
Michi Henning
ZeroC

A New Approach to
Object-Oriented Middleware

66 JANUARY • FEBRUARY 2004 Published by the IEEE Computer Society 1089-7801/04/$20.00 © 2004 IEEE IEEE INTERNET COMPUTING

M
id

dl
ew

ar
e

Tr
ac

k
Editors: Doug Lea • l ea@cs .oswego .edu

Steve Vinoski • v inosk i@ieee .org

Ice is a new object-oriented middleware platform that allows developers
to build distributed client–server applications with minimal effort.While
similar in concept to Corba, Ice breaks new ground by providing an object
model that is both simpler and more powerful, by getting rid of
inefficiencies that plagued middleware in the past, and by providing new
features such as user datagram protocol (UDP) support, asynchronous
method dispatch, built-in security, automatic object persistence, and
interface aggregation.This article discusses design decisions, contrasts the
Corba and Ice approaches, and outlines the advantages that result from a
better design.

Corba was, at its inception in the early
nineties, a landmark advance in
communications infrastructure.1 For

the first time, developers had an object-
oriented distribution platform that could
run on several different operating systems
and implementation languages. Informa-
tion technology professionals deployed
Corba widely across numerous diverse
industries, and people are still building
new Corba systems today.

Despite its success in establishing the
basic architecture of distributed object
systems, Corba has many limitations. It
can be difficult to learn and complex to
use, suffers from several design and pro-
tocol inefficiencies, and lacks support for
some frequently needed features. These
weaknesses have prevented Corba’s wider
adoption and continue to limit its reach.

The Internet Communications Engine
(Ice) represents a new approach to mid-
dleware2 that builds on Corba’s strengths

while avoiding its weaknesses. The result-
ing middleware platform is easier to use,
performs and scales better, and provides
several new features.

Object Model
An object model is a set of definitions
about the properties of computational
entities, such as the available types and
their semantics, rules for type compatibil-
ity, behavior in case of errors, and so on.
While these rules are broadly similar for
many middleware platforms, the devil lies
in the detail — seemingly minor differences
among object models have a large impact
on system design and performance.

The Corba Object Model
Experience with the Corba model reveals
several problem areas:

• opaque object references,
• weak object identity,

• lack of multiple interfaces,
• lack of exception inheritance,
• overly complex type system, and
• no notion of const-ness of operations.

Corba’s object references are opaque. As a result,
programmers cannot directly construct an object
reference and must rely on additional services,
such as a bootstrap or naming service, to obtain
references in a portable way.

Object reference comparison in Corba has weak
semantics. If two references compare as equal,
they denote the same object; however, two refer-
ences that compare as unequal might or might not
denote the same object. To perform reliable object
identity comparison, Corba requires a remote
invocation on each of the objects compared.

Each Corba object has exactly one most-
derived interface. This causes problems when a
developer must upgrade a deployed application
without losing backward compatibility, because
Corba provides no way to add an interface for the
newer version to an existing object without break-
ing already deployed application components.
Similarly, Corba does not permit developers to
change the number of parameters of an operation,
add a field to a structure, or add a new exception
to an operation.

Corba’s interface definition language (IDL) does
not support exception inheritance. As a result,
even for languages that support it, structured
exception handling is impossible. (Using an excep-
tion that contains a value type that derives from
some other value type is possible, but prevents
integration of exception inheritance with struc-
tured exception handling in implementation lan-
guages such as C++ and Java — the approach pre-
vents catching derived exceptions directly.)

IDL provides many data types. Object request

brokers (ORBs) sometimes do not support these
types — fixed-point integers, extended floating-
point types, or unsigned types, for example — if
the underlying CPU or language lacks native sup-
port for them. Other IDL types are unnecessary or
redundant. For example, an interface definition
language need not provide bounded sequences
and arrays as well as unbounded sequences; the
minor gain in static type-safety is more than off-
set by the complexity they cause for language
mappings. Similarly, value types can provide the
functionality of Corba’s any and union types, so
they are redundant.

Corba provides at-most-once semantics, which
state that an invocation can succeed or fail, but in
no case can a single invocation by a client result
in more than one invocation in the server. IDL
does not permit operations to indicate whether
they modify the target object’s state. In the
absence of such an indication, to preserve at-
most-once semantics, compliant implementations
must use very conservative error-recovery strate-
gies. As a result, Corba treats potentially recover-
able errors as unrecoverable.

The Ice Object Model
The Ice object model improves on the Corba object
model in several ways. The “Ice Services” sidebar
summarizes the unique object services that ease
application development, but the Ice object model
offers other advantages.

Proxies, which are handles to remote objects,
are not opaque; given knowledge of the machine
and port number at which a server runs and
knowledge of an object’s identity, a developer can
construct a proxy at any time. This obviates the
need for a bootstrap or naming service because
clients can construct proxies from well-known
names. As a result, applications require less code

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2004 67

Object-Oriented Middleware

Ice Services

Apart from core run-time features, Ice
also provides several object services

that ease application development by pro-
viding access to frequently used functional-
ity. Among these are

• a security service that permits secure
communication over public networks
and allows secure traversal of firewall
and network address translation (NAT)

boundaries;
• an object persistence service that

automatically stores object state in a
database using application-defined
transaction boundaries;

• an event service for efficient event
distribution to large numbers of
users, with both TCP/IP and UDP
support;

• a scalable and efficient implementation

repository;
• an application server that allows

central monitoring and control of
application components; and

• a software patching service that permits
secure and automatic distribution of
software updates to clients.

For more details on these services, visit the
Ice online manual.2

and the finished system has fewer dependencies on
external services that might fail.

Ice provides strong object identity. Applications
can reliably compare proxies for equality, and proxy
equality is equivalent to object equality. That is, an
Ice client does not need to send a remote message to
compare object identities. This has performance ben-
efits for system components that must efficiently
perform object identity comparisons, such as a trans-
action service. A consequence of strong object iden-
tity is that transparent interposition (for example,
using the Facade pattern3) becomes impossible: the
facade and the object behind it have different iden-
tities, thus enabling a client to distinguish them. In
practice, this is rarely a problem because clients
almost always care more about object behavior than
object identity. In the rare case in which an applica-
tion uses interposition, the application can easily
maintain consistency by ensuring that all system
components access objects only via their facades.

Ice provides not only interface inheritance but
also interface aggregation, just as the Component
Object Model (COM) does.4 A client can ask the
proxy for a different interface to the object it rep-
resents. If the object supports the requested inter-
face, the Ice run time creates a new proxy to that
interface. Although an object can provide multi-
ple interfaces, there is only a single object and
hence, a single object identity. Interface aggrega-
tion solves the versioning problem: because a sin-
gle object can have multiple unrelated interfaces
while retaining a single object identity, developers
can add newer interfaces to preexisting objects
without violating the client–server contract. This
lets developers add new versions to existing sys-
tems over time with no impact on deployed clients
and avoids the contortions of using derivation to
back-patch a versioning mechanism.

Ice provides single exception inheritance as a
built-in feature. Language mappings preserve
exception hierarchies, so hierarchical exception
handling integrates cleanly with the native mech-
anisms of languages such as C++ and Java. For
languages without hierarchical exception han-
dling, language mappings provide APIs to perform
safe down-cast at run time.

Slice. Similar to Corba’s IDL, Ice provides the Spec-
ification Language for Ice. Slice provides a mini-
mal number of built-in primitive types:

• integer types short (16-bit), int (32-bit), and
long (64-bit);

• floating point types float (32-bit) and double
(64-bit);

• byte (8-bit uninterpreted type);
• string (UTF-8 encoded Unicode string);
• types Object and Object* (the base type for

classes and proxies, respectively);
• and bool.

Apart from these, Slice supports several user-
defined types, such as constants, enumerations,
sequences, structures, and modules. These work
similarly to the equivalent Corba constructs.

In addition, Slice provides new constructs. A
Slice dictionary defines collections of key-value
pairs. The target language presents the dictionar-
ies as associative arrays, such as C++ or Java
maps. In contrast, Corba developers must emulate
dictionaries using value types, for example, which
are more complex to specify and implement, and
which impose a performance penalty due to extra
data copying.

Slice classes resemble Corba value types,
though in greatly simplified form. Classes are like
structures in that they are passed by value and can
contain several members of arbitrary type. Unlike
structures, however, classes support (single) imple-
mentation inheritance and (multiple) interface
inheritance. Classes implicitly inherit from a com-
mon base type Object.

A program can supply a derived class where an
operation signature expects a base class. If the
receiver of a derived class instance knows the
instance’s derived type, the unmarshaling code
creates a derived instance of the class in the
receiver’s address space. A safe down-cast lets the
receiver convert a parameter of base type to the
derived type. If the receiver of a derived class
instance does not know the instance’s derived
type, however, the unmarshaling code truncates
the instance to the most-derived type that the
receiver understands.

Classes are more flexible than structures
because they support pointer semantics: a class
instance can have members that point to other
class instances. This permits the construction of
arbitrary graphs of nodes, wherein passing a sin-
gle node as a parameter marshals all reachable
instances in the graph and reconstructs the corre-
sponding graph in the receiver’s address space. The
unmarshaling code preserves the identity relation-
ships of instances, so the receiver’s graph exactly
matches the sender’s graph even if some nodes
have an in-degree greater than one (that is, have

68 JANUARY • FEBRUARY 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

more than one incoming arc).
Unlike structures, classes can have opera-

tions. Operation invocations on a class are ordi-
nary method calls and so execute in the caller’s
local address space. However, a developer can
create a proxy to a class in a remote address
space, in which case, invocations via the proxy
are remote invocations.

What Slice omits. Slice is interesting not only for
what it provides but also for what it leaves out.
Slice includes no

• character, unsigned, fixed-point, extended
integer, or extended floating-point types,

• distinction between narrow and wide strings (all
strings are Unicode strings),

• typedef keyword (and therefore, no aliased
types),

• anonymous types (the syntactic rules force all
types to have names),

• nested types (Slice defines types only at glob-
al and module level),

• any type or unions,
• arrays or bounded sequences,
• constant expressions (it includes only constant

definitions),
• attributes (it includes only operations),
• inout parameters, and
• type-level untyped name-value pairs (known

as IDL contexts in Corba).

For classes, Slice also omits constructors, destruc-
tors, and public or private sections, as well as the
notions of abstractness, boxing, and truncatability.
Despite the long list of omissions, Slice is as func-
tional as Corba IDL. Some of the missing features are
simply unnecessary or redundant, such as constant
expressions and attributes. For other missing fea-
tures, developers can easily use alternative con-
structs, such as unbounded sequences to model
bounded sequences and arrays and Slice classes to
model IDL unions and any types.

Still other features, such as nested type defi-
nitions or anonymous types, cause more harm
than good and are best left out entirely. Nested
types cause name clashes if a target language’s
scoping rules differ from those of Slice — resolv-
ing the name clashes leads to complex and ugly
APIs due to mangled names or the need for arti-
ficial scopes. Anonymous types make it impossi-
ble to, for example, declare a parameter or a vari-
able of that type.

Error recovery and Slice. Slice provides two oper-
ation qualifiers, nonmutating and idempotent.
The nonmutating qualifier indicates that the
implementation of an operation does not modify
the state of its target object; idempotent indicates
that the effect of two or more successive invoca-
tions of an operation is the same as the effect of a
single invocation. (Intuitively, developers can use
idempotent to qualify operations that have simple
assignment semantics.)

These operation qualifiers permit more aggres-
sive error recovery from network failures because,
for nonmutating and idempotent operations, a
retry after an error can never violate at-most-once
semantics. Additionally, if the target language per-
mits, nonmutating causes the compiler to gener-

ate APIs that enforce the invocation’s constant
nature. (For example, nonmutating operations
map to C++ const member functions.)

Run-time APIs
Corba’s overly complex APIs diminish its popu-
larity. To use comparatively simple functionality,
developers often face large numbers of interfaces
with a bewildering array of operations.

A good example is the Corba Portable Object
Adapter API, which requires 211 lines of IDL spec-
ification. Ice provides an equally functional object
adapter that supports all the POA’s implementa-
tion techniques — default servants, servant loca-
tors, many-to-one mappings of objects to servants,
and so on — but the Ice object adapter API is
defined in only 29 lines of Slice definitions.

Similar savings in API size exist for other parts
of the Ice run time. This not only makes the plat-
form easier to learn and use than Corba, it also
results in smaller libraries and memory footprint
at run time, with smaller working set sizes and
concomitant performance gains.

Language Mappings
Ice currently provides language mappings for
Java, C++, and PHP. The Ice Java mapping resem-

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2004 69

Object-Oriented Middleware

To use comparatively simple functionality,
developers often face large numbers of interfaces
with a bewildering array of operations.

bles the Corba Java mapping, but it is smaller and
simpler because of Slice’s simpler type model.

The Corba C++ mapping has suffered much
criticism for its complex and difficult-to-use APIs.
Programmers need to exercise extraordinary care,
particularly with respect to memory management,
to avoid creating hard-to-locate bugs. The follow-
ing Corba C++ code fragments all contain errors:

void f(CORBA::Octet o);
void f(CORBA::Boolean b); // Ambiguous
cout << ref—>getString(); // Leak
r1—>putString(r2—>getString()); // Leak
char *p = getString();
delete p; // Heap corruption
std::string s(ref—>getString()); // Leak
if(ref1 == ref2) ... // Undefined

Code that compiles fine can contain many differ-
ent types of latent bugs that might not manifest
themselves until developers change the underly-
ing operating system or compiler. The Corba C++
mapping contains many kinds of problems:

• The APIs pass dynamically allocated memory
as raw pointers, which easily leads to memory-
management errors.

• Parameter passing rules are complex. Whether
a parameter is passed on the stack or in heap-
allocated memory depends on the parameter’s
direction and type.

• Responsibility for allocation or deallocation of
dynamic memory sometimes rests with the
caller and sometimes with the callee, depend-
ing on the parameter’s direction and type.

• Usually, the caller is responsible for deallocat-
ing variable-length return values. However, the
callee retains ownership of memory for some
APIs, so the memory-management rules are
internally inconsistent.

• Allocating and deallocating many data types
often requires the use of special functions — as
opposed to C++’s new and delete. Failure to
use these special functions can work out just
fine or lead to heap corruption, depending on
the underlying operating system.

• Writing exception-safe code requires consider-
able effort due to the use of raw pointers
throughout the mapping.

• The mapping ignores threading. The extent to
which operations on data types are thread-safe
depends on the implementation.

• The APIs for many data types are large and

complex. For example, the mappings for
union, any, TypeCode, and sequence types are
difficult to use correctly.

• The Corba C++ mapping predates the ISO C++
specification and, hence, does not use standard
types such as string, vector, or map.

• If value types contain circular references, the
Corba C++ mapping simply leaks their memory.

The Ice C++ mapping avoids the Corba C++ map-
ping’s pitfalls:

• The mapping is free from memory-manage-
ment artifacts. Dynamically allocated instances
can be passed only by value as smart pointer
types, so the programmer never needs to de-
allocate anything. (Ignoring return values is
safe, for example, and the mapping never leaks
memory in the presence of exceptions.)

• The mapping is fully thread-safe.
• Slice strings map to C++ string.
• Slice dictionaries map to C++ map.
• Slice sequences map to C++ vector.
• All Slice built-in types map to C++ types that

are distinguishable for overloading.
• A garbage collector ensures that classes with

circular references do not cause memory leaks.

Overall, the Ice C++ mapping is intuitive to use,
requires fewer lines of code for equivalent func-
tionality, integrates well with the standard template
library, and is both thread- and exception-safe.

Invocation Models
Both Ice and Corba support invocations with time-
outs, either as a global setting or for individual
invocations: operations that do not complete with-
in the specified time return with time-out excep-
tions. Corba also offers per-thread time-outs; how-
ever, Ice does not provide these due to the high cost
of accessing thread-specific storage.

Corba supports synchronous, asynchronous,
and one-way invocation modes. Ice covers those
kinds of invocations and adds datagram and
batching capabilities.

Synchronous Invocation
For synchronous invocation, Corba provides at-
most-once semantics, which requires very conser-
vative error-handling. In particular, if an invoca-
tion fails while the reply for a request is
outstanding (for example, due to connection fail-
ure), the client-side run time has no choice but to

70 JANUARY • FEBRUARY 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

propagate the failure to the application code. (The
run time cannot retry the request because that
might violate at-most-once semantics.)

Ice also provides at-most-once semantics, but it
improves on the Corba situation by adding the non-
mutating and idempotent operation qualifiers. The
former operation does not change state, while the
latter only sets the state to a defined value (inde-
pendent of the previous state) that the run time can
safely resend in the presence of network failures.
This lets the Ice run time recover transparently from
network failures that, in Corba, lead to hard errors.

Asynchronous Invocation
The Ice asynchronous invocation model resembles
the Corba asynchronous method invocation (AMI)
callback model: the client provides a callback object
that the server uses to deliver an invocation’s results.
Ice discards the polling model because the majority
of AMI applications use the callback model. Because
the polling model adds little functionality to the call-
back model, a separate polling API would only add
to the generated code’s size and complexity.

One-way Invocation
Like Corba, Ice lets clients make one-way invoca-
tions for any operation that does not have a return
value, an out parameter, or an exception. The run
time dispatches one-way invocations like asyn-
chronous operations: the thread of control returns
as soon as the client-side stub has written the cor-
responding request to the local transport. One-way
invocations are reliable in the sense that only cat-
astrophic events, such as connection loss, cause
the loss of one-way invocations. In particular,
one-way invocations are flow-controlled just as
two-way invocations are, so the client cannot
overrun the server.

Datagram Invocation
Corba is silent about datagrams and their seman-
tics. (Some ORBs provide a user datagram protocol
[UDP] transport as a proprietary feature, but the
semantics and APIs are proprietary and, of course,
cross-vendor interoperability is not provided.)

Ice includes built-in UDP support, permitting
clients to use datagram invocations. These resem-
ble one-way invocations in that they apply only
to operations that do not return values. At the
transport level, the run time sends these invoca-
tions as proper UDP datagrams, which are unreli-
able and subject to size limitations. (Ice does not
promise at-most-once semantics for datagram

invocations because duplication of UDP packets
makes it impractical to provide such a guarantee.)

Datagram invocations are useful in situations
that require the distribution of large numbers of
events via local area networks. In such situations,
UDP offers substantial performance gains and
allows applications to consume fewer operating
system resources and to scale much further than
with a connection-oriented transport.

Batched Invocation
Corba has a built-in one-to-one correspondence
between client invocations and requests. Each
client invocation results in a separate request–reply
interaction on the wire. For fine-grained interfaces,
this one-to-one correspondence can degrade per-
formance significantly. For example, setting 20
attributes on an object requires 20 separate, and
synchronous, round trips on the network.

Ice allows both one-way and datagram invo-
cations to be batched. The run time queues batched
invocations in a client-side buffer instead of send-
ing them immediately. The buffer accumulates
invocations until the client application invokes an
explicit flush operation, which sends the accumu-
lated invocations as a single message across the
network. This is not only more efficient but also
better decouples interface design from synchro-
nous RPC’s limitations.

If an invocation in a batch raises an exception,
Ice does not inform the client of the error, so the
failure of one invocation in a batch does not affect
the remainder of the invocations in the batch.

Dispatch Models
As Corba does, Ice offers a synchronous call dis-
patch model for the server side. A client invoca-
tion results in a function call into the server-side
application code; the client’s call completes once
the server-side function returns and the run time
has marshaled the return values back to the client.

Synchronous dispatch is inappropriate in some
situations. For example, consider a blocking read
operation that returns data to clients. (Such oper-
ations are common in Corba — for example, both
the Event and the Notification services offer such
operations to deliver events to clients.) As Figure
1 (next page) illustrates, for every client that is
waiting for data to arrive blocked in an invocation
of read, the server loses an execution thread
because the server-side operation cannot complete
without also completing the client-side operation.
As a result, such blocking operations are difficult

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2004 71

Object-Oriented Middleware

to scale because of the high resource consumption
for each thread.

To deal with this problem, Ice provides an
asynchronous call dispatch mode. As for synchro-
nous dispatch, the Ice run time calls an applica-
tion-defined function for each incoming operation
invocation. However, as Figure 2 shows, that func-
tion can complete without completing the invoca-
tion in the client, thereby releasing its thread of
control. To complete the operation, the server later
invokes a callback function in the Ice run time.
(The server can invoke the callback from a differ-
ent thread than the one that received the invoca-
tion originally.) When the server makes the call-
back, the Ice run time receives the return results
(or exception) for the invocation and marshals the
results back to the client.

To clients, synchronous and asynchronous dis-
patch are indistinguishable, and the on-the-wire
information is identical for either dispatch mode.

Asynchronous method dispatch permits a serv-

er to multiplex a large numerous concurrent invo-
cations onto a small number of threads and so
enables designs that could not scale with synchro-
nous dispatch.

Threading
Corba has long suffered from its weak threading
model. The specification provides no threading
model on which a developer can rely. Developers
must choose between single-threaded operation
and vendor-specific models that might not provide
threads at run time. If an ORB uses threads, Corba
does not specify the threading model. Coupled
with the lack of a portable threading API, this
makes it difficult to write portable Corba code.

In contrast, Ice is inherently multithreaded. On
the server side, a thread pool using a leader–
follower model5 dispatches incoming operation
invocations. The thread pool’s size is config-
urable; setting the thread pool size to 1 allows
single-threaded server operation. Servers can cre-
ate additional thread pools of arbitrary size. This
permits servers to partition incoming operation
invocations over several thread pools to, for
example, prevent thread starvation.

By default, the Ice client side uses a thread pool
containing two threads. One thread sends outgo-
ing invocations while the other listens for incom-
ing requests. This permits nested callbacks to pro-
ceed without deadlock. The nesting depth of
callbacks is limited to the size of the thread pool,
which developers can configure at run time.

The Ice run time itself is fully thread-safe, so
programmers need not protect any Ice-related data
structures from concurrent access. The only critical
regions that developers must explicitly implement
concern application-related data. Ice provides a
portable threading and signal-handling API that
lets developers write code that is portable across
different platforms.

Protocol and Transports
Corba specifies the General Inter-ORB Protocol
(GIOP), which requires a stream-oriented transport.
The Internet Inter-ORB Protocol (IIOP) is a concrete
specification of the abstract GIOP protocol for
TCP/IP. In other words, the only standardized pro-
tocol that Corba provides is for TCP/IP. Corba does
not provide a UDP-based protocol.

In contrast, the Ice protocol can run over a
variety of stream and datagram transports. Cur-
rently, Ice supports TCP/IP and SSL as stream
transports, and UDP as a datagram transport. The

72 JANUARY • FEBRUARY 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

Client A Server

Main thread

Client B

Client thread

Dispatch
thread

Dispatch
thread

Client thread

Figure 2. Asynchronous call dispatch. The server can implement any
number of concurrent blocking calls using a single thread.

Client A Server

Main thread

Client B

Client threadClient thread

Dispatch
thread

Dispatch
thread

Figure 1. Synchronous call dispatch. Because the server uses a
dedicated thread for each concurrent invocation, the clients tie up
two additional threads for the entire duration of their blocking calls.

protocol engine is extensible, so programmers can
add new transports via a plug-in API without
modifying the Ice source code. (The Ice SSL trans-
port is implemented as such a plug-in.) For con-
nection-oriented transports, Ice provides an
optional active-connection management feature
that automatically reclaims connections that have
been idle for a configurable amount of time.

The Problems with IIOP
IIOP suffers from several design flaws. For starters,
the protocol state machine and encoding rules are
not separately versioned. As a result, any changes
to the encoding — of which there have been many
in the past — break backward compatibility with
deployed applications.

The encoding rules require padding in an
attempt to align data on boundaries that match
CPU alignment requirements. Unfortunately, these
padding rules are severely misdesigned; they waste
bandwidth and actually slow down marshaling
instead of speeding it up.

The encoding of object references is complex
and expensive to marshal and unmarshal. Object
references marshal orders of magnitude slower
than other structured data in many ORB imple-
mentations.

IIOP uses a receiver-makes-it-right byte-order-
ing scheme: the sender of a message marshals data
in its native byte order and the receiver swaps the
byte order if necessary. This approach results in a
more complex protocol without tangible perfor-
mance benefits. Moreover, because intermediate
nodes can end up unnecessarily reordering data,
this design hinders the efficient implementation of
message switches that forward messages or parts
of messages to down-stream consumers.

Addressing information is embedded in an IIOP
byte stream at locations that depend on the type
of data being marshaled. As a result, IIOP cannot
cross network address translation (NAT) bound-
aries because addresses are not at fixed locations
for patching by a protocol proxy or firewall. (Even
if a proxy knew the address locations, it could still
not patch the addresses because a change in an
address’s length would result in violating the IIOP
alignment rules.)

Much of the data that IIOP sends is not encapsu-
lated: to correctly unmarshal the data, the receiver
must know the type of data in advance. This makes
it difficult to provide application-level proxy servers
and firewalls because a developer must configure
these with type knowledge for the data they need to

pass; IIOP does not allow generic proxies that are
ignorant of application-level type definitions.

IIOP does not encapsulate values of type any,
which requires the receiver to completely unmar-
shal values in detail, even if the receiver only
wants to forward the data to a down-stream con-
sumer. This prevents the efficient implementation
of event and notification services.

Finally, developers can’t extend GIOP to new
transports without access to an ORB’s source code.
(The Object Management Group’s Extensible
Transport Framework RFP has been lingering for
several years without progress.) Clearly, Corba’s
IIOP offers much room for improvement, which
Ice provides.

Ice Improvements
The Ice protocol consists of two major parts: a set
of encoding rules for the various data types and a
protocol state machine that defines how clients
and servers exchange messages. The encoding and
the state machine carry separate version numbers
to allow the protocol to evolve over time, with
well-defined backward-compatibility rules and a
reliable way to diagnose incompatible versions.

Encoding. The encoding rules emphasize simplici-
ty and compactness. Ice marshals all data in fixed
little-endian byte order and is always byte-aligned
(that is, without any padding). This provides sub-
stantial advantages in terms of the marshaling
code’s simplicity and size and minimizes band-
width consumption (which is especially important
for wide area networks and low-bandwidth links).

All message payloads exchanged via the Ice
protocol are encapsulated; that is, Ice sends each
payload as a byte count followed by a blob of
data. This enables the implementation of efficient
message switches (such as an event service): inter-
mediate nodes can forward incoming messages to
any number of receivers by doing a simple block
copy, without having to unmarshal and remarshal
messages. In addition, the fixed byte order ensures
that byte-reordering takes place only at the origi-
nal sender and ultimate receiver if these run on
big-endian machines; intermediate nodes that
forward messages do not need to perform byte-
swapping of the forwarded data.

Message switches can take advantage of UDP
as a transport, making event distribution on LANs
extremely efficient. Switches can use multicast
and broadcast by simply choosing an appropriate
address for UDP.

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2004 73

Object-Oriented Middleware

State machine. The protocol state machine is sim-
ple, with only five message types: Request,
BatchRequest, Reply, ValidateConnection, and
CloseConnection.

ValidateConnection and CloseConnection
apply only to connection-oriented transports. For
connection-oriented transports, the responding
server sends a ValidateConnection message
back to the client after accepting an incoming con-
nection. That message informs the client that the
server is ready to accept incoming requests and
serves to negotiate a protocol version between
client and server. ValidateConnection messages
also eliminate a race condition that is inherent in
GIOP: without explicit connection validation, a
client can send a message to a server that is in the
process of shutting down; when the client realizes
that the server has closed the connection, it can-
not retry the sent request because that might vio-
late at-most-once semantics.

Ice connections are inherently bidirectional:
if a client has established a connection to a serv-
er and the server invokes a callback operation on
an object the client provides, the Ice run time can
be configured to send the request over the con-
nection the client has previously established. This
feature is particularly important when operating
through firewalls, which frequently do not per-
mit clients to receive incoming connection
requests. Ice also provides a built-in mechanism
that lets applications transparently operate across
NAT boundaries.

The Ice protocol supports on-the-wire com-
pression; clients and servers indicate via a flag in
the protocol header whether they are willing to
accept compressed messages. In addition, devel-
opers can configure clients and servers at run time
to enable or disable compression. With compres-
sion enabled, Ice compresses messages larger than
100 bytes using bzip2 (see http://sources.redhat.
com/bzip2). This feature is most useful over low-
bandwidth links and can provide substantial per-
formance gains for applications that run, for
example, over the public Internet. For high-speed
LAN links, compression actually does more harm
than good: the cost of the CPU cycles to compress
and uncompress messages outweighs the savings
in bandwidth.

Binding Modes
Corba provides both direct and indirect binding
modes. With direct binding, object references
carry the address information of the server end-

point, whereas for indirect binding, object refer-
ences carry the address of an implementation
repository. The implementation repository knows
about servers’ actual locations and replies to a
client request with a redirect message containing
the current server address — the client then
resends its original request to the new address.
Ice also provides both direct and indirect bind-
ing modes, but improves on the design of indi-
rect binding.

Corba Binding
Forwarding via a redirect message has several dis-
advantages. For starters, a Corba client can’t dis-
tinguish a directly bound reference from an indi-
rectly bound one. (The client learns that a
reference is indirectly bound only if it receives a
redirect message in response to a request.) For
large requests, this is wasteful because the client
sends a request only to find that it has sent it to
the wrong address and then has to resend the
request in its entirety.

To alleviate this problem, GIOP includes a
locate-request message that lets clients obtain a
server’s current address without sending an actual
request. However, because clients cannot know the
binding mode of references, they cannot know
whether they should use that particular message:
for directly bound references, it would be better to
send the actual request, whereas for indirectly
bound references, it would be better to send a
locate request. The net effect is that, no matter what
clients do, their actions are wrong some of the time
and result in needless network traffic and delays.

Also, Corba’s design encourages clients to store
object references externally, for example, using the
naming service. For indirect references, this poses
problems. Changing the implementation reposito-
ry’s physical location invalidates all extant refer-
ences to it and causes binding failure. This makes
it very difficult to migrate implementation repos-
itories if, for example, they exceed their scalabili-
ty limits. In addition, this design severely limits the
ability to migrate servers across machines: admin-
istrators can migrate servers only if the same
implementation repository services both the source
and target machines.

Corba implementation repositories must
exchange messages with their servers. However,
Corba does not standardize the protocol for doing
this. As a result, servers written for a particular
ORB cannot use another ORB’s implementation
repository, and administrators cannot federate

74 JANUARY • FEBRUARY 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

repositories across vendor boundaries because no
specification exists for doing so.

Ice Binding
For indirect binding in Ice, each proxy carries a
symbolic name. To resolve the name to a physi-
cal end point, the client-side run time consults a
lookup service that maps names to end points.
(Configuration determines the lookup service’s
address.) This is analogous to the way that
TCP/IP resolves domain names to IP addresses
using the Domain Name System, and it has sev-
eral advantages.

To start, the Ice protocol does not need to
specifically support indirect binding. Instead, the
Ice run time can resolve a name to an endpoint by
invoking operations on Slice-defined interfaces as
usual. This allows developers to implement third-
party lookup services without modifying the Ice
source code or protocol.

Another advantage is that the Ice design is
extensible in the same way as the DNS. Developers
can implement fault-tolerance and replication
without additional Ice run-time support, achiev-
ing scalability by distributing state over several
federated administrative domains.

Also, when an Ice client sends an invocation
over the wire, the run time does not send the
symbolic name that identifies a physical trans-
port end point with the request — only the object
identity that determines the target object. This
allows objects to migrate freely among servers
without breaking existing proxies, because all
location information is external to both the proxy
and the servers. Combined with the appropriate
choice of object identity, such as a universally
unique identifier (UUID), this permits free physi-
cal migration of objects down to the granularity
of a single object.

Finally, indirect proxies contain no informa-
tion that would identify the physical end point at
which the lookup service runs. This makes it pos-
sible to migrate the lookup service without inval-
idating the proxies that clients use for binding.
Because Ice keeps all location information exter-
nally, changing the lookup service’s address
requires updating only a single configuration item.

Summary
Developing Ice provided many lessons:

• A simple object model and type system con-
tribute substantially to ease of use and perfor-

mance of middleware.
• It pays to expend effort on designing run-time

APIs that are both minimal and sufficient.
Developers appreciate the simplicity.

• Simple language mappings that are thread-safe
and do not burden developers with memory-
management responsibilities substantially
reduce development time and defect count.

• Rich invocation and dispatch models con-
tribute to more scalable applications and let
developers better decouple interface design
from implementation.

• Keeping the protocol small and efficient
improves the performance and scalability of
applications and lets them use lower-
bandwidth links.

• Built-in security and the ability to coexist with
firewalls and NAT let applications use non-
secure public networks rather than separate
virtual private networks.

My colleagues and I are currently working on
further improvements to Ice. These include a
native implementation in C# that runs on both
.NET and Mono; real-time extensions; a version
of Ice suitable for embedded environments; and
mappings to scripting languages such as Python,
Perl, and Ruby.

References

1. M. Henning and S. Vinoski, Advanced Corba Programming

with C++, Addison-Wesley, 1999.

2. M. Henning et al., Distributed Programming with Ice,

ZeroC, 2003; www.zeroc.com/Ice-Manual.pdf.

3. E. Gamma et al., Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1999.

4. D. Box, Essential COM, Addison-Wesley, 1998.

5. D.C. Schmidt et al., “Leader/Followers: A Design Pattern for

Efficient Multi-Threaded Event Demultiplexing and Dis-

patching,” tech. report no. wucs-00-29, Proc. 7th Pattern

Languages of Programs Conf., Washington Univ., St. Louis,

Mo., 2000; www.cs.wustl.edu/~schmidt/PDF/lf.pdf.

Michi Henning is chief scientist of ZeroC. From 1995 to 2002,

he worked on Corba as a member of the Object Manage-

ment Group’s Architecture Board and as an ORB imple-

menter, consultant, and trainer. With Steve Vinoski, he

wrote Advanced Corba Programming with C++ (Addison-

Wesley, 1999). Since joining ZeroC, he has worked on the

design and implementation of Ice and in 2003 coauthored

Distributed Programming with Ice for ZeroC. He holds an

honours degree in computer science from the University of

Queensland. Contact him at michi@zeroc.com.

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2004 75

Object-Oriented Middleware

