>
 </distrib>
 <node name="localhost">
 <service-instance template="IcePatch2"
 directory="/home/benoit/distrib"/>

 <server id="HelloServer" exe="server">
 <adapter name="Hello" endpoints="tcp"/>
 <property name="DataDir"
 value="${application.distrib}/data"/>
 </server>
 </node>
 </application>
</icegrid>

In this deployment, we deploy an application with a distribution
and two servers: the IcePatch2 server and the HelloServer serv-
er. Note that we don’t specify any proxy for the IcePatch2 server
in the distribution; the default proxy (if none is specified) is the
identity-only proxy ${application}.IcePatch2/server. If
you take a look at the IcePatch2 template in the templates.xml
descriptor, you’ll notice that this also the default identity of the
IcePatch2 file server. So, by default, you do not need it to specify
an identity!

Of course, you can add your own templates to this default
template descriptor. This is particularly useful for service templates
that are shared by multiple applications across a grid.

The Future
As usual, the addition of new major features to IceGrid will mostly
depend on customer demand, so future new features are not cast
in concrete. (Please don’t hesitate to provide feedback on our
forums!) That being said, here are a few things we plan to improve
in the near future.

Descriptors
It is currently not possible to define properties for a specific server
instance. You can update the server template to add the property,
but then all the server instances will have this property. Or you
have to copy/paste the server template and update the copy of the
template. To solve this, we will add support for properties directly
in server instances.

Grid Computing with IceGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 9, December 2005 Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

We are also planning to add support for property sets. Property
sets will allow sharing a group of properties across servers and ser-
vices. This is useful, for example, to define a set of debugging or
tracing properties that are common to multiple servers or services.

Better integration with IcePatch2
Currently, there is no way to interrupt a patch in progress. We will
add more feedback to the patching process to show the progress
of a patch and to allow users to interrupt a patch. Users will also
have the option to perform a thorough patch and to patch the server
distribution only for a given server, even if the server depends on
the application distribution.

GUI
For the GUI, we are planning to add XML import and export func-
tionality to allow deploying applications from their XML descrip-
tors ant to allow saving back a deployment to an XML descriptor.

Replication and Load Balancing
Currently, a client does not have much control over the selection of
a replica when it invokes on a proxy that refers to a replica group.
The replica to connect to is selected when the connection is estab-
lished and, as long as the connection remains, the Ice run time does
not try to invoke on another replica. If the connection fails, the Ice
run time tries to re-establish a connection to one of the replicas.
Although this behavior is fine for many applications, some applica-
tions require more advanced load balancing, such as request-based
load balancing where the Ice run time selects a replica for each
invocation on a proxy.

Currently, it is also not possible to control the life time of the
Ice run-time locator cache entries. This is problematic for ap-
plications with long-running clients and servers that are added or
removed frequently. Once the Ice run time retrieves the endpoints
of a specific replica group from the location service, it caches the
endpoints. The cached endpoints are kept until the communica-
tor is destroyed or all of the endpoints become invalid (that is,
connection establishment fails on all endpoints). This means that
if a replica is added after the client has cached the endpoints of the
replica group, the client never gets a chance to use the new replica
unless all the other replicas become unreachable.

The load of the nodes is currently based on the UNIX load aver-
age or Windows CPU utilization. This has the advantage of being
simple and is good enough for many applications. However, some
applications need to specify what constitutes the load on a machine
according to different criteria. We will add hooks to allow the
developer to provide an application-specific definition of the load
for a given server or node.

Summary
IceGrid provides many additional features over IcePack that make
it a lot easier to deploy a large number of nodes and servers in a
non-heterogeneous network environment. Thanks to IceGrid’s de-
ployment mechanism, it is possible to remotely modify, administer,
and monitor a deployment. Using server templates, it is also very
easy to extend a deployment. The distribution mechanism makes
it trivial to distribute the binaries of an application across a grid.
And, finally, replication adds scalability and fault tolerance to an
application with minimal implementation effort.

As for the future of IceGrid, it all depends on you, so please
don’t hesitate to make suggestions on our forum!

Grid Computing with IceGrid

http://www.zeroc.com/vbulletin

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 9, December 2005 Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Migrating from IcePack to IceGrid
Matthew Newhook, Senior Software Engineer

Introduction
Ice 3.0 adds an important new service to its arsenal—IceGrid.
IceGrid brings grid computing to Ice. IceGrid replaces IcePack,
and existing applications need to make a few changes to take
advantage of the new grid functionality. This article shows you
how to migrate the chat application to IceGrid as well as how to
simplify the existing code and deployment. Before reading this
article, I recommend that you read the “Introduction to IcePack”
and “Advanced IcePack” articles in issue 5 and issue 6 of Connec-
tions, respectively.

Core Differences
First, let’s have a look at the core differences between IcePack and
IceGrid. Like IcePack, IceGrid provides the locator service, server
activation and monitoring service, and a server deployment mecha-
nism. In addition, it provides

•	 an administration GUI
•	 server templates, which are a mechanism for simplifying the

creation of descriptors for an application
•	 replication, load balancing, and automatic failover
•	 code, configuration, and file distribution through direct inte-

gration with IcePatch2

IceGrid consists of the components as described in Figure 1:

Compared with IcePack, the main addition is the IceGrid GUI.
This application is used to monitor, create, and alter the deploy-
ment of a running grid.

Configuration
The configuration files remain largely the same. The same endpoint
configuration as for IcePack also applies to IceGrid, with the dif-
ference that the property names use IceGrid instead of IcePack.
As a first example, we’ll be deploying the application on a single
node, so the IceGrid configuration is as follows:

IceGrid registry configuration
IceGrid.Registry.Client.Endpoints=default -p 12000
IceGrid.Registry.Server.Endpoints=default
IceGrid.Registry.Internal.Endpoints=default
IceGrid.Registry.Admin.Endpoints=default
IceGrid.Registry.Data=db/registry

IceGrid node configuration.

IceGrid.Node.Name=localhost
IceGrid.Node.Endpoints=default
IceGrid.Node.Data=db/node
IceGrid.Node.CollocateRegistry=1

In addition, the configuration must define
Ice.Default.Locator, which is used by the node to lo-
cate the registry. We also recommend that a new property
IceGrid.InstanceName be set. This property assigns a unique
object identity to an IceGrid instance. (Previously, all IcePack loca-
tors had the identity IcePack/Locator. Strictly speaking, this
violated the Ice object model, which requires all objects to have
unique identities.) The resulting configuration is as follows:

IceGrid configuration (node & registry)
IceGrid.InstanceName=ChatIceGrid
IceGrid configuration (node only)
Ice.Default.Locator=ChatIceGrid/Locator:default -p
12000

The client configuration does not change, since it receives the ses-
sion object from Glacier2. The chat admin tool needs to have the
locator proxy configuration, as above.

Existing Deployment
The first step is to examine the existing IcePack-based deployment.
as shown in Figure 2. This deployment has one Glacier2 router,
and four separate IceBox processes on a single node, with each
process hosting a service. You may recall that the application uses
a single room manager and user manager, but it may use many chat
session and IceStorm servers. For each Glacier2 router, there is one
Chat Session server.

Since we want multiple deployments of the chat session and
the IceStorm servers, we can use templates. This allows us to
describe the server once in a template definition, and then deploy it
many times using template instances. In contrast to the equivalent
IcePack construct (an include directive), templates are more flex-
ible and simpler. As an example, let us examine the chat session
descriptor for IcePack:

Migrating from IcePack to IceGrid

Figure 1: IceGrid Components

Deployment

Ice Grid
Registry

Ice Grid
Node

Ice Grid
Node

Ice Grid
Node

Ice Grid
Admin

Ice Grid
GUI

http://www.zeroc.com/newsletter/issue5.pdf
http://www.zeroc.com/newsletter/issue6.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 9, December 2005 Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

// IcePack XML descriptor
<icepack>
 <service name="${name}"
 entry="ChatSessionService:create">
 <properties>
 <property name="Ice.ThreadPool.Client.Size"
 value="4"/>
 </properties>
 <adapters>
 <adapter name="ChatServer" endpoints="tcp">
 <object
 identity="${name}-ChatSessionManager"
 type="::Glacier2::SessionManager"/>
 <object identity="${name}-verifier"
 type="::Glacier2::PermissionsVerifier"/>
 </adapter>
 </adapters>
 </service>
</icepack>

This service descriptor uses the following IcePack deployment
descriptor:

// IcePack XML descriptor
<server name="ChatSession"
 kind="cpp-icebox" endpoints="tcp -h 127.0.0.1"
 activation="on-demand">
 <include name="${server}"
 descriptor="chatsession.xml"/>
</server>

So what does the equivalent IceGrid template definition look
like? A template definition encompasses the deployment method
(icebox in this case) as well as the service definition. Just as the
IcePack definition has a parameter, name, that is used to deploy
multiple chat session servers, so does the IceGrid template. (Note
that the entry parameter is not needed since it is constant for the
chat session template.) The remainder of the IceGrid template is
very similar to the IcePack descriptor:

// IceGrid XML descriptor
<server-template id="ChatSession">
 <parameter name="instance-name"/>
 <icebox id="${instance-name}" exe="icebox"
 activation="on-demand">
 <service name="${instance-name}"
 entry="ChatSessionService:create">
 <property name="Ice.ThreadPool.Client.Size"
 value="4"/>
 <adapter name="ChatServer"
 endpoints="tcp –h 127.0.0.1">
 <object identity="${instance-name}-ChatSes
sionManager"
 type="::Glacier2::SessionManager"/>
 <object identity="${instance-name}-verifie
r"
 type="::Glacier2::PermissionsVerifier"/>
 </adapter>
 </service>
 </icebox>
</server-template>

To deploy an instance of this server on node localhost using the
above template definition, we use the following XML:

// IceGrid XML descriptor
<node name="localhost">
 <server-instance template="ChatSession"
 instance-name="ChatSession"/>
</node>

Note that with the above template, you cannot specify the end-
points to use as they are hard-coded directly in the template as
tcp ‑h 127.0.0.1. In general, this is not a good idea since
templates are supposed to be flexible and easy to deploy on a wide
variety of different machines. If you were to deploy this template
on a machine with multiple interfaces, the server would listen on
all interfaces and any created proxies would advertise all corre-
sponding endpoints. This is typically not what is wanted,so it is a
good idea to parameterize the endpoints:

// IceGrid XML descriptor
<server-template id="ChatSession">
 <parameter name="instance-name"/>
 <parameter name="endpoints"
 default="tcp –h 127.0.0.1"/>
 <icebox id="${instance-name}" exe="icebox"
 activation="on-demand">
 <service name="${instance-name}"
 entry="ChatSessionService:create">

Migrating from IcePack to IceGrid

Figure 2: IcePack Deployment

node

Glacier2

IceBox

IceStorm

IceBox

Chat
Session

IceBox

Room
Manager

IceBox

User
Manager

Connections
ZeroC’s Newsletter for the Ice Community

Page 10 Issue 9, December 2005 Page 11Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 11Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

 <property name="Ice.ThreadPool.Client.Size"
 value="4"/>
 <adapter name="ChatServer"
 endpoints="${endpoints}">

For the IceStorm template, we make use of default templates, using
the config/templates.xml descriptor that comes with the Ice
demo distribution. (The configuration that follows assumes that the
file is copied into the current working directory.) First, we set the
following configuration variable in config.icegrid:

IceGrid configuration
IceGrid.Registry.DefaultTemplates=templates.xml

Next, we set the import-default-templates attribute as fol-
lows:

// IceGrid XML descriptor
<application name="ChatServer"
 import-default-templates="true">

Now we can deploy IceStorm. (Note that we are still binding the
endpoints to 127.0.0.1 since we want this deployment to run on
only a single host.)

// IceGrid XML descriptor
<node name="localhost ">
 <server-instance template="IceStorm"
 publish-endpoints="tcp –h 127.0.0.1"
 topic-manager-endpoints="tcp –h 127.0.0.1"
 instance-name="IceStorm"/>
</node>

Now let’s move on to the room and user managers. The IcePack
descriptors were as follows:

// IcePack XML descriptor
<icepack>
 <service name="${name}"
 entry="RoomManagerService:create">
 <adapters>
 <adapter name="RoomManager" endpoints="tcp">
 <object identity="RoomManager"
 type="::Chat::RoomManager"/>
 </adapter>
 </adapters>
 </service>
</icepack>
<icepack>
 <service name="${name}"
 entry="Chat.UserManagerService">
 <dbenv name="${service}"/>
 <adapters>
 <adapter name="UserManager" endpoints="tcp">
 <object identity="UserManager"
 type="::Chat::UserManager"/>
 </adapter>
 </adapters>
 </service>
</icepack>

The corresponding IcePack deployment looked like this:

// IcePack XML descriptor
<server name="RoomManager" kind="cpp-icebox"
 endpoints="tcp -h 127.0.0.1"
 activation="on-demand">
 <include name="${server}"
 descriptor="roommanager.xml"/>
</server>
<server name="UserManager" kind="java-icebox"
 endpoints="tcp -h 127.0.0.1"
 activation="on-demand">
 <include name="${server}"
 descriptor="usermanager.xml"/>
</server>

Because the room and user managers are singletons, we need not
use templates. The translation from IcePack is simple and to the
point:

// IceGrid XML descriptor
<node name="localhost ">
 <icebox id="RoomManager" exe="icebox"
 activation="on-demand">
 <service name="RoomManager"
 entry="RoomManagerService:create">
 <adapter name="RoomManager"
 endpoints="tcp –h 127.0.0.1">
 <object identity="RoomManager"
 type="::Chat::RoomManager"/>
 </adapter>
 </service>
 </icebox>
 <icebox id="UserManager" exe="java"
 activation="on-demand">
 <option>IceBox.Server</option>
 <service name="UserManager"
 entry="Chat.UserManagerService">
 <dbenv name="${service}"/>
 <adapter name="UserManager"
 endpoints="tcp –h 127.0.0.1">
 <object identity="UserManager"
 type="::Chat::UserManager"/>
 </adapter>
 </service>
 </icebox>
</node>

This completes the server-side configuration. The only remaining
item is Glacier2. With our IcePack-based example, we deployed
Glacier2 as a manually-started component. Since IceGrid provides
a default template for Glacier2 and, at present, no pass phrase is
required to start Glacier2, we can set things up to have Glacier2 be
managed by IceGrid. (Note that this example uses 127.0.0.1 as the
client-side endpoint; in a real-world scenario, you would use the
external IP address of the host.)

<node name="localhost">
 <server-instance template="Glacier2"
 client-endpoints="ssl –h 127.0.0.1 -p 10005"
 server-endpoints="tcp –h 127.0.0.1"

Migrating from IcePack to IceGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page 10 Issue 9, December 2005 Page 11Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 11Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

 instance-name="Glacier2"
 session-timeout="30"
 permissions-verifier="ChatSession-verifier"
 add-user-to-allow-categories="2"
 client-sleep-time="500"
 server-sleep-time="500"
 ssl-plugin="IceSSL:create"
 ssl-client-cert-path="certs"
 ssl-client-config="sslconfig.xml"
 ssl-server-cert-path="certs"
 ssl-server-config="sslconfig.xml"
 />
</node>

Note that the Glacier2 template does not launch Glacier2 on
demand. Why is that? The reason is that the client does not use
the IceGrid locator because the IceGrid locator is not (and should
not be) exposed to the external network. Instead, all communica-
tions go through the Glacier2 router. Since IceGrid is not involved
until after the client has contacted the Glacier2 router, it follows
that IceGrid cannot automatically launch the Glacier2 router on
demand.

The only other required change is to update any code references
to IcePack to instead use the equivalent IceGrid APIs. This only
occurs in one place—in the room manager implementation.

// C++
// RoomManagerI.h
const IceGrid::QueryPrx _query;

// RoomManagerI.cpp
RoomManagerI::RoomManagerI(
 const CommunicatorPtr& c) :
 _query(IceGrid::QueryPrx::checkedCast(
	 c->stringToProxy("ChatIceGrid/Query")))
{
}

Everything else remains the same, except that the application must
be linked with IceGrid instead of IcePack! The configuration and
instructions for this deployment are included in the IceGrid demo
distribution. I encourage you to try this out and experiment with it
before we move on to more advanced topics.

Replication and Load Balancing
Assume that you want to deploy several Glacier2 routers and chat
session servers. With the current model, we have one Glacier2
router for each chat session server. This one-to-one correspondence
is enforced only through configuration. Here is the relevant part of
the chat session descriptor template:

// IceGrid XML Descriptor
<adapter name="ChatServer"
 endpoints="${endpoints}">
 <object identity="${name}-ChatSessionManager"
 type="::Glacier2::SessionManager"/>
 <object identity="${name}-verifier"
 type="::Glacier2::PermissionsVerifier"/>

For each chat session server, we have one session manager and one
permissions verifier object, and each Glacier2 router is configured
with their corresponding identities. Here is the relevant part of the
Glacier2 router deployment descriptor:

permissions-verifier="ChatSession-verifier"
session-manager="ChatSession-ChatSessionManager"

If we deploy a second Glacier2 router, we must also deploy a sec-
ond chat session server and adjust the configuration accordingly.
This not only is somewhat error prone, but also may not make the
best use of server resources since a given Glacier2 router will only
use a single chat session server, whether or not it is in fact the least
loaded. With IceGrid we can do better.

Further, the permissions verifier object no longer belongs with
the chat session manager. Given that the permissions verifier object
delegates all calls to the user manager, providing multiple permis-
sions verifier objects adds no value because each is completely
dependent on a user manager object: if the user manager object is
slow or unavailable, the permissions verifier object will be equally
slow or unavailable. (I have omitted the code and configuration to
move the verifier object; please inspect the demo for details.)

The chat session objects can be made replicas because one chat
session is indistinguishable from another: a chat session does not
hold externally-visible state. (As a general rule, all factory interfac-
es can be replicated.) IceGrid contains direct support for replica-
tion in the form of replica groups. A replica group can be thought
of as a virtual object adapter that has object adapters as members.
Here is a replica group descriptor for the chat session manager:

<replica-group id="ChatServerAdapter">
 <object identity="ChatSessionManager"
 type="::Glacier2::SessionManager"/>
</replica-group>

This defines a replica group with the id ChatServerAdapter.
The group contains a well-known object ChatSessionManager,
with the type ::Chat::ChatSession. To support this replica
group in our application, we need to alter the template for the chat
session server as follows:

<service name="${name}"
 entry="ChatSessionService:create">
 <property name="Ice.ThreadPool.Client.Size"
 value="4"/>
 <adapter name="ChatServer"
 endpoints="${endpoints}"
 replica-group="ChatServerAdapter"/>
</service>

This descriptor no longer declares any well-known objects since
they now come from the replica group. Now that we are using a
replica group, we can change the Glacier2 router deployment as
follows:

permissions-verifier="verifier"
session-manager="ChatSessionManager"

Migrating from IcePack to IceGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 9, December 2005 Page 13Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 13Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

When a router first needs to use a session manager, the Ice run
time first calls IceGrid to obtain all the endpoints in the replica
group (because the replica group does not define a load-balanc-
ing policy), and then selects one of the endpoints that are returned
at random. (See “Endpoint Filtering” in the Ice manual for more
information on how the client selects an endpoint.)

For many applications, random load balancing is sufficient.
However, IceGrid supports other load balancing policies as defined
by a load balancing descriptor. The descriptor contains the follow-
ing information:

•	 Type. The load balancing type can be one of random, adap-
tive, or round robin.

•	 Number of replicas. The number of endpoints to return from
each query. (The default is 1.)

•	 Sampling interval. This attribute is only used by the adaptive
load balancing policy. Each node reports its system load to
the IceGrid registry at regular intervals. The sampling interval
defines the time interval over which the system load average
is considered. (The interval can be set to one, five, or fifteen
minutes; the default value is one minute.)

Each of the load balancing policies selects one or more object
adapters (defined by the configured number of replicas) and returns
them to the client. The supported load balancing policies are as
follows:

•	 Random. This load balancing policy selects a number of ob-
ject adapters at random.

•	 Adaptive. This policy uses system load information to choose
the least-loaded object adapters as defined by the sampling
interval.

•	 Round Robin. The policy selects the least-recently-used ob-
ject adapter.

As an example, the following load balancing policy for the replica
group ChatServerAdapter selects adaptive load with a 15 min-
ute sampling interval and returns three endpoints:

<replica-group id="ChatServerAdapter">
 <load-balancing type="adaptive" load-sample="15"
 n-replicas="3"/>
 <object identity="ChatSessionManager"
 type="::Glacier2::SessionManager"/>
</replica-group>

With Ice 3.0, we must set the property
Glacier2.SessionManager.CloseCount to force Glacier2
to close its connection to the session manager at regular intervals
and thus force it to periodically query for a new replica. This is
necessary because, once it establishes a connection to a server, Ice
re-uses that connection until the connection is closed. Since we
haven’t enabled active connection management, this means that the
connection will never be closed unless the server crashes (which
we hope will not occur!). Note that, even if we were to enable ac-
tive connection management, the connection would be closed only

if it is inactive. However, this is precisely the situation in which
we don’t need to use more than one session manager: if the system
is inactive there is no need for multiple session managers. For this
reason, you can configure Glacier2 to close its connection to the
session manager on a regular basis to force a rebalance. (Future
versions of Ice will allow you to control the client-side connection
use in a more elegant manner.)

To force the connection to the session manager to be closed each
time it is used (and thus force a reconnect each time), we can use
the following configuration:

session-manager-close-count="1"

In addition, since the chat session manager no longer needs to run
on the same host as the Glacier2 router, the server endpoints no
longer bind to 127.0.0.1. (In a real deployment, we would take
care to ensure that the endpoints are inaccessible to the external
network.) For purposes of this exercise, we leave the client-side
endpoints as 127.0.0.1. (In a real deployment, you would set
these endpoints to the external interface.)

server-endpoints ="tcp"

Because the object identities of all the chat session manager
objects are now the same, the chat session server code must be
changed as follows:

class ChatSessionServiceI :
 public ::IceBox::Service
{
public:

	 virtual void
	 start(const string& name,
 const CommunicatorPtr& c,
 const StringSeq& args)
	 {
		 _adapter = c->createObjectAdapter(
		 "ChatServer");
		 _adapter->add(
		 new ChatSessionManagerI(c),
		 stringToIdentity("ChatSessionManager"));
	 }
	 // ...

Because the chat server adapter creates new session objects, we
need to modify the ChatSessionManagerI::create implemen-
tation as follows:

SessionPrx
ChatSessionManagerI::create(const string& userId,
	 const Current& current)
{
	 Identity id = ...;
	 UserPrx user = ...;
	 return Glacier2::SessionPrx::uncheckedCast(
		 current.adapter->add(new ChatSessionI(
		 userId, user, _roomManager, _userManager),
			 id));
}

Migrating from IcePack to IceGrid

http://www.zeroc.com/Ice-Manual.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 9, December 2005 Page 13Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 13Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

This code actually creates a replicated proxy, that is, the Ice run
time believes that this object can exist on any of the adapters in
the replica group. However, this is wrong: this object should not
be replicated because it belongs to one and only one chat session
server. There are two ways to address this problem:

•	 Use a different, non-replicated, object adapter.
•	 Use createDirectProxy to return a proxy that directly

points to the object hosted by the object adapter.

Since creating a new object adapter incurs some overhead, we opt
for the createDirectProxy call. The code changes as follows:

SessionPrx
ChatSessionManagerI::create(const string& userId,
	 const Current& current)
{
	 Identity id = ...;
	 UserPrx user = ...;
	 current.adapter->add(
		 new ChatSessionI(userId, user,
			 _roomManager, _userManager), id);
	 return Glacier2::SessionPrx::uncheckedCast(
		 current.adapter->createDirectProxy(id));
}

You can use the deployment descriptor chatapp-replicated.
xml to experiment with this deployment. Note that the endpoints
no longer bind to 127.0.0.1 (except for the client side endpoint in
Glacier2), since this distribution is intended to support replication
and not be bound to a single host.

Distribution	
After we get our application distributed on lots of nodes, we then
encounter a new problem: how can we go about distributing our
application executables, libraries, and data to each node? To ad-
dress this, IceGrid provides an application distribution mechanism.
(For the examples that follow, we assume that the Ice run time is
installed on each host, and can be found in the PATH. For Java, we
assume that CLASSPATH contains the Ice run time and the Berke-
ley DB jar files.)

For the first example, we’ll get the distribution working on a
single Linux host. First, we set up a directory structure to hold the
distribution. We need to distribute all of the executables, as well
as the certificates for the Glacier2 router. The directory setup is as
follows:

•	distrib.single: This is the root of the distribution.
•	distrib.single/certs: This holds the contents of the
certs subdirectory.

•	distrib.single/app: This holds the application execut-
ables libChatSessionService.so and libRoomMan-
agerService.so.

•	 distrib.single/java: This holds the contents of the
classes subdirectory.

Once we have created this directory structure, we run
icepatch2calc to calculate the IcePatch2 checksums:

$ icepatch2calc .

Now let’s modify the deployment. First we’ll deploy an IcePatch2
server using the predefined template in templates.xml:

<node name="localhost">
 <server-instance
 template="IcePatch2"
 directory="distrib.single"/>
</node>

Note that the directory distrib.single is relative to the current
working directory of the IceGrid node.

Next, we need to modify the descriptors for each of our servers
to add the instructions to copy the relevant distribution. Here is the
relevant part of the chat session descriptor:

<server-template id="ChatSession">
 …
 <icebox id="${instance-name}" exe="icebox"
 activation="on-demand">
 <distrib>
 <directory>app</directory>
 </distrib>

The distrib element tells IceGrid that the files must be copied
from the app subdirectory of the IcePatch2 distribution directory.
The icepatch element provides the id of the IcePatch2 server to
use. If you were to try this template as is, you would get an un-
pleasant surprise when IceGrid tries to start the chat session server:
the start-up would fail because IceGrid would not be able to locate
the service’s shared library in the shared library path. In order to
make this work, we add one final piece of magic:

<server-template id="ChatSession">
 ...
 <icebox id="${instance-name}" exe="icebox"
 activation="on-demand">
 <env>LD_LIBRARY_PATH=${server.distrib}/app:$LD
_LIBRARY_PATH</env>

The variable ${server.distrib} contains the path name of the
server’s distribution directory. Note that this directive is explicit
to Linux, and no longer suitable for a general-purpose template.
(We’ll show how to avoid this shortly.)

The room manager descriptor contains similar changes, but the
user manager descriptor differs because it uses Java:

<icebox id="UserManager" exe="java"
 activation="on-demand">
 <env>CLASSPATH=${server.distrib}/java:$CLASSPATH
</env>
 <distrib>
 <directory>java</directory>
 </distrib>
 <option>IceBox.Server</option>

Migrating from IcePack to IceGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page 14 Issue 9, December 2005 Page 15Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 15Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

This is as expected: the executable class files are contained within
the java subdirectory, which must be added to the CLASSPATH.
How about the certificates? We could add these to either the Gla-
cier2 template or to the application data. For this example, we add
the certificates to the application data:

<icegrid>
 <application name="ChatServer"
 import-default-templates="true">
 <distrib>
 <directory>certs</directory>
 </distrib>

Now we need to change the certificate path in the Glacier2 tem-
plate instantiation to use ${application.distrib}, which is
the path name to the application distribution directory:

ssl-plugin="IceSSL:create"
ssl-client-cert-path="${application.distrib}/certs
"
ssl-client-config="sslconfig.xml"
ssl-server-cert-path="${application.distrib}/certs
"
ssl-server-config="sslconfig.xml"

That’s it! Please try this distribution. The full descriptor is con-
tained in chatapp-distrib-single.xml.

Next, let’s look at how to extend the distribution and deployment
to run on multiple hosts. For this example, we’ll use the deploy-
ment as described in Figure 3. Note that in a real world deploy-
ment, it is very important to ensure that the IcePatch2 server and
IceGrid registry are inaccessible to the external network. This can
be done by either binding the endpoints to the internal network

interface, or running the services themselves on a machine that is
only accessible from the internal network.

This time, we’ll put the IcePatch2 distribution in a directory
called distrib. This directory will have more or less the same
contents as for the preceding example, except that it contains
different executables for different operating systems. Since the
executables for different operating systems may have the same
name, the simplest method is to use different subdirectories, each
containing the executables for a particular operating system. Ice-
Grid provides a variable ${node.os} that contains the operating
system a given IceGrid node is running on. We’ll use this variable
to segregate the application executables. (Should you want to sup-
port different hardware (for example, 32-bit vs. 64-bit Linux), you
can use ${node.machine} to distinguish the operating systems.)

•	distrib/app/Linux: This holds the Linux applica-
tion executables libChatSessionService.so and
libRoomManagerService.so.

•	distrib/app/Darwin: This holds the OS-X applica-
tion executables libChatSessionService.dylib and
libRoomManagerService.dylib.

•	distrib/app/Windows: This holds the applica-
tion executables ChatSessionService.dll and
RoomManagerService.dll.

Next, we need to write the node-specific parts of the deployment
file. Here is the Linux deployment, which contains the Glacier2
and the IcePatch2 server. (Again, note that the client side endpoint
is specified as 127.0.0.1; for a real-world deployment, you
would use the external IP address of the server.)

<node name="linux">
 <server-instance
template="Glacier2"
 client-
endpoints="ssl -h
127.0.0.1 -p 10005"
 server-
endpoints="tcp"/>
 <server-instance

template="IcePatch2"

directory="distrib"
 endpoints="tcp"/>
</node>

Next, we’ll deal with the
deployment configuration
for the node “mac”—a
Macintosh running OS‑X.
This machine runs the room
manager server, IceS-
torm, and a chat session
server. However, here we
hit a snag: the setting of
the environment variable

Figure 3: Multiple Node Deployment

linux 192.168.1.2 macwindows

IceBox

IceStorm

IceBox

Chat
Session

IceBox

Room
Manager

IceBox

IceStorm

IceBox

Chat
Session

IceBox

User
Manager

Glacier2

IceGrid
Registry

IcePatch2
Server

Migrating from IcePack to IceGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page 14 Issue 9, December 2005 Page 15Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 15Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

to control the location of shared libraries is OS-specific, so the
LD_LIBRARY_PATH setting we used previously is inappropriate for
OS‑X:

<server-template id="ChatSession">
 <parameter name="instance-name"/>
 <icebox id="${instance-name}" exe="icebox"
 activation="on-demand">
 <env>LD_LIBRARY_PATH=${server.distrib}/app:$LD
_LIBRARY_PATH</env>

One solution would be to add the environment variable to the
template descriptor. However, this is rather cumbersome. Since the
shared library path syntax is node specific we can more easily use a
node variable, like this:

<node name="mac">
 <variable name="shlib.path" value="DYLD_LIBRARY_
PATH=${server.distrib}/app/${node.os}:$DYLD_LIBRAR
Y_PATH"/>

We can reference this variable in the chat session template to set
the shared library path, and we use ${node.os} to control the
distribution directory:

<server-template id="ChatSession">
 <parameter name="instance-name"/>
 <icebox id="${instance-name}" exe="icebox"
 activation="on-demand">
 <env>${shlib.path}</env>
 <distrib>
 <directory>app/${node.os}</directory>
 </distrib>

For other OS-specific variables, such as the Java CLASSPATH, we
can also use node-specific variables as appropriate.

Onto the deployment! Because every server instance must have
a unique name, the instance names of the chat session and IceS-
torm servers are changed accordingly.

<node name="mac">
 <variable name="shlib.path" value="DYLD_LIBRARY_
PATH=${server.distrib}/app/${node.os}:$DYLD_LIBRAR
Y_PATH"/>
 <server-instance template="IceStorm"
 instance-name="IceStorm-mac"/>

 <server-instance template="ChatSession"
 instance-name="ChatSession-mac"/>

 <icebox id="UserManager" exe="java"
 activation="on-demand">
 <env>CLASSPATH=${server.distrib}/java:$CLASSPA
TH</env>
 <distrib>
 <directory>java</directory>
 </distrib>
 <option>IceBox.Server</option>
 <service name="UserManager"
 entry="Chat.UserManagerService">
 <dbenv name="${service}"/>

 <adapter name="UserManager" endpoints="tcp">
 <object identity="verifier"
 type="::Glacier2::PermissionsVerifier"/>
 <object identity="UserManager"
 type="::Chat::UserManager"/>
 </adapter>
 </service>
 </icebox>
</node>

Here is the deployment for Windows which runs the room manager
server, IceStorm, and a chat session server:

<node name="windows">
 <variable name="shlib.path" value="path=${server
.distrib}/app/${node.os};%path%"/>

 <server-instance template="IceStorm"
 instance-name="IceStorm-windows"/>

 <server-instance template="ChatSession"
 instance-name="ChatSession-windows"/>

 <icebox id="RoomManager" exe="icebox"
 activation="on-demand">
 <distrib>
 <directory>app/${node.os}</directory>
 </distrib>
 <service name="RoomManager"
 entry="RoomManagerService:create">
 <adapter name="RoomManager" endpoints="tcp">
 <object identity="RoomManager"
 type="::Chat::RoomManager"/>
 </adapter>
 </service>
 </icebox>
</node>

Before testing this deployment, we must run an IceGrid node on
each host. The configuration files (config.linux.icegrid,
config.mac.icegrid, config.windows.icegrid) can be
found in the demo distribution.

That is all that is necessary to deploy on multiple operat-
ing systems. This particular deployment is not all that easy
to try and experiment with because you need separate Win-
dows, Linux, and Mac machines to try it out. However, if you
have more than one machine, I encourage you to experiment
with the descriptor and try out the distribution facilities in Ice
Grid. The deployment descriptor that I used to deploy is in
chatapp-distrib-multinode.xml.

Conclusion
This concludes our exploration of most of IceGrid’s new features.
Compared to IcePack, an IceGrid deployment is both simpler and
more flexible, and it makes administration across multiple nodes
a much less daunting affair. At ZeroC we’re very excited about
IceGrid and hope you will find many uses for its powerful features.

Migrating from IcePack to IceGrid

Connections
ZeroC’s Newsletter for the Ice Community

Page 16 Issue 9, December 2005 Page 17Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 17Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner

In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: How can I use Java’s generic types?

J2SE 5.0 (also known as JDK 1.5) introduced a generic type facil-
ity as described in JSR 14. Similar to templates in C++, a generic
Java container is instantiated for a particular type; this allows the
compiler to perform stricter type checking and avoids ugly casts in
application code.

Introduction to Generic Types
To demonstrate the advantages of generic types, consider this tradi-
tional Java usage of a linked list container:

java.util.LinkedList list =
 new java.util.LinkedList();
list.add(new Integer(0));
Integer first = (Integer)list.getFirst();
int val = first.intValue();
list.add("oops"); // Allowed!

The LinkedList methods use an element type of Object; as a
result, the compiler allows any type of object to be added to the
list. If our intent is to allow only Integer objects in this list, then
we will get no help from the compiler and it becomes our respon-
sibility to ensure that the container holds the proper type of object.
If an object of a different type does manage to become an element
of this list, we’ll eventually discover this fact when attempting to
cast the element to Integer and an exception occurs. However,
it would be nice to find this bug at compile time, rather than at run
time, and that’s where generic types really shine.

Rewriting the above example using generic types produces the
following code:

java.util.LinkedList<Integer> list =
 new java.util.LinkedList<Integer>();
list.add(0);
int val = list.getFirst();
list.add("oops"); // Compile error!

There are several notable differences in this code. First, the
container type is now java.util.LinkedList<Integer>,
meaning the generic container type java.util.LinkedList

is instantiated for integer elements. Next, it is no longer neces-
sary to explicitly wrap an integer in an instance of the Integer
class, as the compiler does this for you automatically. In the call to
getFirst, for instance, not only do we avoid casting the return
value to Integer, but we also avoid the use of Integer alto-
gether. Finally, we’ll get a compile-time error if we attempt to add
another type of object, such as the string shown here, to our list.

Generic Types in Ice
As you can see, there are several benefits in using the new generic
type facility. Naturally, this feature can only be used if you’re
restricting yourself to J2SE 5.0. Since Ice for Java must retain
backward compatibility with J2SE 1.4, generic types are not sup-
ported by the Ice run time or by the Java code generated from the
built-in Slice files (such as Glacier2, IceStorm, etc.). However, Ice
for Java allows you to modify the Slice-to-Java mapping by anno-
tating Slice definitions with metadata, and you can use this facility
to generate code that supports generic types.

Metadata
The Slice language specification accepts metadata annotations
on many definitions. For example, you may already be familiar
with the metadata for using asynchronous method invocation and
dispatch:

// Slice
["amd"] interface Calculator
{
	 ["ami"] void longRunningOperation();
	 string getName();
};

In this case, the interface is annotated with amd metadata, mean-
ing all operations support asynchronous dispatch, but only
longRunningOperation supports asynchronous invocation.

Metadata has no semantic meaning in the Slice language;
compilers act on the metadata that they recognize and ignore those
that they don’t recognize. In addition to language-neutral metadata
such as those for asynchronous invocation and dispatch, the Slice
compiler for Java also accepts Java-specific metadata that modifies
the mapping of sequence and dictionary types. Any alternative type
can be specified, as long as it satisfies some basic requirements.

Sequences
A Slice sequence is mapped by default to a native Java array. If an
alternative mapping is specified, the type must support the same
methods as java.util.List. For example, here is how we can
map a sequence of integers to a linked list using the new generic
type facility:

FAQ Corner

http://www.zeroc.com/vbulletin/
http://www.jcp.org/en/jsr/detail?id=14

Connections
ZeroC’s Newsletter for the Ice Community

Page 16 Issue 9, December 2005 Page 17Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

Page 17Issue 9, December 2005 Connections
ZeroC’s Newsletter for the Ice Community

// Slice
["java:type:java.util.LinkedList<Integer>"]
sequence<int> IntList;
interface I
{
 IntList getList();
};

When translated by the Slice-to-Java compiler, all occurrences of
the IntList type will use java.util.LinkedList<Integer>
instead of an int array:

IPrx proxy = ...
java.util.LinkedList<Integer> list =
	 proxy.getList();
for(int val : list)
{
 System.out.println("entry: " + val);
}

Dictionaries
A Slice dictionary is mapped by default to java.util.Map and
implemented as java.util.HashMap. If an alternative mapping
is specified, the type must implement the java.util.Map inter-
face. As an example, the following Slice definition maps a diction-
ary to a generic map type:

// Slice
["java:type:java.util.HashMap<String, Integer>"]
dictionary<string, int> StringMap;
interface I
{
 StringMap getMap();
};

With the help of generic types, the code to iterate over a diction-
ary’s elements becomes easier to write and understand:

IPrx proxy = ...
java.util.HashMap<String, Integer> map =
	 proxy.getMap();
for(String key : map.keySet())
{
 int val = map.get(key);
 System.out.println(key + " = " + val);
}

Q: What are Ice objects, servants, and proxies, and
how do they differ?

An Ice object is an abstraction. Ice objects do not physically
exist—there are no programming-language artifacts that would
directly correspond to Ice objects, and the Ice run time does not
track object existence.

The concept of an Ice object is made real by a servant, which is
said to incarnate the Ice object. A servant is a programming-lan-
guage object that implements the operations for an Ice object. The

Ice run time sends invocations on an Ice object to the servant that
incarnates the object. Note that an Ice object can exist even if no
servant exists for it. For example, a server can use a servant locator
to instantiate a servant for an incoming request on demand, and
then destroy the servant again as soon as the request completes.
In that case, the servant is destroyed, but the Ice object that was
incarnated by the servant continues to exist. (Another request for
the same Ice object would be sent to a new servant instance.) Note
that this implies that Ice objects and servants have separate life
cycles—they can be created and destroyed independently.

Each Ice object has an identity, known as the object identity. No
two Ice objects can have the same identity. You establish the link
between the conceptual Ice object and its servant when you add
a servant for the Ice object to the Active Servant Map (ASM), for
example, by calling ObjectAdapter::add. Internally, this adds
an entry to a table that is used to dispatch incoming requests: the
identity is the key, and a pointer or reference to the servant is the
lookup value. This allows the server-side run time to track which
servant should handle a request for a particular Ice object. Often,
each Ice object is represented by a different servant, so there is a
one-to-one correspondence between Ice objects and servants. How-
ever, you can have a single servant incarnate multiple Ice objects
(for example, by using a default servant).

A proxy is handle that denotes a particular Ice object. You can
think of a proxy as the equivalent of an object pointer, except that
a proxy can denote an object in a remote address space, whereas
a pointer can only point at an object in the local address space. A
proxy contains the object identity of the Ice object it denotes. In
addition, a proxy contains endpoint information that allows the
client-side run time to find out where it can contact the server that
contains the Ice object denoted by the proxy. When a client uses
a proxy to invoke an operation on an Ice object, the Ice run time
extracts the object identity from the proxy and sends it over the
wire to the server. In turn, the server-side run time uses the object
identity to locate the servant for the Ice object and, if a servant ex-
ists, dispatches the invocation to that servant.

In summary: an Ice object is a concept; a servant is the program-
ming-artifact that implements the concept, and a proxy is a handle
that allows requests to be sent to the Ice object that is incarnated by
the servant.

FAQ Corner

	Grid Computing with IceGrid
	Migrating from IcePack to IceGrid
	FAQ Corner

